ALGEBRAIC TOPOLOGY

Computations

If you find any errors or have any comments then please write to us at
sagnik2019iit@gmail.com
saikatmaji1997@gmail.com rasulparvez@gmail.com

1 Fundamental Group

1.1 Fundamental group of Wedge of \mathbf{n} circles

1.2 Fundamental group of $\mathbb{P}_{\mathbb{R}}^{2}$
1.3 Fundamental group of $\mathbb{P}_{\mathbb{C}}^{n}$
1.4 Fundamental group of compact orientable surface of genus $\mathbf{k} M_{k}$

2 Homology
2.1 Homology of $\mathbb{P}_{\mathbb{C}}^{n}$
2.2 Homology of $\mathbb{R}^{m} \backslash\left\{p_{1}, p_{2}, . ., p_{r}\right\}$ for $m>2$
2.3 Homology of $\mathbb{P}_{\mathbb{R}}^{2}$
2.4 Homology of M_{k}
2.5 Homology group of $\vee_{i=1}^{r} S^{m}$ for $m \geq 1$

3 CW-Complex
3.1 CW-Structure of S^{1}
3.2 CW-Structure of S^{n}
3.3 CW-Homology group of $\mathbb{P}_{\mathbb{C}}^{1}$
3.4 CW-Homology of $\mathbb{P}_{\mathbb{C}}^{n}$
3.5 CW-Homology of M_{2}
3.6 CW-Homology of $\mathbb{P}_{\mathbb{R}}^{2}$
3.7 CW-Homology of $\mathbb{P}_{\mathbb{R}}^{n}$

4 Homology with coefficients
4.1 Homology of point with coefficients in \mathbb{Z}_{m}
4.2 Homology of S^{1} with coefficients in \mathbb{Z}_{m}
4.3 Homology of $S^{k}(k>1)$ with coefficients in \mathbb{Z}_{m}
4.4 Homology of M_{k} with coefficients in \mathbb{Z}_{m}
4.5 Homology of $\mathbb{P}_{\mathbb{C}}^{k}$ with coefficients in \mathbb{Z}_{m}
4.6 Homology of $\mathbb{P}_{\mathbb{R}}^{k}$ with coefficients in \mathbb{Z}_{m}

5 Cohomology

5.1 Cohomology of point
5.2 Cohomology of S^{1}
5.3 Cohomology of S^{k}
5.4 Cohomology of M_{k}
5.5 Cohomology of $\mathbb{P}_{\mathbb{C}}^{k}$
5.6 Cohomology of $\mathbb{P}_{\mathbb{R}}^{k}$

Fundamental Group

1. Let X_{n} be the wedge of n circles. Compute the fundamental group of X_{n}.
\Rightarrow First we comput $\pi_{1}\left(x_{2}\right)$

It $U=X_{2}-q, V=X_{2} \backslash P, U, V$ both deformation rutrats to S. clearly $U \cap V$ deformation retracts to the point x_{0}. and $X_{2}=U \cup V$

So by Van-Kampen theorem we have

$$
\begin{aligned}
\pi_{1}\left(x_{2}, x_{0}\right) & =\pi_{1}\left(U, x_{0}\right) * \pi_{2}\left(V, x_{0}\right) \\
& =\pi_{1}\left(s^{\prime}\right) * \pi_{1}\left(s^{\prime}\right)=\mathbb{Z} * \mathbb{Z}
\end{aligned}
$$

Now we use induction to find $\pi_{1}\left(x_{n}\right)$

U deformation retracts to $S^{1}=X_{1}$
V deformation retracts to X_{n-1}
UV deformation retracts to x_{0} and by V an-Kampen their an we have

$$
\begin{aligned}
& \text { by Van-Kampen their un we have } \\
& \pi_{1}\left(X_{n}, x_{0}\right)=\pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right)=\overbrace{2 * 2 x \cdots a Z}^{n \text { times }}
\end{aligned}
$$

2. Fundamental group of $\mathbb{P}_{\mathbb{R}}^{2}$.
$\Rightarrow \mathbb{P}_{\mathbb{R}}^{2}$ can be visualized as

we take $U=\mathbb{P}_{\mathbb{R}}^{2}\left\langle x_{0}\right\}$ and V be the disk centered at x_{0}. U deformation retracts to S^{L}
\checkmark deformation retracts to a point. let $y_{0} \in \cup \cap V$ UnV deformation retracts to S^{1}.
by $V_{\left.\text {an-Kampan theorem } \pi_{1}\left(\mathbb{P}_{\mathbb{R}}^{2}\right)\right)=\frac{\pi_{1}\left(U, y_{0}\right) * \pi_{1}\left(V, y_{0}\right)}{N}}^{N}$

$$
\pi_{1}\left(v, y_{0}\right)=z, \pi_{1}\left(v, y_{0}\right)_{2}\{e\}
$$

and $N=\left\langle a^{2}\right\rangle$
Hence $\pi_{1}\left(P_{R}^{2}, y_{B}\right)=\frac{Z\{l\}}{\left\langle a^{2}\right\rangle}=\tilde{Z}\left\langle_{\left.a^{2}\right\rangle} \cong Z_{2}\right.$
3. Fundamental gram of $\mathbb{P}_{e}{ }^{n}$.
\Rightarrow We first compute fundamental group of \mathbb{P}_{4}^{2}.
It $U=\mathbb{P}_{\mathbb{C}}^{2} \backslash[1,0], V=\mathbb{Q}^{2}$ centered at $[L, 0]$
\cup deformation retracts to $\mathbb{P}_{Q}^{\perp} \cong S^{2}$
\checkmark deformation retracts to a point Un deformation retracts to s^{3}.
Now we know $\pi_{1}\left(s^{k}\right)=\{e\} \quad \forall k \geq 2$
So $\pi_{1}\left(U, x_{0}\right)=\{e\}, \pi_{1}\left(V, x_{0}\right)=\{e\}$ where $x_{0} \in U \cap V$ Hence by Van-Kampen theorem $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{2}, x_{0}\right)=\{e\}$.

Now we use induction and find $\pi_{1}\left(P_{Q}^{n}\right)$. $n>2$ we take $U=\mathbb{P}_{\Phi}^{n},[1,0, \ldots, 0]$

$$
V=\mathbb{C}^{n} \text { centered at }[1,0, \ldots, 0]
$$

U deformation retracts to $\mathbb{P}_{4}{ }^{n-1}\left(S_{e e} 2.1\right)$
V deformation retracts to a point let $x_{0} \in U \cap V$
$U \cap V$ deformation retracts to $s^{2 n-1}$
by induction we have $\pi_{1}\left(U, x_{0}\right)=\{e\}$
and $\pi_{1}\left(V, x_{0}\right)=\{c\}$
so $\left.\pi_{1}\left(\mathbb{P}_{Q}^{n}, x_{0}\right)=\pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right)=\alpha e\right\}$.
4. Fundamanted group of Compact or rentable surface of genes $\left(M_{k}\right)$.
$\Rightarrow M_{k}$ can be visualized in the following way

lie a $4 k$ gov with edges and vertices identified as given in the picture.

Now we take U as given in the picture and V be the open set $\left.M_{k} \backslash \alpha y_{0}\right\} \quad$ if $x_{0} \in U \cap V$
Now U deformation refracts to a point
V deformation retracts to a wed ge of $2 k$ circles $U \cap V$ deformation retracts to S^{1}.

So by $V_{\text {an- }}$-Kampen the o rem

$$
\begin{aligned}
& \pi_{1}\left(M M_{k}, x_{0}\right)=\frac{\pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right)}{N} \\
& \left.\pi_{1}\left(U, x_{0}\right)=\alpha e\right\}, \quad \pi_{1}\left(V, x_{0}\right)=\overbrace{Z * Z * \cdots * Z}^{2 k \text { times }}
\end{aligned}
$$

and N is given by the inclusion of
$V \longrightarrow M_{k}$ and as V deformation retracts to the wedge of $2 k$ circles hence N is generated by the relation $\prod_{i=1}^{k} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$

Hence $\left.\pi_{1}\left(M_{k} x_{0}\right) \simeq \frac{z^{*} \cdots * z}{\left\langle\frac{\Pi_{i}^{k}}{} a_{i} b_{i} a_{i}^{-1} b_{i}\right.}\right\rangle$

Homology

1. Compute homology groups of $\mathbb{P}_{\mathbb{Q}}{ }^{n}$.
\Rightarrow I, $P=[1,0,0, \ldots, 0]$ and take two open sets U, V of $\mathbb{P}_{\mathbb{C}}{ }^{n}$ such that $\mathbb{P}_{\mathbb{C}}{ }^{n}=U \cup V$ and we will use these two sets to compute the homology groups of $\mathbb{P}_{\phi}{ }^{n}$.
let $U=\mathbb{P}_{\mathbb{C}}^{n} \backslash\{p\}$,

$$
V=\left\{\left[z_{0}, z_{1}, \ldots, z_{n}\right] \mid z_{0} \neq 0\right\} \text { and } p \in V
$$

