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Abstract. Let E be a vector bundle of rank n on P1. Fix a positive
integer d. Let Q(E, d) denote the Quot scheme of torsion quotients
of E of degree d and let Gr(E, d) denote the Grassmann bundle that
parametrizes the d-dimensional quotients of the fibers of E. We compute
Seshadri constants of ample line bundles on Q(E, d) and Gr(E, d).

1. Introduction

Let X be a projective variety over an algebraically closed field k and let
L be a nef line bundle on X. For a point x ∈ X, the Seshadri constant of L
at x is defined as

ε(X,L, x) := inf
x∈C

L · C
multxC

,

where the infimum is taken over all curves in X passing through x. Here L·C
denotes the intersection multiplicity and multxC denotes the multiplicity of
C at x. When there is no confusion about X, to simplify notation we denote
ε(X,L, x) by ε(L, x).

Seshadri constants were introduced by Demailly [Dem92] as a way to
tackle the Fujita Conjecture. He was motivated by an ampleness criterion
of Seshadri [Har70, Theorem I.7.1]. These constants turned out to be im-
portant invariants associated to projective varieties. As an illustration, let
X be a Fano variety of dimension N and let KX denote the canonical bundle
on X. Then X is isomorphic to PN if and only if there exists a smooth point
x ∈ X such that ε(X,−KX , x) > N ; see [BS09, LZ18]. A lot of research is
currently focused on studying Seshadri constants.

Seshadri constants on surfaces have been the primary focus of researchers,
but some results are known in general for special classes of varieties. For
example, several results are known in the case of Fano varieties [Lee03],
abelian varieties [Laz96, Nak96, Bau98] or toric varieties [Ito14].

In this paper, we compute Seshadri constants for ample line bundles on
Quot schemes over C := P1. Let E be a vector bundle of rank n on C
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and let d be a positive integer. Let Q(E, d) denote the Quot scheme of
torsion quotients of E of degree d. The Nef cone of Q(E, d) is described in
[GS20]. In [Str87] the author restricts his attention to the case when E is the
trivial bundle, but considers more general Quot schemes (not just torsion
quotients). We use this description to compute the Seshadri constants of
ample line bundles on Q(E, d).

When E is the trivial bundle of rank n we will also denote Q(E, d) by
Q or Q(n, d). In Section 2, we consider the Quot scheme Q(n, d) where
d > 1. The Nef cone is generated by line bundles [Ld−1] and [Φ∗OPd(1)]
(see discussion preceding (2.4) for notation and more details). The main
result of Section 2 is the following (see Definition 2.11 for the definition of
the closed subset Z and the open set U = Q \ Z).

Theorem 1.1. Fix integers a, b > 0. If x ∈ U ⊂ Q we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = a.

If x ∈ Z = Q \ U we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = min{a, b}.

In Section 3, we deal with the case Q′ := Q(E, d) where E is an arbitrary
vector bundle and d > 1. The Nef cone is generated by line bundles [LL,Q′ ]
and [Φ′∗OPd(1)], (see discussion preceding (3.5) for notation and more de-
tails). There is a natural inclusion j : Q′ ↪→ Q. The main result of Section
3 is the following.

Theorem 1.2. Assume d > 1. Fix integers a, b > 0. If x ∈ Q′ such that
j(x) ∈ U , then we have

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) = a.

If x ∈ Q′ \ U we have

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) = min{a, b}.

The case d = 1 corresponds to projective bundles. This is dealt with in
Theorem 4.3. Finally, using similar methods we compute Seshadri constants
on Grassmann bundles over C in Section 5, see Theorem 5.2.

If L is an ample line bundle on an N -dimensional projective variety X,

we have 0 < ε(X,L, x) ≤ N
√
LN for all x ∈ X. So we define the following:

ε(X,L, 1) := sup
x∈X

ε(L, x), and

ε(X,L) := inf
x∈X

ε(L, x) .

While ε(X,L) can be arbitrarily small by an example of Miranda [Laz04,
Example 5.2.1], it is conjectured that we always have ε(X,L, 1) ≥ 1 when k
is the field of complex numbers; see [Laz04, Conjecture 5.2.4]. This is known
to be true when X is a surface (see [EL93]), but in higher dimension it is
open, in general. As a consequence of our main results, we conclude that.
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Corollary 1.3. The inequality ε(X,L, 1) ≥ 1 holds for ample line bundles
L when X is Q or Q′.

2. Seshadri constants on Q(n, d)

Throughout we assume the base field to be an algebraically closed field
k. In this section, we consider the Quot scheme associated to the trivial
bundle. The results proved in this section will be used when we consider the
general case in Section 3.

Let C := P1. Fix integers n, d ≥ 1. Let Q := Q(n, d) be the Quot scheme
of torsion quotients of the vector bundle On

C of degree d. It is well known
that Q is a smooth projective variety. In this section we compute Seshadri
constants of ample line bundles on Q. We begin by describing the Nef cone
of Q.

Let pC : C × Q → C and pQ : C × Q → Q be the projections. Let
On

C×Q → B → 0 be the universal quotient over C ×Q. The sheaf pQ∗(B) is
a vector bundle over Q of rank d. Define the line bundle

(2.1) OQ(1) := det(pQ∗(B)) .

Let

(2.2) Φ : Q → SdP1 ∼= Pd

be the Hilbert-Chow map (see [GS19, Section 2]). This map has the following
pointwise description. If [On

C → B] is a torsion quotient of degree d, then Φ

maps this to the point in SdP1 corresponding to
∑

x∈Supp(B) l(Bx)[x], where

l(Bx) denotes the length of the OC,x-module Bx.
The Néron-Severi space N1(Q) is two-dimensional and the classes [OQ(1)]

and [Φ∗OPd(1)] form a basis (see [GS20, Corollary 3.10]). Define

Ld−1 := OQ(1)⊗ Φ∗OPd(d− 1) .(2.3)

The nef cone Nef(Q) ⊂ N1(Q) of Q is the cone generated by the following
classes (see [GS20, Proposition 6.1])

(2.4) Nef(Q) = R≥0[Ld−1] + R≥0[Φ∗OPd(1)] .

For a line bundle L on C we denote

LL,Q := det(pQ∗(B ⊗ p∗CL)) .(2.5)

Lemma 2.6. Given any point x ∈ Q there exists a curve L1,x
∼= P1 ↪→ Q

passing through x such that [Ld−1] · [L1,x] = 1 and [Φ∗OPd(1)] · [L1,x] = 0.

Proof. Let E = On
C . Let x ∈ Q correspond to the quotient x : E → B → 0.

Fix a quotient B → B′ → 0 where B′ is a torsion sheaf of degree d− 1. Let
A be the kernel of E → B → 0 and let A′ be the kernel of the composition
E → B → B′ → 0. Then A ⊂ A′ ⊂ E and we have an exact sequence

0→ A′/A→ B → B′ → 0 .
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Hence, A′/A is a torsion sheaf of degree 1, that is, A′/A ∼= kc, where kc is
the skyscraper sheaf with fibre k at a point c ∈ C. Let A′c be the fiber of the
sheaf A′ over the point c ∈ C and let Z := P(A′c). Let p1 : C × Z → C and
p2 : C ×Z → Z be the projections. Let i : c×Z ↪→ C ×Z be the inclusion.
Then we define a quotient on C × Z as the composition

(2.7) p∗1A
′ → i∗i

∗p∗1A
′ ∼= i∗(A

′
c ⊗OZ)→ i∗OZ(1)→ 0 .

Let AZ ⊂ p∗1A′ ⊂ p∗1E be the kernel of the above composition. Let us denote
the quotient p∗1E/AZ by BZ . Then we have an exact sequence on C × Z
(2.8) 0→ i∗OZ(1)→ BZ → p∗1B

′ → 0 .

Hence BZ is flat over Z such that BZ |C×z is a torsion sheaf of degree d
for every z ∈ Z. Therefore the quotient p∗1E → BZ → 0 defines a map
f : Z → Q. It is clear that x ∈ Q is in the image of this map. Using [GS20,
Lemma 3.1 (ii)] and (2.8) we get that f∗OQ(1) = OZ(1). Let z ∈ Z. Then
the quotient corresponding to f(z) sits in the short exact sequence,

0→ kc → BZ |z → B′ → 0 ,

obtained by restricting (2.8) to C×z. This shows that the divisor div(BZ |z)
corresponding to BZ |z is the sum div(B′) + c. Thus, Φ ◦ f is constant; that
is, the image of f is contained in a fiber of Φ.

Next we will show that f is a closed immersion. Note that E is globally
generated. Let V := H0(C,E). Then we have a surjection V ⊗ OC → E.
This gives surjective maps

(2.9) V ⊗ p∗COC � p∗CE � B .
Letting K denote the kernel of the map V ⊗ p∗COC → B and observing that
K|q decomposes into a direct sum of line bundles OC(bi) with −d ≤ bi ≤ 0,
one easily checks that R1pQ∗(K ⊗ p∗CO(d − 1)) = 0. Let L := OC(d − 1).
Tensoring (2.9) with p∗CL, applying pQ∗ and taking exterior power, we see
that
(2.10)

det(pQ∗(B ⊗ p∗CL)) = LL,Q is a globally generated line bundle on Q.

In [GS20, Proposition 6.1] it is proved that

LL,Q ∼= OQ(1)⊗ Φ∗OPd(d− 1) = Ld−1 .

Since Φ◦f is constant, it follows that f∗LL,Q ∼= f∗OQ(1) ∼= OZ(1). Consider

the composite map Z → Q → PN , where the second map is given by LL,Q.
Since the pullback of OPN (1) along this map is OZ(1) it follows that the
composite, and so also f , is a closed immersion.