Claim 1. (i) U deformation retracts to $\mathbb{P}_{\infty}{ }^{n-1}$.
(ii) V is homeomorphic to \mathbb{C}^{n}.
(i) Define $F: U_{x} I \rightarrow U$ by.

$$
F\left(\left[z_{0}, \ldots, z_{n}\right], t\right)=\left[(1-t) z_{0}, z_{1}, \ldots, z_{n}\right]
$$

also observe that

$$
\mathbb{P}_{e}^{n-1}=\left\{\left[z_{0}, z_{1}, \ldots, z_{n}\right] \mid z_{0}=0\right\} \subseteq U
$$

Now F is induced by the continuous map

$$
\begin{gathered}
\left(\Phi^{n+1} \backslash\{0\}\right) \times I \longrightarrow \mathbb{C}^{n+1} \backslash\{0\} \text { by } \\
\left(\left(z_{0}, z_{1}, \ldots, z_{n}\right), t\right) \longrightarrow\left((1-t) z_{0}, z_{1}, \ldots, z_{n}\right)
\end{gathered}
$$

So F is continuous. Now

$$
\begin{aligned}
& F\left(\left[z_{0}, \ldots, z_{n}\right], 0\right)=\left[z_{0}, z_{1}, \ldots, z_{n}\right] \\
& F\left(\left[z_{0}, \ldots, z_{n}\right], 1\right)=\left[0, z_{1}, \ldots, z_{n}\right] \in \mathbb{P}_{p}^{n-1}
\end{aligned}
$$

$$
F\left(\left[0, z_{1}, \ldots, z_{n}\right], t\right)=\left[0, z_{1}, \ldots, z_{n}\right] \quad \forall t \in[0,1]
$$

So U deformation retracts to $\mathbb{P}_{\mathbb{Q}}{ }^{n-1}$.
(ii) Now we define

$$
\phi_{1}: V \longrightarrow \mathbb{C}^{n} \text { by } \phi_{1}\left(\left[1, z_{1}, \ldots, z_{n}\right]\right)=\left(z_{1}, \ldots, z_{n}\right)
$$

Clearly ϕ_{1} is a homeomorphism.
Cain_2 $\mathbb{P}_{Q}^{1} \simeq S^{2}$
Now we know If X is a locally compact, Hausdorff space and let \tilde{X} be its one point compactification. If $X C T$ is an open set and T is compact then there exists a unique map $\phi: T \rightarrow \widetilde{X}$ for which we have

and ϕ maps $T \times X$ to ∞.
Now we take $T=\mathbb{P}_{Q}^{L}$ and $X=X$ and $\tilde{X}=S^{2}$
So we have $\phi: \mathbb{P}_{\phi}^{1} \rightarrow S^{2}$ is a continuous bijection. Now \mathbb{P}_{Q}^{\perp} is compact and S^{2} is Hausdorff.

Hence ϕ is a homeomorphism.

$$
\Rightarrow \mathbb{P}_{\mathbb{P}}^{1} \simeq S^{2}
$$

Now we use $M-V$ sequence to compente homology groups of $\mathbb{P}_{\phi}{ }^{n}$.
First we compute for \mathbb{P}_{Φ}^{2}

$$
U=\left\{P_{\phi}^{2}\langle p\}, V=\Phi^{2}, U \cap V=\Phi^{2}-\{p\}\right.
$$

By $M-V$ sequence we have

$$
\begin{aligned}
& \rightarrow H_{n}(U \cap V) \rightarrow H_{n}(U) \oplus H_{n}(V) \rightarrow H_{n}\left(\mathbb{P}_{\phi}^{2}\right) \\
& \rightarrow H_{n-1}(U \cap v) \rightarrow \cdots
\end{aligned}
$$

Now if $n>4$ then
as $U \cap V=Q^{-1} \backslash \alpha P 3$ deformation retracts to S^{3} and U deformation retracts to $\mathbb{P}_{\Phi}{ }^{1}=S^{2}$
we have $H_{n}(U \cap V)=H_{n}(U)=H_{n}(V)=H_{n-1}(\cup \cap V)=0$ $\forall n>4$

$$
\Rightarrow \quad H_{n}\left(\mathbb{P}_{\phi}^{2}\right)=0 \quad \forall n>4
$$

Now if $n=4$ then

$$
\begin{aligned}
& \rightarrow \mathrm{H}_{4}(u) \not \mathrm{H}_{4}^{0}(v) \rightarrow \mathrm{H}_{4}\left(\mathbb{P}_{\Phi}{ }^{2}\right) \rightarrow \mathrm{H}_{3} \text { (unv) } \\
& \rightarrow H_{3}(u) \oplus H_{3}(v) \\
& \Rightarrow H_{4}\left(\mathbb{P}_{Q}^{v}\right) \simeq H_{3}(u \cap v)=H_{3}\left(S^{3}\right)=\mathbb{Z}
\end{aligned}
$$

Now if $1 \leq n<4$ we have the reduced $M-V$ sequence

$$
\begin{aligned}
& \rightarrow \widetilde{H}_{3}\left(S^{2}\right) \otimes \stackrel{\rightharpoonup}{H}_{3}\left(\mathbb{C}^{2}\right) \rightarrow \widetilde{H}_{3}\left(\mathbb{P}_{\varphi}^{2}\right) \rightarrow \widetilde{H}_{2}\left(s^{3}\right)_{0}^{2} \rightarrow \\
& \widetilde{H}_{2}\left(s^{2}\right) \oplus \widetilde{H}_{3}\left(\varphi^{2}\right) \rightarrow \widetilde{H}_{2}^{3}\left(\mathbb{P}_{4}^{2}\right) \rightarrow \widetilde{H}_{1}\left(s^{32}\right) \rightarrow \\
& \stackrel{H}{H}_{\perp}\left(s^{2}\right) \notin \tilde{H}_{1}^{\alpha_{1}^{0}}\left(q^{2}\right) \rightarrow \widetilde{H}_{1}\left(\mathbb{P}_{\phi}^{2}\right) \rightarrow \tilde{H}_{0}\left(s^{3} \rightarrow 0 \rightarrow\right. \\
& \Rightarrow H_{1}\left(\mathbb{P}_{Q}{ }^{V}\right) \simeq \tilde{H}_{1}\left(\mathbb{P}_{Q}{ }^{\sim}\right)=0 \\
& H_{2}\left(\mathbb{P}_{q}^{v}\right) \simeq \tilde{H}_{2}\left(\mathbb{P}_{Q}^{v}\right)=\tilde{H}_{2}\left(S^{v}\right) \oplus \tilde{H}_{3}\left(\mathbb{C}^{2}\right)=\mathbb{Z} \\
& H_{3}\left(\mathbb{P}_{Q}^{v}\right) \simeq \widetilde{H}_{3}\left(\mathbb{P}_{Q}^{v}\right)=0, \quad H_{0}\left(\mathbb{P}_{Q}^{2}\right)_{\mathbb{P}_{Q}^{2}} \text { is path as } \\
& \mathbb{P}_{C}{ }^{\vee} \text { is path connected. }
\end{aligned}
$$

Hence

$$
H_{k}\left(\mathbb{P}_{Q}^{v}\right)= \begin{cases}\mathbb{B} & \text { if } 0 \leq k \leq 4 \text { and } k \text { is even } \\ 0 & \text { otherwise. }\end{cases}
$$

Now we use induction by pothesis and assume that

$$
\begin{aligned}
H_{k}\left(\mathbb{P}_{Q}{ }^{n}\right) & =\text { if } 0 \leq k \leq 2 n \text { and } k \text { is even } \\
& =0 \text { if otherwise. }
\end{aligned}
$$

We use this and $M-V$ sequence to find homology groups of $H_{k}\left(\mathbb{P}_{4}^{n+1}\right)$
In this case $U=\mathbb{P}_{Q}^{n+1} \backslash\{P\} \underset{\substack{\text { deform. } \\ \text { deltas }}}{\text { der }} \mathbb{P}_{Q}{ }^{n}$

$$
V=C^{n+1}, U n V=\mathbb{C}^{n+1}-\langle P\} \xlongequal{\substack{\text { deform } \\ c_{\text {bract }}}} S^{2 n+1}
$$

Now if $k>2 n+2$ then by $M-V$ sequence we have

$$
\begin{aligned}
& \rightarrow H_{k}(U) \oplus{\overrightarrow{H_{k}}}^{0}(V) \rightarrow H_{k}\left(\mathbb{P}_{\&}^{n+1}\right) \rightarrow H_{k-1}\left(\operatorname{LAV}^{\prime} \rightarrow \cdots\right. \\
& \Rightarrow H_{k}\left(\mathbb{P}_{\&}^{n+1}\right)=0 \quad \forall k>2 n+2
\end{aligned}
$$

Now if $k=2 n+2$

$$
\begin{aligned}
& \rightarrow H_{2 n+2}(U) \not H_{2 n+2}^{O}(V) \rightarrow H_{2 n+2}\left(\mathbb{P}_{\phi}^{n+1}\right) \rightarrow H_{2 n+1}(U \cap V) \\
& \rightarrow H_{2 n+1}(U) \otimes H_{2 n+1}^{0}(V) \rightarrow- \\
& \Rightarrow H_{2 n+2}\left(P_{Q}^{n+1}\right) \simeq H_{2 n+1}(U n V) \simeq H_{2 n+1}\left(S^{2 n+1}\right)=Z
\end{aligned}
$$

Now if $k=2 n+1$ we have

$$
\begin{aligned}
& \rightarrow H_{2 n+1}(\cup) \oplus H_{2 n+1}(V) \rightarrow H_{2 n+1}\left(\mathbb{P}_{e}^{n+1}\right) \rightarrow H_{2 n}(\sim) V^{0} \\
& \rightarrow H_{2 n+1}\left(\mathbb{P}_{\phi}^{n+1}\right)=0
\end{aligned}
$$

Now if $1<k<2 n+1$ then

$$
\begin{aligned}
& \rightarrow H_{k}(y n v)^{0} \rightarrow H_{k}(U) \oplus H_{k}(v) \rightarrow H_{k}\left(\mathbb{P}_{Q}^{n+1}\right) \rightarrow H_{k f 1} \text { (inv) } \\
& \Rightarrow \quad H_{k}\left(\mathbb{P}_{q}^{n+1}\right) \simeq H_{k}(U) \oplus H_{k}(V)=H_{k}\left(\mathbb{P}_{e}^{n}\right)
\end{aligned}
$$

Now if $k=1$ then we have

$$
\begin{aligned}
& \rightarrow H_{1}(U) \not \overbrace{1}^{0}(V) \rightarrow H_{1}\left(\mathbb{P}_{Q}^{n+1}\right) \rightarrow H_{0}(U \cap V) \rightarrow H_{0}(U) \oplus H_{0}(V) \\
& \rightarrow H_{0}\left(\mathbb{P}_{Q}^{n+1}\right) \rightarrow 0
\end{aligned}
$$

and UV, $, V, P_{e}^{n+1}$ are all path connceted, hence

$$
0 \rightarrow H_{0}(U \cap V) \rightarrow H_{0}(U) \oplus H_{0}(V) \rightarrow H_{0}\left(\mathbb{P}_{¢}^{n+1}\right) \rightarrow 0 \text { is }
$$ exact.

$\rightarrow 0 \rightarrow H_{1}\left(\mathbb{P}_{c}^{n+1}\right) \rightarrow 0$ is exact.

$$
\Rightarrow \quad\left(H_{1}\left(\mathbb{P}_{\phi}^{n+1}\right)=0\right.
$$

Hence using all the calculations we have

$$
H_{k}\left(\mathbb{P}_{\mathbb{Q}}^{n+1}\right)=\left\{\begin{array}{l}
0 \quad \text { when } k>2 n+2 \\
\mathbb{Z} \text { when } k=2 n+2 \\
0 \quad \text { when } \quad k=2 n+1 \\
H_{k}\left(\mathbb{P}_{Q}^{n}\right) \text { when } L<k<2 n+1 \\
0 \quad \text { when } k=1 \\
\mathbb{Z}
\end{array} \text { when } k=0 \text { as } \mathbb{P}_{Q}^{n+1}\right. \text { is }
$$ path concerted)

So summing it up we have

$$
H_{k}\left(\mathbb{P}_{Q}^{n+1}\right)=\left\{\begin{array}{l}
7 \text { if } 0 \leq k \leq 2 n+2 \text { and } k \text { is even } \\
0 \text { other wise. }
\end{array}\right.
$$

2: Compote the homology groups of $\mathbb{R}^{m}-\left\{p_{1} \ldots p_{p}\right\}$ for $m>2$
Anas

$$
x=\mathbb{R}^{n}, A=\mathbb{R}^{m}-\left\{p_{1}, \cdots, p_{n}\right\}
$$

Let $B_{i}^{\prime} s$ are disjoint closed balls centered at P_{i} 's respectively.
Let $Z=\left(\sum_{i=1}^{r} B_{i}\right)^{c}$. Then $\bar{Z} \subset A^{0}$; and $x \backslash Z=, \bigcup_{i=1}^{r} B_{i}, A \backslash Z=L_{i=1}^{1}\left(B_{i}-\left\{P_{i}\right)\right.$
Therefore we can apply excision.

$$
H_{n}\left(x, A j \cong H_{n}(x \backslash Z, A \backslash Z) . \quad \forall n \geqslant 0\right.
$$

Step 1 In This step we will compute the homdogy groups $H_{r}\left(\sum_{i=1}^{r} B_{i}, \sum_{i=1}^{r}\left(B_{i}-\left\{P_{i}\right\}\right)\right)$ for $n \geqslant 1$ using the long enact sequence for pair ($\dot{H}_{i=1}^{r} B_{i}, \sum_{i=1}^{r}\left(B_{i}-\left\{A_{i} j\right\}\right)$
For $n>1$

$$
\left.\left.\rightarrow H_{n}\left(\bigcup_{i=1}^{r} B_{i}\right) \rightarrow H_{n}\left(\bigcup_{i=1}^{r} B_{1}, \sum_{i=1}^{r}\left(B_{i}-S P_{i}\right]_{1}\right)\right) \rightarrow H_{n-1}\left(\sum_{i=1}^{r}\left(B_{i}-S B_{i}\right\}\right)\right) \rightarrow H_{n-1}\left(\bigcup_{i=1}^{r} B_{i}\right) \rightarrow
$$

Since $H_{n}\left(\sum_{i=1}^{r} B_{i}\right)=H_{n-1}\left(\sum_{i=1}^{r} B_{i}\right)=0 \quad$ for $n>1$
we get, $H_{n}\left(\bigcup_{i=1}^{Y=1} B_{i}^{1}, \sum_{i=1}^{r} B_{i}\left\{P_{i}\right\}\right) \cong H_{n-1}\left(\bigcup_{i=1}^{r}\left(B_{i}-\left\{P_{i}\right\}\right)\right) \quad n>1$

For $n=1$,

$$
\begin{aligned}
& H_{1}\left(\bigcup_{i=1}^{r} B_{i}\right) \rightarrow H_{1}\left(\sum_{i=1}^{r} B_{i}, \bigcup_{i=1}^{r}\left(B_{i}-\left\{P_{3}\right)\right) \rightarrow H_{0}\left(\sum_{i=1}^{r}\left(B_{i}-P_{1}\right) \rightarrow H_{0}\left(\bigcup_{i=1}^{r} B_{i}\right) \rightarrow \cdots\right.\right. \\
& O \rightarrow H_{1}\left(\bigcup_{i=1}^{r} B_{i} \sum_{i=1}^{r}\left(B_{i}-P_{i}\right)\right) \xrightarrow{\varphi} \bigcup_{i=1}^{r} \mathbb{Q} \xrightarrow{i_{*}} \bigoplus_{i=1}^{r} \mathbb{Z} \rightarrow \cdots
\end{aligned}
$$

claim: $i_{*}: H_{0}\left(\sum_{i=1}^{v}(\beta-\{p\}),\right) \rightarrow H_{0}\left(\sum_{i=1}^{r} \beta_{i}\right)$ is an isomorphism.
we know if $f: x \rightarrow Y$ be continuous function between two bath-conneeted spaces then $f_{*}: H_{0}(x) \rightarrow H_{0}(y)$ is an isomorphism.
Therefore, $i_{*}: H_{0}\left(B_{i}-\left\{p_{i}\right\}\right) \longrightarrow H_{0}\left(B_{i}\right)$ is isomorphism for each $i=1, \ldots, r$ Hence $i_{i *}: \underbrace{\nrightarrow}_{i=1} H_{0}\left(B_{i}-\left\{P_{i}\right\}\right) \longrightarrow H_{i=1}^{\infty} H_{0}\left(B_{i}\right)$ is an isomorphism.