Let L1,x ⊂ Z ⊂ Q denote any line passing through x. Then it is clear
that L1,x satisfies the assertions of the lemma. �

Let On
C×Q → B denote the universal quotient on C × Q. Pushing this

forward we get a map On
Q → pQ∗B of sheaves on Q. Let F denote the

cokernel. From Grauert’s Theorem it is clear that for q ∈ Q the fiber
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F ⊗ k(q) is the cokernel of the map H0(C,On
C)→ H0(C,Bq). Note that the

image of this map cannot be 0, thus, dim(F ⊗ k(q)) ≤ d − 1 for all points
q ∈ Q. The set

{q ∈ Q | dim(F ⊗ k(q)) ≥ d− 1} = {q ∈ Q | dim(F ⊗ k(q)) = d− 1}

is a closed subset.

Definition 2.11. Define Z ⊂ Q to be the closed set consisting of points q
for which the image of H0(C,On

C) → H0(C,Bq) is 1-dimensional. Define
U := Q \ Z.

Lemma 2.12. Given any point x ∈ Z there exists a curve L2,x
∼= P1 ↪→ Q

passing through x such that [Ld−1] · [L2,x] = 0 and [Φ∗OPd(1)] · [L2,x] = 1.

Proof. Let x ∈ Z. Let 0 6= w ∈ H0(C,B) be an element in the image of
the map H0(C,On

C) → H0(C,B). Then the quotient corresponding to x

factors as On
C

v−→ OC
w−→ B. Associated to the surjection v : On

C → OC we

have a section ηv : Pd ↪→ Q of Φ as in [GS20, Equation (3.12)] which passes
through the point x such that

η∗vLd−1 = η∗v(OQ(1)⊗ Φ∗OPd(d− 1)) ∼= OPd .

This is explained in the second paragraph of the proof in [GS20, Proposition
6.1]. Now choose any line in Pd such that its image under ηv, call it L2,x,
passes through x. Then it is clear that L2,x has the required properties. �

Recall, as remarked after equation (2.9), that the natural map

H0(C,OC(d−1))⊗On
Q = pQ∗(On

C×Q⊗p∗COC(d−1))→ pQ∗(B⊗p∗COC(d−1))

is surjective. Let Gr(H0(C,OC(d − 1))n, d) denote the Grassmannian of
d-dimensional quotients of the vector space H0(C,OC(d − 1))n. Hence we
have morphisms

Q → Gr(H0(C,OC(d− 1))n, d) ↪→ PN ,

where the second map is the Plücker embedding. We will denote the first
map by ψ and the composition by Ψ. Note that, as remarked earlier, we
have an isomorphism Ψ∗OPN (1) ∼= Ld−1.

Lemma 2.13. The map Ψ|U : U → PN is injective.

Proof. It is enough to show that the map

ψ|U : U → Gr(H0(C,OC(d− 1))n, d)

is injective. By definition, if x ∈ U corresponds to the quotient x : On
C →

B → 0 then the image of x under the map ψ is the quotient of vector spaces

H0(C,OC(d− 1))n → H0(B ⊗OC(d− 1))→ 0 .
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Let A =
n⊕

i=1
OC(di) be the kernel of x. We will show that A ⊗ OC(d − 1)

is globally generated, which is equivalent to showing di ≥ −(d− 1). Let us
assume the contrary, that is, there exists di such that di ≤ −d. Then

h1(C,A) ≥ h1(C,OC(di)) = h0(C,OC(−2−di)) ≥ h0(C,OC(−2+d)) = d−1 .

Now consider the exact sequence

H0(C,On
C)→ H0(C,B)→ H1(C,A)→ 0 .

Since x ∈ U we have that the image of the first map has dimension ≥
2. Therefore, h1(C,A) ≤ d − 2 and we arrive at a contradiction. Hence
A ⊗ OC(d − 1) is globally generated. This means that A as a subsheaf of
On

C (and so also the quotient x) can be recovered from the map H0(C,A⊗
OC(d − 1)) → H0(C,OC(d − 1))n by taking the sheaf generated by the
sections H0(C,A⊗OC(d−1)) inOC(d−1)n and then twisting byOC(−d+1).
Thus, we get that the required map is injective. �

Theorem 2.14. Fix integers a, b > 0. If x ∈ U ⊂ Q we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = a.

If x ∈ Z = Q \ U we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = min{a, b}.

Proof. Let x ∈ U . Let X be any irreducible and reduced curve in Q passing
through x. Then by Lemma 2.13 the map Ψ(X∩U) 6= pt. Hence there exists
a section H ∈ H0(Q,Ld−1) passing through x such that X is not contained
in H. By Bézout’s theorem, we get

[Ld−1] · [X] = [H] · [X] ≥ multxX .

Hence

(a · [Ld−1] + b · [Φ∗OPd(1)]) · [X] ≥ a · [Ld−1] · [X] ≥ a ·multxX .

Therefore, ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≥ a. Now by Lemma 2.6 we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≤ (a · [Ld−1] + b · [Φ∗OPd(1)]) · [L1,x]

multxL1,x
= a .

Hence, we get for x ∈ U

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = a .

Now let x ∈ Z. We first prove the inequality

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≥ min{a, b} .