Then $\operatorname{Im} \phi=\operatorname{ker} i_{x}=0$. Also ϕ is injective.

$$
\left.\Rightarrow \quad H_{1}(\}_{i=1}^{\gamma} \beta_{i}, \sum_{=1}^{r}\left(B_{i}-\left\{Q_{i}\right\}\right)\right)=0
$$

So we have $H_{n}(X \backslash Z, A \backslash Z)=\left\{\begin{array}{cl}H_{n-1}\left(\sum_{i=1}^{r}\left(B_{i}-\{p,\}\right)\right) & n>1 \\ 0 & n=1\end{array}\right.$

Since $B_{i}-\left\{P_{i}\right\}$ deformation retracts to it's boundary which is homeomorphic to s^{m-1} for all $i=1 \cdots \cdot r$, we have

$$
H_{n}(x, Z, A-Z)=\left\{\begin{array}{cl}
\bigoplus_{i=1}^{r} \mathbb{Z} & \text { if } n=m \\
0 & n \geqslant 1, n \neq m
\end{array}\right.
$$

Therefore by excision, $H_{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\left\{P_{1}-P_{r}\right\}\right)= \begin{cases}i=1 \\ \bigoplus_{i} \mathbb{Z} & \text { if } n=m \\ 0 & \text { if } n>1 \\ n \neq m\end{cases}$
Step 2: In this step we will compute homology of $\mathbb{R}^{m}-\left\{P_{j} \cdots\right.$...r. $\}$ for $n \geqslant 1$ using long exact sequence of pairs $\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\left\{p_{1}, \cdots, \ldots, p_{r}\right\}\right)$ and (1)
For $n>1$

$$
\underset{\text { For } n>1}{\rightarrow H_{n}}\left(\mathbb{R}^{m}\right) \rightarrow H_{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\left\{P_{1}-\cdots P_{n}\right\}\right) \rightarrow H_{n-1}\left(\mathbb{R}^{m}-\left\{p_{1}, \cdots P_{0}\right\}\right) \rightarrow H_{n-1}\left(\mathbb{R}^{m}\right) \rightarrow
$$ since $H_{n}\left(\mathbb{R}^{m}\right)=H_{n-1}\left(\mathbb{R}^{m}\right)=0$ for $n>1$

we have, $H_{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash\left\{p_{1} \ldots P_{r}\right\}\right) \cong H_{n-1}\left(\mathbb{R}^{m}-\left\{p_{1}-p_{y}\right\}\right) \quad n>1$
Therefore from (1)

$$
H_{n-1}\left(\mathbb{R}^{m}-\left\{P_{1} \cdots P_{r}\right\}\right)= \begin{cases}\oplus_{i=1}^{r} \mathbb{Z} & \text { when } n=m \\ 0 & \text { when } \\ n \neq m \\ n>1\end{cases}
$$

or $\quad H_{n}\left(\mathbb{R}^{m}-\left\{P_{1}-\cdots P_{r}\right\}\right)= \begin{cases}\theta_{i=1}^{n} & \text { when } n=m-1 \\ 0 & \text { when } n \geqslant 1 \quad n \neq m-1\end{cases}$
since $\mathbb{R}^{m}-\left\{P_{1} \ldots P_{r}\right\}$ is path connected, $\left.H_{0}\left(\mathbb{R}^{m}-P_{1}-P_{r}\right\}\right) \cong \mathbb{Z}$ Therefore, $H_{n}\left(\mathbb{R}^{m}\left\{P_{1} \cdots P_{r}\right\}=\left\{\begin{array}{cc}\mathbb{Z} & n=0 \\ \bigoplus_{i=1}^{\mathbb{Z}} & n=m-1 \\ 0 & \text { else }\end{array}\right.\right.$

Alternative solution: - Also it is easy to see that $\mathbb{R}^{m} \backslash\left\langle p_{1}, p_{2}, \cdots, P_{r}\right\}$ is homotopy equivalent to $v s^{m-1}$ So we have
in

$$
\left.H_{k}\left(\mathbb{R}^{m}-\alpha p_{1}, p_{2}, \ldots, p_{r}\right\}\right) \cong H_{k}\left(V_{i=1}^{r} s^{m-1}\right)
$$

For homologies of $V_{i=1}^{r} s^{m-1}$ see 2.5 .
3. Compute the homology groups of $\mathbb{P}_{\mathbb{R}}{ }^{2}$.

Ans: We get $\mathbb{P}_{\mathbb{R}}^{2}$ by identifying the boundary of the disc as follows:
 on the boundary of D^{2}

Let, u be the open subset $\mathbb{P}^{2}-\{0\}$ and V be the opoen subset

$$
\left\{z \in D^{2}:|z|<1\right\}
$$

Now, U deformation retracts onto the boundary which is homeomorphic
to S^{\prime} and V is contractible.
So, $H_{n}(U) \cong H_{n}\left(s^{\prime}\right) \cong \begin{cases}\mathbb{Z} & \text { if } n=0 \\ \mathbb{Z} & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}$

$$
H_{n}(V) \equiv \begin{cases}\mathbb{Z} & \text { if } n=0 \\ 0^{\prime} & \text { otherwise }\end{cases}
$$

Now, $u \cap v=\left\{z \in D^{2}-\{0\}: 121<1\right\}$

$$
\simeq S^{\prime}
$$

So, $H_{n}(u \cap v)=\left\{\begin{array}{cl}\mathbb{Z} & \text { if } n=0 \\ \mathbb{Z} & \text { if } n \geq 1 \\ 0 & i^{\prime} f \quad n>1\end{array}\right.$
By Mayer-Vietoris sequence, we get

$$
\begin{aligned}
\rightarrow H_{n}(u \cap v) & \rightarrow H_{n}(u) \oplus H_{n}(v) \rightarrow H_{n}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \\
& \longrightarrow H_{n-1}(u \cap v) \rightarrow \cdots
\end{aligned}
$$

Now for $n>2$, it is clear that.

$$
H_{n}\left(\mathbb{P}_{\mathbb{R}^{2}}\right)=0
$$

Now, ne have,

$$
\begin{aligned}
& H_{2}(u)^{0} \oplus H_{2}(v) \rightarrow H_{2}\left(\mathbb{P}_{R}^{2}\right) \rightarrow H_{1}(u \cap v) \\
& \xrightarrow{j_{r}} H_{1}(u) \oplus H_{2}(v) \rightarrow H_{1}\left(\mathbb{P}_{R}^{2}\right) \rightarrow \ldots
\end{aligned}
$$

Now, $j: u n v \rightarrow U$ is the inclusion it induces a commutation diagram

$$
\begin{aligned}
& \pi_{1}(u \cap v) \xrightarrow{j_{\infty}} \pi_{1}(u)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \downarrow \quad \downarrow \cong \\
& H_{1}(u \cap v) \xrightarrow{j_{+}} H_{H}(u)
\end{aligned}
$$

Now, we know that

$$
\begin{array}{cc}
j_{x}: \pi_{1}(u \cap N) & \pi_{1}(u) \\
\mathbb{Z} & \frac{11}{\mathbb{Z}}
\end{array}
$$

is given by $1 \longmapsto 2$

So,

$$
\begin{aligned}
& \text { So, } \\
& \rightarrow 0 \rightarrow H_{2}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \rightarrow H_{l}(u \wedge V) \xrightarrow{j_{x}} H_{1}(u) \rightarrow \\
& \rightarrow H_{1}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \rightarrow H_{0}(u \cap V) \rightarrow \cdots \\
& \rightarrow 0 \rightarrow H_{2}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \rightarrow \mathbb{Z} \xrightarrow{x 2} \mathbb{Z} \rightarrow H_{1}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \\
& \\
& \xrightarrow{\delta} H_{\theta}(u \cap V) \rightarrow H_{0}(u) \oplus H_{0}(v) \rightarrow H_{0}\left(\mathbb{R}_{\mathbb{R}}^{2}\right) \rightarrow 0
\end{aligned}
$$

Since $u \cap v, u, v$ and $\mathbb{P}_{\mathbb{P}}^{2}$ are path connected, so get,

$$
0 \rightarrow H_{0}(u \cap V) \rightarrow H_{0}(u) \oplus H_{0}(V) \rightarrow H_{0}\left(\mathbb{P}_{R^{2}}^{2}\right) \rightarrow 0
$$

is exact.
This implies that,

$$
0 \rightarrow H_{2}\left(\mathbb{P}_{\mathbb{R}}^{2}\right) \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow H_{1}\left(\mathbb{P}_{\mathbb{R}}^{\prime}\right) \rightarrow 0
$$

is exact.

This implies that

$$
H_{2}\left(\mathbb{P}_{\mathbb{R}}^{2}\right)=0
$$

and $H_{1}\left(\mathbb{B}_{R}^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}$
4. C is the closed oriented surface of genus k. Complete the homogy groups of C.

Ans: Let $p \in C$.
Step I: We will compute homology groups of the pair ($c, c-p$)

Step II: We will compete Homology grapes of $c-p$.
step III: We will compute Homology grays of C.

Step I:
Let B be an open disc around p in C.
Let $Z=C-B$
Then $\bar{Z} \subseteq c-p$

By excision theorem,

$$
\begin{aligned}
& H_{n}(C, C-\{p\}) \cong H_{n}(C-Z,(C-\{p\})-z) \\
& \forall n \geqslant 0
\end{aligned}
$$

We observe that,

$$
(C-2,(C-\{p\}) Z)=(B, B-p)
$$

Let us compute $H_{n}(B, B-p)$:
Using long exact sequence of the pain $(B, B-p)$, we get,

$$
\begin{aligned}
& \rightarrow H_{n}(B) \rightarrow H_{n}(B, B-p) \rightarrow H_{n-1}(B-p) \\
& \quad \rightarrow H_{n-1}(B) \rightarrow \cdots
\end{aligned}
$$

Now, for $n>1$, the ends in the above long exact sequence are 0 .
So, $H_{n}(B, B-p)=0$ for $n>2$

Now we have,

$$
\begin{aligned}
& \rightarrow H_{2}(B) \rightarrow H_{2}(B, B-p) \rightarrow H_{1}(B-p) \\
& \quad \rightarrow H_{1}(B) \rightarrow H_{1}(B, B-p) \rightarrow \cdots
\end{aligned}
$$

Now, $\quad H_{2}(B)=0=H_{1}(B)$
So, $H_{2}(B, B-p) \approx H_{1}(B-p)$

$$
\cong H_{1}\left(S^{\prime}\right) \cong \mathbb{Z}
$$

Again,

$$
\begin{aligned}
& 0 \rightarrow H_{1}(B, B \backslash p) \rightarrow H_{0}(B \backslash p) \rightarrow H_{0}(B) \\
& \rightarrow H_{0}(B, B \backslash p) \rightarrow \sigma
\end{aligned}
$$

Now since $B-P$ \& B ale path connected \& the inclusion
$B \rightarrow p C B$ indues isomorphism on H_{0}.
So, $H_{1}(B, B \backslash p)=0$ and $H_{0}(B, B-P)=0$

So, we have,

$$
H_{n}(B, B-p)= \begin{cases}\mathbb{Z} & \text { if } n=2 \\ 0 & \text { if } n \neq 2\end{cases}
$$

This finishes step I.

Step II: We can present C as a $4 k$-gan with identification on boundary as follows:

From diagram, it is clear that C-P deformation retracts on to the boundary which is hemeomorptic to wedge of $2 k$ circles.

So, $H_{n}(c-p) \cong H_{n}\left(\underset{2 k}{V} s^{\prime}\right) \cong \begin{cases}\mathbb{Z} & \text { if } n=0 \\ \mathbb{Z}^{2 k} & \text { if } n=1 \\ 0 \text { otherwis }\end{cases}$
This finishes step II.
step III:
We have long exact sequence of the pair $(c, c-p)$:

$$
\begin{aligned}
\rightarrow H_{n}(C) & \rightarrow H_{n}(c, c-p) \rightarrow H_{n-1}(c-p) \\
& \rightarrow H_{n-1}(c) \rightarrow \cdots
\end{aligned}
$$

For $n>2, \quad H_{n}(c-p)=0$

$$
\text { \& } H_{n}(c, c>p)=0
$$

So, $H_{n}(c)=0$ for $n>2$
Now we have,

$$
\begin{aligned}
& \rightarrow H_{2}\left(e^{0}-p\right) \rightarrow H_{2}(c) \rightarrow H_{2}(c, c-p) \\
& \rightarrow H_{1}(c-p) \rightarrow H_{1}(c) \rightarrow H_{1}(c, c-p) \rightarrow
\end{aligned}
$$

So, we have

$$
0 \rightarrow H_{2}(c) \rightarrow \mathbb{Z} \rightarrow H_{1}(c, p) \xrightarrow{i_{x}} H_{1}(c) \rightarrow 0
$$

is exact
We have commutative diagram:

$$
\begin{array}{ll}
\pi_{1}(c-p) \xrightarrow{i_{+}} & \pi_{1}(c) \\
\downarrow & \\
\left(\pi_{1}(c-p)\right)_{a b} \xrightarrow{\bar{i}_{*}} & \downarrow \\
=\downarrow \\
H_{1}(c-p) & \\
& \\
& \\
\left.i_{1}(c)\right)_{a b} & \downarrow
\end{array}
$$

Now, $\pi_{1}(c-p)$ is the free group on $2 k$ generators and

$$
\pi_{1}(c)=\pi_{1}\left(e^{-}-p\right) /\left\langle\pi_{1}^{k} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right\rangle
$$

Since, $\left.{ }_{1}^{K} 4 a_{i} b_{i} a_{i}^{1} b_{c}^{-1}\right) \in\left[\pi_{1}(c-p), \pi_{1}(c-p)\right]$
It follows that.

$$
\overline{\dot{c}_{x}}:\left(\pi_{1}(c-b)\right)_{a b} \rightarrow\left(\pi_{1}(c)\right)_{a b}
$$

is an isomorphism.
From the commutative diagram, we get

$$
i_{*}: H_{1}(e-p) \longrightarrow H_{2}(c)
$$

is an isomorphism.
So from (\#) we have,

$$
O \rightarrow H_{2}(c) \rightarrow \mathbb{Z} \rightarrow H_{1}(c-p) \xrightarrow{\stackrel{\Gamma}{=}} H_{(}(c) \rightarrow 0
$$

So, $H_{2}(c) \approx \mathbb{Z}$
and $H_{1}(c) \approx H_{1}(c-p) \cong \mathbb{Z}^{2 k}$
Since C is connected, so $H_{0}(c)=\mathbb{Z}$.
So, $H_{n}(c)= \begin{cases}\mathbb{Z}_{1} & \text { if } n=0 \\ \mathbb{Z}^{2 K} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=2 \\ 0 & \text { if } n>2\end{cases}$
5. Homology group of $\bigvee_{i 21}^{r} s^{m} \quad m \geq 1$
\Rightarrow First we compute homology gropes of $X=s^{m} \vee s^{m}$.
lat $U=X \backslash\{q\}$

$$
\begin{gathered}
V=x-\{p\} \\
U \cap V=x \backslash\{p, 2\}
\end{gathered}
$$

U, V deformation retracts to S^{m}. and $U \cap V$ deformation retracts to the point s.

Now by $M-V$ sequence we have

$$
\begin{aligned}
& \text { If } k>1 \rightarrow 0 \\
& \rightarrow H_{k}(y h v) \rightarrow H_{k}(U) \oplus H_{k}(v) \rightarrow H_{k}(x) \\
& \rightarrow H_{k-1}(y A v) \rightarrow-\cdots \\
& \Rightarrow H_{k}(x) \simeq H_{k}\left(s^{m}\right) \oplus H_{k}\left(s^{m}\right) \quad \forall k>1
\end{aligned}
$$

If $k=1$ then we have

$$
\begin{aligned}
& \rightarrow H_{1}(\text { Ynv }) \rightarrow H_{1}(U) \oplus H_{1}(V) \rightarrow H_{1}(x) \\
& \rightarrow H_{0}(U \cap v) \rightarrow H_{0}(U) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0
\end{aligned}
$$

Now Un V, U, V, X are path connected. So $0 \rightarrow H_{0}(U \cap V) \rightarrow H_{0}(U) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0$ is exact.

$$
\Rightarrow \quad H_{1}(x) \simeq H_{1}\left(s^{m}\right) \oplus H_{1}\left(s^{m}\right)
$$

and $H_{0}(X)=Z$ as X is path connected.