Let X be any irreducible and reduced curve inQ passing through x. We have
maps Ψ : Q → PH0(Q,Ld−1) and Φ : Q → Pd. The class [Ld−1]+[Φ∗OPd(1)]
is ample, thus, it cannot happen that Ψ and Φ both are constant on X. First
consider the case when Ψ is non-constant on X. Hence, there exists a section



SESHADRI CONSTANTS ON SOME QUOT SCHEMES 7

H1 ∈ H0(Q,Ld−1) passing through x such that X is not contained in H1.
By Bézout’s theorem, we will have

[Ld−1] · [X] = [H1] · [X] ≥ multxX ,

which gives

(a · [Ld−1] + b · [Φ∗OPd(1)]) · [X]

multxX
≥ a [Ld−1] · [X]

multxX
≥ a ≥ min{a, b} .

Next consider the case when Φ is non-constant on X. Then there is a section
H2 ∈ H0(Q,Φ∗OPd(1)) passing through x such that X is not contained in
H2. Again we have by Bézout’s theorem

[Φ∗OPd(1)] · [X] = [H2] · [X] ≥ multxX ,

which gives

(a · [Ld−1] + b · [Φ∗OPd(1)]) · [X]

multxX
≥ b [Φ∗OPd(1)] · [X]

multxX
≥ b ≥ min{a, b} .

Therefore we get

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≥ min{a, b} .

Now Lemma 2.6 implies that

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≤ (a · [Ld−1] + b · [Φ∗OPd(1)]) · [L1,x]

multxL1,x
= a .

Similarly Lemma 2.12 implies that

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≤ (a · [Ld−1] + b · [Φ∗OPd(1)]) · [L2,x]

multxL2,x
= b .

Therefore, we get that for x ∈ Z we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = min{a, b} .

This completes the proof of the theorem. �

From the above theorem, we immediately obtain the following results.

Corollary 2.15. With the notation as in Theorem 2.14, we have

(1) ε(a · [Ld−1] + b · [Φ∗OPd(1)], 1) = a.
(2) ε(a · [Ld−1] + b · [Φ∗OPd(1)]) = min{a, b}.

Proof. This is immediate from the definitions of ε(L, 1) and ε(L) for a line
bundle L. �
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3. Seshadri constants on Q(E, d) when d > 1

We now consider the case of an arbitrary vector bundle E on C = P1. We
treat the case d > 1 in this section. In the next section, we deal with the
case d = 1.

If E is a vector bundle on C = P1, then E is a direct sum of line bundles.
By tensoring with a suitable line bundle, we may assume that E = OC ⊕
r−1⊕
i=1
OC(ai) with 0 ≤ ai ≤ aj for i < j. Let Q′ := Q(E, d) be the Quot

scheme of torsion quotients of E of degree d. First we recall the description
of the Nef cone of Q′. Let pC : C ×Q′ → C and pQ : C ×Q′ → Q′ be the
projections. Let p∗CE → B′ → 0 be the universal quotient over C ×Q′. Let
M be any line bundle on C. By [GS20, Lemma 3.1] the sheaf pQ′∗(p

∗
CM⊗B′)

is a vector bundle over Q′ of rank d. Define

(3.1) LM,Q′ := det(pQ′∗(p
∗
CM ⊗ B′)) .

The bundle LO,Q′ will also be denoted

(3.2) OQ′(1) := LO,Q′ = det(pQ′∗(B
′)) .

Let

(3.3) L := OC(d− 1) .

Let

(3.4) Φ′ : Q′ → SdP1 ∼= Pd

be the Hilbert-Chow map (see [GS19, Section 2]). Then it is proved in
[GS20, Theorem 6.2] that

Nef(Q′) =R≥0[LL,Q′ ] + R≥0[Φ′∗OPd(1)] .(3.5)

Lemma 3.6. Given any point x ∈ Q′ there exists a curve L1,x
∼= P1 ↪→ Q′

passing through x such that [LL,Q′ ] · [L1,x] = 1 and [Φ′∗OPd(1)] · [L1,x] = 0.

Proof. Replace Q by Q′ and proceed exactly as in the proof of Lemma 2.6
till equation (2.10). Thus, we get that det(pQ′∗(B′ ⊗ p∗CL)) = LL,Q′ is a
globally generated line bundle on Q′, and we have a map f : Z → Q′ such
that Φ′ ◦ f is constant.

In [GS20, Theorem 6.2] it is proved that

LL,Q′ ∼= OQ′(1)⊗ Φ′∗OPd(d− 1) .

Since Φ′ ◦ f is constant, it follows that f∗LL,Q′ ∼= f∗OQ′(1) ∼= OZ(1). Con-

sider the composite map Z → Q′ → PN , where the second map is given by
LL,Q′ . Since the pullback of OPN (1) along this map is OZ(1) it follows that
the composite, and so also f , is a closed immersion.

Let L1,x ⊂ Z ⊂ Q′ denote any line passing through x. Then it is clear
that L1,x satisfies the assertions of the lemma. �

Let E′ denote the largest proper sub-bundle of E in the Harder-Narasimhan
filtration of E. Then E/E′ is the trivial bundle.
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Lemma 3.7. Assume d > 1. Let E → B be a torsion quotient of degree d
such that the image of H0(C,E) in H0(C,B) is one-dimensional. Then this
quotient factors through E → E/E′.