So we have $H_{k}\left(\bigvee_{i=1}^{n} s^{m}\right)=H_{k}\left(S^{m}\right) \oplus H_{k}\left(S^{m}\right) k \geq 1$

$$
=\mathbb{Z} \quad k=0
$$

So let us use induction on r to compute homology grow's of $V_{i=1}^{r} S^{m}$.
let is assume

$$
\begin{array}{rlr}
H_{k}\left(V_{i \geq 1}^{r-1} s^{m}\right) & =\bigoplus_{i \geq 1}^{r-1} H_{i}\left(s^{m}\right) \quad k \geq 1 \\
& =Z &
\end{array}
$$

let $X=\underset{i=1}{r} s^{m}$

let U is given in the pieture above.

$$
V=X-\{p\}
$$

U deformation retracts to S^{m}
V deformation retracts to $\stackrel{V}{i=1}_{r-1}^{s} s^{m}$
UnV deformation retracts to a point.
Now by $M-V$ sequence we heave

$$
\begin{aligned}
& \forall k>1 \\
& \longrightarrow H_{k}(\cup) \xrightarrow{0} \rightarrow H_{k}(U) \oplus H_{k}(v) \rightarrow H_{k}(x) \\
& \longrightarrow H_{k-1}(\cup \cap y) \xrightarrow{0} \cdots \\
& \Rightarrow H_{k}(x) \simeq H_{k}\left(S^{m}\right) \oplus H_{k}\left(V_{i=1}^{r-1} s^{m}\right)=\bigoplus_{i=1}^{r} H_{k}\left(S^{m}\right)
\end{aligned}
$$

If $k=1$ then

$$
\begin{aligned}
& \rightarrow H_{1}(U \cap \Delta) \rightarrow H_{1}(U) \oplus H_{1}(v) \rightarrow H_{1}(x) \\
& \rightarrow H_{0}(U \cap v) \rightarrow H_{0}(v) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0
\end{aligned}
$$

Now $U \cap V, U, V, X$ are path connected so

$$
\begin{aligned}
& 0 \rightarrow H_{0}(U \cap V) \rightarrow H_{0}(U) \oplus H_{0}(V) \rightarrow H_{0}(x) \rightarrow 0 \\
\Rightarrow & H_{1}(x) \simeq H_{1}\left(S^{m}\right) \oplus H_{1}\left(V_{i=1}^{r-1} S^{m}\right)=\oplus_{i=1}^{r} H_{1}\left(S^{m}\right)
\end{aligned}
$$

and $H_{0}(x)=\mathbb{Z}$ as x is pathionnected.
So we have

$$
\begin{array}{rlr}
H_{k}\left(V_{i=1}^{r} s^{m}\right) & =\bigoplus_{i=1}^{r} H_{k}\left(s^{m}\right) & k \geq 1 \\
& =\mathbb{E} & k \geq 0
\end{array}
$$

CW-Complex

1. CW structure of S^{1}

$k \geq 2$

$$
\begin{aligned}
& c W_{k}(x)=H_{k}\left(x^{k} / x^{k-1}\right)=0 \\
& \left.c W_{1}(x)=H_{1}\left(x^{1} / x^{0}\right)=H_{1} c s^{1}\right)=\mathbb{Z} \\
& c W_{0}(x)=H_{0}\left(x^{0}\right)=\mathbb{Z}
\end{aligned}
$$

Homology sequence of the pair $\left(X^{L}, X^{0}\right)$ we have

$$
\begin{aligned}
& \rightarrow H_{1}\left(x^{0}\right) \rightarrow H_{1}\left(x^{1}\right) \rightarrow H_{1}\left(x^{\prime}, x^{0}\right) \rightarrow H_{0}\left(x^{0}\right) \simeq \ldots \\
& \left(H_{0}\left(x^{1}\right)\right. \\
& \Rightarrow H_{1}\left(x^{\prime} / x^{0}\right) \\
& \rightarrow H_{1}\left(x^{0}\right) \rightarrow H_{1}\left(x^{\prime}\right) \rightarrow H_{1}\left(x^{\prime}, x^{0}\right) \rightarrow 0 \text { is exact } \\
& S \mid \\
& S_{1}\left(x^{\prime} / x_{0}\right)
\end{aligned}
$$

\Rightarrow the map from $\mathbb{C} W_{1}(x) \rightarrow C W_{0}(x)$ is 0 .

$$
\Rightarrow d_{1}: C W_{11}(x) \rightarrow \underset{11}{C W_{0}(x)} \text { is } 0 .
$$

$$
\begin{aligned}
& \stackrel{\substack{W_{0} \\
0}}{\stackrel{d_{2}}{W_{l}}(x)} \underset{\neq}{W_{1}(x)} \xrightarrow{d_{1}}=0 \\
& \Rightarrow \quad 0 \xrightarrow{d_{2}} \mathbb{Z} \xrightarrow{d_{1}=0} \mathbb{Z} \longrightarrow 0 \\
& k \geq 2 \\
& H_{k}^{c W}(x)=0 \\
& \text { If } k=1 \\
& H_{1}^{c W}(x)=Z^{*} \\
& H_{0}^{e W}(x)=Z
\end{aligned}
$$

2. CW structure of S^{n}

No $1,2, \ldots, n-1$-cells arc present.

$$
\begin{aligned}
C W_{k}(x) & =0 \text { if } k \geq n+1 \\
& =\mathbb{E} \text { if } k=n \\
& =0 \text { if } 0<k<n \\
& =\text { if } k=0
\end{aligned}
$$

$$
\begin{aligned}
H_{k}^{c W}(x) & =0 \quad \text { if } k \geq n+1 \\
& =B \quad \text { if } k \geq n \\
& =0 \quad \text { if } 1<k<n \\
& =\text { R if } k=0
\end{aligned}
$$

3. $\mathbb{P}_{\mathbb{C}}{ }^{1} \cong S^{2}$, Hence the $C W$-homology of $\mathbb{P}_{Q}^{1 ' s}$ are computed.
4. We first compute $C W$-homology of $\mathbb{P}_{Q}{ }^{2}$.

There is no n-cells for $n>4$ and $n=1,3$.

$$
X^{4}=\mathbb{P}_{Q}^{2}, \quad X^{2}=\mathbb{P}_{Q}^{1}, \quad X^{0}=\{P\} \quad P \text { is the o-cell. }
$$

If $k>4$

$$
c w_{k}(x)=H_{k}\left(x^{k} / x^{k-1}\right)=0
$$

If $k=4$

$$
C W_{4}(x)=H_{4}\left(x^{4} / x^{3}\right)=H_{4}\left(\mathbb{P}_{4}^{2}\right)=Z
$$

If $k=3, L$

$$
C W_{b}(x)=0=c W_{1}(x)
$$

If $k=2$

$$
C W_{2}(x)=H_{2}\left(x^{2} / x^{\prime}\right)=H_{2}\left(\mathbb{P}_{4}^{1}\right)=Z
$$

If $k=0$

$$
C W_{0}(x)=H_{0}\left(x^{0}\right)=H_{0}(\{p\})=Z
$$

So we have the chain complex.

Now we have

$$
\begin{aligned}
& H_{0}^{e_{W}}(x)=\operatorname{kerd}_{\operatorname{Imd_{1}}}=Z_{\{0\}}=Z \\
& H_{1}{ }^{c W}(x)=\frac{k_{e \sigma d_{1}}^{I_{m d_{2}}}}{}=\{0\} \\
& H_{2}^{c w}(x)=\frac{k e r d_{2}}{\operatorname{Ird_{3}}}=t /\{0\}=Z \\
& \mathrm{H}_{3}^{\mathrm{cW}}(x)=\mathrm{kerd}_{3 / \mathrm{Imd}_{4}}=\{0\} \\
& H_{4}^{{ }^{W W}}(x)=\operatorname{Imor}_{4} d_{5}=t / \alpha_{03}=7
\end{aligned}
$$

and clearly $H_{k}^{C_{W}}(x)=0 \quad \forall k>4$
So we have

$$
\begin{aligned}
H_{k}^{C W}(x) & =Z \text { if } k=0,2,4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Now we compute $C W$-homology of $X=\mathbb{P}_{\mathbb{C}}^{n}$ using induction. let $H_{k}^{c W}\left(\mathbb{P}_{\neq}^{t}\right)=Z$ if $0 \leq k \leq 2 t$ and k is even $=0$ if otherwise $\quad \forall t \leq n$

In \mathbb{P}_{q}^{n+1} we don't have m-cells for $m>2 n+2$ and $m=2 n+1,2 n-1, \cdots, 3,1$

Now wa have only one k-cell for each

$$
k=0,2,4, \ldots, 2 n+2
$$

Now we have

$$
\begin{aligned}
& C W_{0}(x)=H_{0}\left(x^{0}\right)=Z \\
& C W_{1}(x)=H_{1}\left(x^{\prime} / x_{0}\right)=0 \\
& C W_{2}(x)=H_{2}\left(x^{2} / x^{\prime}\right)=H_{2}\left(\mathbb{P}_{4}^{1}\right)=Z \\
& \vdots \\
& C W_{2 n+1}(x)=H_{2 n+1}\left(x^{2 n+1} / x^{2 n}\right)=0 \\
& C W_{2 n+2}(x)=H_{2 n+2}\left(x^{2 n+2} / x^{2 n-1}\right)=H_{2 n+2}\left(\mathbb{P}_{4}^{n+1}\right) \\
&
\end{aligned}
$$

and $C W_{k}(x)=0 \quad \forall k>2 n+2$
So we have the chain complex

$$
\begin{aligned}
& 0 \xrightarrow{d_{2 n+3}} C W_{2 n+2}^{Z}(x) \xrightarrow{d_{2 n+2}} C W_{2 / n+1}(x) \xrightarrow{0}{ }_{0}^{0} \mathrm{~d}_{2 n+1} W_{2 n}(x) \xrightarrow{\text { Z }}{ }_{0}^{d_{2 n}} \\
& \cdots \xrightarrow{d_{4}} C W / /(x) \xrightarrow{0} C_{2}^{\prime \prime}(x) \xrightarrow{d_{3}} C W_{1}^{\prime \prime}(x)^{d_{1}} \mathrm{Cw}_{0}^{\prime \prime}(x)
\end{aligned}
$$

$\xrightarrow{d_{0}} 0$

So we have

$$
\begin{aligned}
& H_{0}^{c W}(X)=Z \\
& H_{1}^{c w}(x)=0 \\
& H_{c w}^{c w}(X)=0 \\
& H_{2 n+1}^{c w}(x)=Z \\
& H_{2 n+2}^{c}(x)
\end{aligned}
$$

and $\quad H_{k}{ }^{W}(x)=0 \quad \forall k>2 n+2$
So we have

$$
\begin{aligned}
H_{k}^{C W}(x) & =R \quad \forall 0 \leq k \leq 2 n+2 \quad \text { and } k \text { is even } \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

5. Compete the CW-homology of compact oriented surface of genus $2,\left(M_{2}\right)$ given below

Now X^{0} is the point (o-cell),
X^{\prime} is obtained by attaching 4 -cells to X^{0}.
X^{2} is obtained by attaching $L 2-e$ ell by the attaching map. $S^{\prime} \rightarrow x^{\prime}$ by

Now $\forall k>2$ we hov. $C W_{k}(x)=0$
If $k=2$ then $C W_{2}(x)=H_{2}\left(x^{2} / x^{\prime}\right)=H_{2}\left(s^{2}\right)=\mathbb{Z}$
If $k=1$ then $C W_{1}(x)=H_{1}\left(x^{\prime} / x^{0}\right)=H_{1}\left(\begin{array}{c}4 \\ 1 \\ i\end{array}\right)$

$$
=\bigoplus_{i=1}^{4} Z
$$

If $k=0$ then $C W_{0}(X)=H_{0}\left(x^{0}\right)=\mathbb{Z}$.

Hence we have the complex

Now we how the long exact sequence of the pair $\left(x^{1}, x^{0}\right)$ which is

$$
\begin{array}{r}
\longrightarrow H_{1}\left(x^{0}\right) \longrightarrow H_{1}\left(x^{\prime}\right) \longrightarrow H_{1}\left(x^{\prime}, x^{0}\right) \rightarrow H_{0}\left(x_{0}\right) \\
\| \\
\\
\\
H_{1}\left(x^{\prime} / x^{0}\right) \\
\\
\\
\\
\\
\end{array}
$$

Now x^{0}, x^{\prime} are path corrected so $H_{0}\left(x^{0}\right) \simeq H_{0}\left(x^{1}\right)$

$$
\Rightarrow \quad H_{1}\left(x^{\prime}\right) \longrightarrow H_{1}\left(x^{\prime} / x^{0}\right) \longrightarrow 0 \text { is exact. }
$$

$\Rightarrow d_{1} \therefore C W_{1}(x) \rightarrow C W_{0}(x)$ is the zero map.
Now we see the behavior of d_{2}.
we hove $S^{1} \longrightarrow X^{2}$ the attaching map, then we have the collapsing map which collapses all but one circle which gives the component of $d_{2}(1)$. let $X^{\prime} \longrightarrow S^{l}$ be the map which is given b,

So as the orientation of the circle given by attaching map

$$
s^{\prime} \longrightarrow x^{\prime} \longrightarrow s^{2} \text { maps } S^{\prime} \text { to } a_{1}-a_{1}=0
$$

\Rightarrow Lit component of $d_{2}(1)$ is 0 .
and by the description of the attaching map we see each component of $d_{2}(1)$ is 0 .

Hence $d_{2}=0$
Another explanation using Fundamental gram.
We hove the attaching map bakes the generator in $\pi_{l}\left(s^{1}\right)$ to the rel dim

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \text { in } \pi_{1}\left(V_{121}^{4} s^{1}\right)
$$

which clearly belongs to $\left[\pi_{121}^{\pi}\left(\underset{12}{9} s^{\prime}\right), \pi_{12}\left(\begin{array}{l}4 \\ (V)\end{array}\right]\right)$
So we have the diagram

$$
\begin{aligned}
& a b\left|\begin{array}{lll}
a & \longrightarrow \mathbb{T}_{i=2}^{4} a_{i} b_{1} a_{1}^{-1} b_{i}^{-1} \mid \\
\downarrow
\end{array}\right| a b \\
& Z=H_{1}\left(s^{1}\right)^{a} \longrightarrow 0 H_{1}\left(v_{121}^{4} s^{\prime}\right)=\prod_{i=1}^{4} R
\end{aligned}
$$

$\Rightarrow d_{2}$ takes a to 0

$$
\Rightarrow d_{2}=0
$$

So we have

$$
\begin{aligned}
& H_{0}^{w}(x)=\operatorname{kerd}_{I_{m} d_{L}}=Z /\{0\}=Z \\
& H_{1}^{c w}(x)=\frac{\operatorname{kerd}_{y}}{I_{r-1}}=\oplus_{i 21}^{4} \mathbb{Z} /\{0\}=\bigoplus_{121}^{9} Z \\
& H_{2}^{c w}(x)={ }_{\text {kern }_{2}}^{I_{m d_{3}}}=T /\langle 0\} \\
& \text { and } H_{k}^{c w}(x)=0 \quad \forall_{k}>2
\end{aligned}
$$

In case of genus >2 the method is exactly same and in that case we have to use the relation defined as 1.4].
6. $C W$-Homology of $\mathbb{P}_{\mathbb{R}}^{2}$.

Here X^{0} is a point, $X^{\prime}=s^{\prime}, X^{2}$ is obtained by the attacking map $\quad f: \partial D^{2} \rightarrow X^{\perp}$ by $f(z)=z^{2}$ and no k-cells
$\quad \forall k>2$.

$$
\begin{aligned}
& C W_{0}(x)=H_{0}\left(x^{0}\right)=Z \\
& C W_{1}(x)=H_{1}\left(x^{1} / x^{0}\right)=H_{1}\left(s^{1}\right)=Z \\
& C W_{2}(x)=H_{2}\left(x^{2} / x^{1}\right)=H_{2}\left(s^{0}\right)=Z
\end{aligned}
$$

and $C W_{k}(x)=0 \quad \forall k>2$
So we have the complex

$$
0 \longrightarrow C W_{2}(x) \xrightarrow{d_{2}} C W_{1}(x) \xrightarrow{\|} C W_{0}(x) \longrightarrow 0
$$

like similar arguement of the previous problem $d_{1}=0$
Now we see how d_{2} behaves.
We have the attaching map

$$
S^{\prime} \longrightarrow{\underset{c}{11}}_{\substack{11 \\ s^{1}}}^{x^{2} \text { by } \quad z \longrightarrow z^{2}}
$$

so $d_{2}(1)=2$ as $\operatorname{deg}\left(z \longrightarrow z^{2}\right)=2$

Now we show $\operatorname{deg}\left(z \longrightarrow z^{v}\right)=2$
In $V(t)=e^{2 \pi i t}$ be the generator of

$$
\pi_{1}\left(S^{L}, L\right) \cong Z \text {, id } f: S^{\prime} \rightarrow s^{L} \text { by } f(z)=z^{2}
$$

and $P: \mathbb{R} \rightarrow S^{\perp}$ is the covering map

$$
\begin{aligned}
& P(x)=e^{2 \pi^{\prime} i x}
\end{aligned}
$$

where $\underset{f_{0 y}}{ }$ is the unique lift of the path for.
Now if we define $g![0,1] \rightarrow \mathbb{R}$ by $g(t)=2 t$ then we have $g(0)=0$ and $p \circ g=f \circ r=p \circ f \circ r$ $\Rightarrow g=\overparen{f o r}$ (by uniqueness)
So $\operatorname{deg} f=g(1)=2$

Hence

$$
\begin{aligned}
& H_{0}^{c w}(x)=\text { kerdop }_{\text {Imd }_{1}}=Z / 203=Z \\
& H_{1}^{c w}(x)=\frac{k_{\text {erd }} d_{I m d_{2}}}{I_{\text {m }}}=\frac{z}{2 z}=z_{2} \\
& H_{2}^{C W}(x)={ }_{\text {kerd }}^{I_{m} d_{3}}=\{0\} /\{0\}=0 \\
& H_{k}^{C_{W}}(x)=0 \quad \forall k>2 .
\end{aligned}
$$