Proof. Let V denote the vector space H0(C,E). Let O(a) be a sub-bundle of
E′. Then a > 0. To show that O(a) is mapped to 0 by the given projection
E → B, it suffices to show that the global sections are mapped to 0. If not,
then there is a commutative diagram

O //

��

H0(C,O(a))⊗O // V ⊗O //

��

O

��
O(a) // E // B

The square on the right exists because of the assumption that the image
H0(C,E)→ H0(C,B) is one-dimensional. By assumption the top horizontal
composite map is nonzero. Since the right vertical arrow is a surjection, it
follows that the composite map O(a) → B is surjective. We may choose
homogeneous coordinates X and Y on C = P1, so that the support of B
is contained in the open set Y 6= 0. Let T denote the affine coordinate
X/Y . Thus, the map O(a) → B can be thought of as a surjective map
k[T ]→ k[T ]/(p(T )) of k[T ] modules. Viewed like this, a basis for the global
sections of O(a) is given by the functions T i where 0 ≤ i ≤ a. The degree of
p(T ) is equal to the length of the module k[T ]/(p(T )) ∼= B, which is exactly
d. Since d > 1, we get a contradiction to the assumption that the image of
H0(C,O(a)) is one-dimensional. �

There is a natural inclusion j′ : Q(E/E′, d) ↪→ Q′ which commutes with
the Hilbert-Chow maps. Since the bundle E/E′ is trivial, Q(E/E′, d) =
Q(n′′, d) =: Q′′. Let n = dim(H0(C,E)) and let Q := Q(n, d). The surjec-
tion H0(C,E) ⊗ OC → E defines an inclusion j : Q′ ↪→ Q. The following
diagram is commutative.

Q′′ �
� j′ //

Φ′′   B
BB

BB
BB

B Q′ �
� j //

Φ′
��

Q

Φ��~~
~~
~~
~

Pd

The Φ’s denote the Hilbert-Chow maps. In particular there are subsets
U ′′ ⊂ Q′′ and Z ′′ ⊂ Q′′ as in Definition 2.11.

Corollary 3.8. Assume d > 1. Then Q′ \ j−1(U) is precisely j′(Z ′′).

Proof. Follows from Lemma 3.7. �

Lemma 3.9. Assume d > 1. Given any point x ∈ Q′ \ j−1(U) there exists
a curve L2,x

∼= P1 ↪→ Q′ passing through x such that [LL,Q′ ] · [L2,x] = 0 and
[Φ′′∗OPd(1)] · [L2,x] = 1.
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Proof. We have maps Q′′ j′−→ Q′ j−→ Q. As observed above, x is in the image
of Z ′′. It can be shown that j∗Ld−1 = LL,Q′ , for this see the proof of [GS20,
Theorem 6.2]. Thus, the Lemma is clear using Lemma 2.12 once we observe
that

j′∗LL,Q′ ∼= j′∗j∗Ld−1
∼= Ld−1,Q′′ .

This is easily seen using [GS20, Lemma 3.14]. �

Theorem 3.10. Assume d > 1. Fix integers a, b > 0. If x ∈ Q′ such that
j(x) ∈ U , then we have

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) = a.

If x ∈ Q′ \ U we have

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) = min{a, b}.

Proof. Let x ∈ Q′ such that j(x) ∈ U . Let X be any irreducible and reduced
curve in Q′ passing through x. Consider the composite map

X ↪→ Q′ j−→ Q Ψ−→ PN .

Then by Lemma 2.13 the map Ψ(j(X) ∩ U) 6= pt. Hence there exists a
section H0(Q′,LL,Q′) whose zero locus H passes through x such that X is
not contained in H. By Bézout’s theorem, we get

[LL,Q′ ] · [X] = [H] · [X] ≥ (multxH)(multxX) ≥ multxX .

Hence

(a · [LL,Q′ ] + b · [Φ′∗OPd(1)]) · [X] ≥ a · [LL,Q′ ] · [X] ≥ a ·multxX .

Therefore, ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) ≥ a. Now by Lemma 3.6 we have

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) ≤
(a · [LL,Q′ ] + b · [Φ′∗OPd(1)]) · [L1,x]

multxL1,x
= a .

Hence, we get for x ∈ U
ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) = a .

Now let j(x) ∈ Z. We first prove the inequality

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) ≥ min{a, b} .
Let X be any irreducible and reduced curve in Q′ passing through x. We
have maps Ψ ◦ j : Q′ → Q → PH0(Q,Ld−1) and Φ′ : Q′ → Pd. The class
[LL,Q′ ] + [Φ′∗OPd(1)] is ample, thus, it cannot happen that Ψ and Φ′ both
are constant on X. First consider the case when Ψ is non-constant on X.
Hence, there exists a section H1 ∈ H0(Q′,LL,Q′) passing through x such
that X is not contained in H1. By Bézout’s theorem, we will have

[LL,Q′ ] · [X] = [H1] · [X] ≥ multxX ,

which gives

(a · [LL,Q′ ] + b · [Φ′∗OPd(1)]) · [X]

multxX
≥ a ≥ min{a, b} .
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Next consider the case when Φ′ is non-constant on X. Then there is a section
H2 ∈ H0(Q′,Φ′∗OPd(1)) passing through x such that X is not contained in
H2. Again we have by Bézout’s theorem

[Φ′∗OPd(1)] · [X] = [H2] · [X] ≥ multxX ,

which gives

(a · [LL,Q′ ] + b · [Φ′∗OPd(1)]) · [X]

multxX
≥ b ≥ min{a, b} .

Therefore we get

ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], x) ≥ min{a, b} .

Now Lemma 3.6 implies that

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≤ (a · [Ld−1] + b · [Φ∗OPd(1)]) · [L1,x]

multxL1,x
= a .

Similarly Lemma 3.9 implies that

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) ≤ (a · [Ld−1] + b · [Φ∗OPd(1)]) · [L2,x]

multxL2,x
= b .

Therefore, we get that for x ∈ Z we have

ε(a · [Ld−1] + b · [Φ∗OPd(1)], x) = min{a, b} .

This completes the proof of the theorem. �

As before, we immediately obtain the following corollary.

Corollary 3.11. With the notation as in Theorem 3.10, we have

(1) ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)], 1) = a.
(2) ε(a · [LL,Q′ ] + b · [Φ′∗OPd(1)]) = min{a, b}.

4. Seshadri constants on Q(E, 1)

Let Y be a smooth projective complex curve and E a vector bundle on
Y . Let X = P(E) be the projective bundle associated to E over Y . The
Quot scheme Q(E, 1) is isomorphic to X. Denote by ξ := OP(E)(1) and by
f the divisor which is a fibre of π.

Let Q denote a vector bundle quotient of E with the smallest slope. Note
that if

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ed−1 ⊂ Ed = E

is the Harder-Narasimhan filtration of E, then Q = E/Ed−1. Let e := µ(Q)
denote the slope of Q.

Theorem 4.1 (Miyaoka). The nef cone of X is spanned by ξ − ef and f.
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See [Miy87] and [Ful11, Lemma 2.1]. The dual basis of the closed cone of
curves NE(X) is given by extremal rays spanned by two 1-cycles C1, C2,
where C2 denotes the class of a line in a fibre of π (which is isomorphic

to the projective space Prk(E)−1). The other 1-cycle C1 is not effective in
general.

We now assume Y = P1. If E is a trivial vector bundle then P(E) =

P1 × Prk(E)−1. In this case, it is easy to compute the Seshadri constants of
ample line bundles on P(E); for example, see [MR15, Proposition 3.4(e)].

Now let E be a bundle such that E 6∼= Ork(E). Since P(E) ∼= P(E⊗L) for
any line bundle L on Y , we may assume E = Os ⊕ O(a1) . . . ⊕ O(ar) with
0 < a1 ≤ . . . ≤ ar (after tensoring E with a suitable line bundle). Then the
quotient of E with the smallest slope is Q = Os. In other words,

Ed−1 = ⊕
i≥1
O(ai).

So we have e = µ(Q) = 0. In this case, the extremal ray C1, in the above
notation, is spanned by the image of the section

P1 → X

corresponding to a rank 1 quotient

E → O .
Indeed, first observe that f · C2 = 0 and f · C1 = 1. Next note that ξ · C1 =
deg(O) = 0 and ξ · C2 = 1. So C2, C1 is dual to ξ, f.

We first prove a general result about Seshadri constants on X.

Proposition 4.2. Let L be an ample line bundle on X which is numeri-
cally equivalent to the bundle aξ + bf, where a, b are positive integers. Then
ε(X,L, x) ≥ min{a, b} for all x ∈ X.

Proof. Let C ⊂ X be an irreducible and reduced curve such that m :=
multx(C) > 0. Write C = pC1 + qC2 for non-negative integers p, q.

Case 1: Suppose π(C) is a point y ∈ P1. Then p = 0 and C is a curve in
π−1(y) of degree q. Thus, C ⊂ Pr+s−1 and if H denotes a general hyperplane
through x then

q = C ·H ≥ (multxC)(multxH) ≥ m.

So
L · C
m

=
aq

m
≥ a ≥ min{a, b} .

Case 2: Suppose π(C) = P1. Let W = π−1(π(x)). Since C 6⊂ W , Bézout’s
theorem gives

p = f · C = W · C ≥ (multxC)(multxW ) ≥ m.
Hence

L · C
m

=
aq + bp

m
≥ b ≥ min{a, b} .
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So L·C
m ≥ min{a, b} for all curves C passing through x. This gives the desired

bound ε(X,L, x) ≥ min{a, b} for all x ∈ X. �

Now we obtain more precise values of the Seshadri constants on X. Recall
that E/Ed−1 = Os. We get a morphism i : P(E/Ed−1) ↪→ X using the
quotient

E → E/Ed−1 → OP(E/Ed−1)(1) .

Let Z denote the image of i. We have Z ∼= P1 × Ps−1 and i∗ξ = p∗2OPs−1(1)
and i∗f = p∗1OP1(1) where pi are the projections from P1 × Ps−1.

Theorem 4.3. Let L be an ample line bundle on X which is numerically
equivalent to the bundle aξ + bf, where a, b are positive integers. Let x ∈ X.
We have

ε(L, x) =

{
a, if x /∈ Z,
min{a, b}, if x ∈ Z.

Proof. Suppose first that x ∈ Z. The restriction of L to Z is the bundle
LZ := p∗1OP1(a)⊗ p∗2OPs−1(b). It is easy to see that ε(Z,LZ , x) = min{a, b}
(for example, see [MR15, Proposition 3.4(e)]). Obviously ε(X,L, x) ≤
ε(Z,LZ , x). By Proposition 4.2, it follows that ε(X,L, x) = min{a, b}.

Now assume x /∈ Z. Let C ⊂ X be an irreducible and reduced curve
such that m := multx(C) > 0. So we have C 6⊂ Z. Let φ : C → P1 be
the composition of the inclusion C ⊂ X with the natural map X → P1.
Let φ∗E → M be the line bundle quotient which defines the map C →
P(E). Then since C is not contained in Z, the quotient map φ∗E → M
does not factor through φ∗E/φ∗Ed−1. In other words, the composition map
φ∗Ed−1 → φ∗E → M is not zero. Recall Ed−1 = ⊕

i≥1
O(ai) and all ai > 0.

Thus, the composition φ∗O(ai) ⊂ φ∗Ed−1 →M is non-zero for some i. Write
C = pC1 + qC2 for non-negative integers p, q. Note that p = C · f = deg(φ).
Thus, we get

q = ξ · C = deg(ξ|C) = deg(M) ≥ aideg(φ) = aip ≥ p .
Suppose that π(C) is a point in P1. Then by Case 1 of Proposition 4.2, we
have

L · C
m

=
aq

m
≥ a.

Next suppose that π(C) = P1. Then arguing as in Case 2 of Proposition
4.2, we conclude p ≥ m. So q ≥ p ≥ m and

L · C
m

=
aq + bp

m
≥ (a+ b)p

m
≥ a+ b ≥ a.

So L·C
m ≥ a for all curves C passing through x. This gives ε(X,L, x) ≥ a.

On the other hand, let W = π−1(π(x)). Let D ⊂ W ∼= Pr−1 be a line
containing x. Then D is smooth and L ·D = a. So ε(X,L, x) ≤ a.

We conclude that ε(X,L, x) = a for all x /∈ Z, as required. �

Corollary 4.4. With the notation as in Theorem 4.3, we have
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(1) ε(L, 1) = a.
(2) ε(L) = min{a, b} .

Remark 4.5. If s = 1 in the above notation, Theorem 4.3 follows directly
from [BHNN20, Theorem 3.3]. If s = 1 then the rank of Ed/Ed−1 is 1.
We take m = d, r = 1 in the notation of [BHNN20, Section 2.1]. So the
Grassmann bundle is nothing but the projective bundle P(E). Then the
sub variety Z = P(E/Ed−1) ⊂ X defined above coincides with the section
Γs defined in [BHNN20, Section 3]. The other hypotheses of [BHNN20,
Theorem 3.3] can be verified easily to obtain Theorem 4.3.

5. Seshadri constants on Gr(E,n)

In this section, we compute Seshadri constants for ample line bundles on
the Grassmann bundle over C = P1. For a vector bundle E on P1 and a
positive integer n, recall that Gr(E,n) denotes the Grassmann bundle that
parametrizes the n-dimensional quotients of the fibers of E.

Given a vector bundle E on P1, we tensor E with a suitable line bundle
and assume that E = Or0⊕O(a1)r1⊕. . .⊕O(am)rm , with 0 < a1 < . . . < am
and ri > 0 for all 0 ≤ i ≤ m. Define a0 = 0 and r−1 = 0. The least possible
degree among all possible quotients of E of rank n is described as follows.
Let t be the smallest integer such that

r0 + . . .+ rt ≥ n .
Define l := r0 + . . . + rt−1; then l < n. Then the quotient of E of least
possible degree is isomorphic to(

t−1⊕
i=0

O(ai)
ri

)
⊕O(at)

n−l .

Clearly, this has degree d0 := (n − l)at +
∑t−1

i=1 riai. Consider the Plücker
embedding i : Gr(E,n) ⊂ P(∧nE). Let π : P(∧nE) → P1 denote the
projection and let π′ := π ◦ i. Then the above quotient defines a section s
of π′ and i ◦ s defines a section of π. One checks easily that the nef cone of
P(∧nE) has as boundaries f = π∗OP1(1) and ξ = OP(∧nE)(1)⊗ π∗OP1(−d0).
The latter line bundle is nef as (∧nE)⊗OP1(−d0) is globally generated and
has the trivial bundle as a quotient. Using the section s one easily checks
that the nef cone of P(∧nE) maps onto the nef cone of Gr(E,n). See [BP14]
for a description of the Nef cones of flag varieties over any curve.

Let Z := Gr(O(at)
rt , n− l). Let π′′ : Z → P1 denote the canonical map.

Then we have the tautological quotient

qZ : π′′∗O(at)
rt → FZ

on Z. Denote by E′ and E′′ the following summands of E,

E′ =

t−1⊕
i=0

O(ai)
ri and E′′ =

l⊕
i=t+1

O(ai)
ri .



SESHADRI CONSTANTS ON SOME QUOT SCHEMES 15

Thus, E = E′ ⊕O(at)
rt ⊕ E′′. We get the following quotient on Z

π′′∗E = π′′∗E′ ⊕ π′′∗O(at)
rt ⊕ π′′∗E′′ Id⊕qZ⊕0−−−−−−→ π′′∗E′ ⊕ FZ ⊕ 0 ,

which defines a map Z → Gr(E,n).

Lemma 5.1. Let C ⊂ Gr(E,n) be a curve such that ξ · C = 0. Then this
inclusion factors as C → Z → Gr(E,n).

Proof. Let φ : C → P1 denote the projection to P1. Let q : φ∗E → Q denote
the quotient which defines the map C → Gr(E,n). Note that if a : Q→ Q
is an isomorphism, then the quotients q and a◦q define the same maps from
C → Gr(E,n). We will find an a for which it is clear that the map defined
by a ◦ q factors through Z.

Since ξ · C = 0 it is clear that deg(det(Q)) = d0deg(φ). The bundle
φ∗(∧nE) is a direct sum of line bundles, each of which has degree at least
d0deg(φ). Since a line bundle cannot map to a line bundle of strictly lower
degree, it follows that there is a line bundle summand of φ∗(∧nE) of degree
d0deg(φ) which maps isomorphically onto det(Q). From this we easily con-
clude that Q ∼= φ∗E′⊕φ∗O(at)

n−l and that there is a summand of φ∗E such
that the composite

φ∗E′ ⊕ φ∗O(at)
n−l ⊂ φ∗E q−→ φ∗E′ ⊕ φ∗O(at)

n−l

is an isomorphism. Denote the above isomorphism by a. By looking at de-
gree it is clear that the summand φ∗E′′ ⊂ φ∗E maps to 0 under q. Consider
the map a−1 ◦ q. It follows that there is a quotient

q′ : φ∗O(at)
rt → φ∗O(at)

n−l

such that a−1 ◦ q is of the type

φ∗E = φ∗E′ ⊕ φ∗O(at)
rt ⊕ φ∗E′′ Id⊕q′⊕0−−−−−→ φ∗E′ ⊕ φ∗O(at)

n−l ⊕ 0 .

The quotient q′ defines a map C → Z and it is clear that the map C →
Gr(E,n) factors as C → Z → Gr(E,n). �

Theorem 5.2. Let L be an ample line bundle on Gr(E,n) which is numer-
ically equivalent to the bundle aξ + bf, where a, b are positive integers. Let
x ∈ Gr(E,n). We have

ε(L, x) =

{
a, if x /∈ Z,
min{a, b}, if x ∈ Z.

Proof. If x /∈ Z then for each curve C through x we have ξ · C > 0.
Since ξ is a globally generated line bundle we have a map ψ : Gr(E,n) →
PH0(Gr(E,n), ξ). Let C be a curve through x. Then since ξ · C > 0 it
follows that ψ(C) is a curve passing through ψ(x). There is a hyperplane
through ψ(x) such that the intersection with ψ(C) is proper. Thus, there is
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a global section of ξ whose vanishing locus is a divisor H through x and its
intersection with C is proper. This shows, using Bézout’s theorem, that

ξ · C ≥ multx(H)multx(C) ≥ multx(C) .

Thus,
(aξ + bf) · C

multx(C)
≥ a

for all curves C passing through x. By taking C to be a line in the fiber of
π′ we see that the ratio a is attained. This shows that

ε(Gr(E,n), aξ + bf, x) = a .

Next consider the case when x ∈ Z. Note that Z ∼= P1 × Gr(rt, n − l).
It is easily checked that the restriction of ξ to Z is OGr(rt,n−l)(1). Thus,

through every point of Z there is a section s of π′ such that ξ · s(P1) = 0
and f · s(P1) = 1. Thus, the ratio

(aξ + bf) · s(P1)

multx(s(P1))
= b

is attained. By Theorem 4.3

ε(Gr(E,n), aξ + bf, x) ≥ ε(P(∧nE), aξ + bf, x) ≥ min{a, b} .

This shows that ε(Gr(E,n), aξ+ bf, x) = b. This completes the proof of the
theorem. �

Corollary 5.3. With the notation as in Theorem 5.2, we have

(1) ε(L, 1) = a.
(2) ε(L) = min{a, b} .

Remark 5.4. Seshadri constants on Grassmann bundles Gr(E,n) over arbi-
trary smooth curves are studied in [BHNN20]. However, they only consider
Grassmann bundles corresponding to rank n quotients for certain specific
values of n, which are determined by the Harder-Narasimhan filtration of
E. In Theorem 5.2, we do not impose any conditions on n and determine
Seshadri constants for any line bundle on a Grassmann bundle over P1.
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