7. CW-homolory of $\mathbb{P}_{\mathbb{R}}{ }^{n}$.
\Rightarrow We have only one k-cell $\forall k=0,1,2, \ldots, n$ and we have

$$
X^{0}=\{p\}, X^{\prime}=\mathbb{P}_{\mathbb{R}}^{1}, \cdots, X^{n-1}=\mathbb{P}_{\mathbb{R}}^{n-1}
$$

Now we take n-cell and define $f: s^{n-1} \rightarrow \mathbb{P}_{\mathbb{R}^{n-1}}$ to be usual quotient map with antipodal points identified. Then we get $x^{n}=\mathbb{P}_{\mathbb{R}}^{n}$.

$$
\begin{aligned}
& C W_{0}(X)=H_{0}\left(X^{0}\right)=Z \\
& C W_{1}(x)=H_{1}\left(X^{1} / x_{0}\right)=H_{1}\left(s^{1}\right)=Z \\
& \vdots \\
& C W_{n}(x)=H_{n}\left(x^{n} / x^{n-1}\right)=H_{n}\left(s^{n}\right)=Z
\end{aligned}
$$

and $c w_{k}(x)=0 \quad \forall k \geq n+1$
So we have the complex

So we compute $d_{k+1} \quad \forall k=0,1, \ldots, n-1$
To compute this we see the map
$s^{k} \rightarrow x^{k} \rightarrow x^{k} / x^{k-1}$ and find its degree.

$$
s^{11}
$$

C_{0} lapsing the red
equator to the south
 price of X_{3}

If we take the map α which collapses the equator of X_{1} to a point, then the map $x_{1}=s^{k} \rightarrow x^{k} \rightarrow x^{k} / x^{k-1}=s^{k}=x_{3}$ factors through α and we get a map from β from $x_{2} \rightarrow x_{3}$.

So we compute $(\beta \circ \alpha)_{*}(1)$ and we will find d_{k+1}

First let us take two quotient maps

$$
\gamma_{1}: x_{2} \rightarrow x_{2} / x_{2}^{2} \text { given by }
$$

 So we have $\left.r_{1}\right|_{x_{2}^{1}}=I d_{x_{2}^{1}}$ and $\left.\gamma\right|_{x_{2}^{2}}=$ constant map to the point

$$
Y_{2}: x_{2} \rightarrow x_{2} / x_{2}{ }_{2} \text { given by }
$$

So we have $\left.r_{2}\right|_{x_{2}}=$ constant mys on the point and $r_{\left.2\right|_{x_{2}}}=I d x_{2}^{2}$

Hence by the description of r_{1}, r_{2} we have the map

$$
\begin{aligned}
& H_{k}\left(x_{2}\right) \longrightarrow H_{k}\left(x_{2} / x_{2}^{2}\right) \underset{\|}{\|} H_{k}\left(x_{2} / x_{2}^{1}\right) \text { by } \\
& \vec{Z} \oplus \sharp \\
& \left.(a, b) \longrightarrow\left(r_{1}\right)_{*}(a),\left(r_{2}\right)_{*}(b)\right)=(a, b)
\end{aligned}
$$

is an isomorphism.
So to find $\alpha_{*}(1)$ we find $(\gamma, 0 \alpha)_{*}(1)$ and $\left(r_{2}, \alpha\right)(1)$ clam 1: - $r_{1} \circ \alpha$ and $r_{2} \circ \alpha$ are homotopic to identity map. which implies $\left(r_{1}, \alpha\right)_{*}(1)=\left(r_{2} \alpha_{\alpha}\right)_{\alpha}^{(1)}=1$

Now we see the geometric description of $r_{1} \circ \alpha$

Now $r_{10} \alpha$ is homotopie to Id sk because

at time $z_{k+1}=t$ we can collapse the lower blve-colored part s) S^{k}.

$$
\Rightarrow r_{1}, \alpha \simeq I d_{s} \Rightarrow\left(r_{10 \alpha}\right)_{*}(1)=1
$$

Similarly $r_{20} \alpha \cong I d_{5} k \Rightarrow \quad\left(r_{2} \partial \alpha\right)_{*}(1)=1$, Hence we have the map

$$
\begin{aligned}
& H_{k}\left(X_{1}\right) \xrightarrow{\alpha_{*}} H_{k}\left(X_{2} / X_{2}^{2}\right) \oplus(1,1)
\end{aligned}
$$

Now observe we have inclusions $X_{2}^{L} \xrightarrow{i_{1}} X_{2}, X_{2}^{2} \xrightarrow{L_{L}} X_{2}$ and an isomorphism

$$
H_{k}\left(x_{2}^{1}\right) \oplus H_{k}\left(x_{2}^{2}\right) \longrightarrow H_{k}\left(x_{2}\right)
$$

defined by $(a, b) \longrightarrow\left(\left(i_{1}\right)_{y}(a),\left(i_{2}\right)_{\&}(b)\right)$

$$
=(a, b)
$$

So we have

$$
\begin{gathered}
H_{k}\left(x_{2}^{1}\right) \oplus H_{k}\left(x_{2}^{2}\right) \\
H_{k}\left(x_{2}\right) \\
\downarrow \\
(a, b) \\
H_{k}\left(x_{2} / x_{2}^{2}\right) \oplus\left(\begin{array}{l}
(a, b)
\end{array}\right. \\
\end{gathered}
$$

because $\left.r_{\perp}\right|_{X_{2}^{\perp}}=I d_{S}$ and $\left.r_{1}\right|_{X_{2}^{2}} ^{2}=$ constant map and $\left.r_{2}\right|_{x_{2}}=$ constant map and $\left.r_{2}\right|_{x_{2}}=I d_{s} k$

Claim 2:- $\beta 0 i_{1}=I d, \beta o i_{2}=$ Antipodal map on S^{k}.
Now to compute $\beta_{0}(1,1)$ it is enough to compute $\left(\beta_{0} i_{1}\right)_{*}(1)$ and $\left(\beta_{0} i_{2}\right)(1)$. Now we see the description of Boil i_{1} and Bo ir.

Hence by the description $\beta_{0} i_{1}=I d_{s} k$ Now we see β Poi $i_{2}=$ Antipodal map on s^{k} is below.

So we have β o $i_{2}=$ Antipodal map on S^{k}.
Claim 3:- $d_{k+1}(1)=1+(-1)^{k+1}$
Now we have the diagram

$$
\begin{aligned}
& H_{k}\left(X_{2}^{1}\right) \oplus H_{k}\left(X_{2}^{2}\right) \\
& H_{k}\left(X_{L}\right) \xrightarrow{\alpha} H_{k}\left(X_{2}\right) \xrightarrow{\beta} H_{k}\left(X_{3}\right) \\
& S \\
& H_{k}\left(x_{2} / x_{2}^{2}\right) \oplus H_{k}\binom{x_{2}}{x_{2}^{\prime}}
\end{aligned}
$$

Now $\beta_{\infty}(a, b)=\left(\beta 0 i_{1}\right)_{\infty}(a)+\left(\beta 0 i_{2}\right)_{*}(b)$ as we have the isomorphism $H_{k}\left(x_{2}^{1}\right) \oplus H_{k}\left(X_{2}^{2}\right) \sim H_{k}\left(X_{2}\right)$
Hence $(\beta \circ \alpha)_{*}(1)=\beta_{*}(1,1)=\left(\beta 0 i_{1}\right)(1)+\left(30 i_{2}\right)_{*}(1)$

$$
=1+(-1)^{k+1}
$$

(By Question- 11 on chapter 16 we have degree of Antipodal map on S^{k} is $\left.(-1)^{k+1}\right)$.
So we have proven our claim and so we found $d_{k+1} \quad \forall k$.
so cur chain complex becomes

where $\left.\quad \begin{array}{l}d(1) \\ k+1\end{array}\right)=1+(-1)^{k+1} \quad \forall \quad k=0,1, \cdots, n-1$
ide $\quad d_{k+1}^{(1)}=0$ if k is even

$$
=2 \text { if } k \text { is odd }
$$

So we have if $X=\mathbb{P}_{\mathbb{R}}^{n}$

$$
\begin{aligned}
& H_{0}^{C W}(X)=K_{I_{m} d_{1}}=\mathbb{Z e r} /_{\{0\}}=Z \\
& H_{\perp}^{c w}(x)=\operatorname{Im}_{\operatorname{Ler} d_{2}}^{\operatorname{ken}}=\frac{R}{2 z}=Z_{2} \\
& H_{2}^{C W}(x)=k_{\operatorname{Im} d_{3}}=0 \\
& H_{3}^{\mathrm{CW}}(x)=\mathrm{Kord}_{3 / \operatorname{Imd_{4}}}=\mathrm{Z} / 2 \mathbb{Z}=Z_{2}
\end{aligned}
$$

So we have different answer depending on n is even or odd.

Hence if n is even then

$$
\begin{aligned}
H_{k}^{e w}(x) & =Z_{2} \text { if } k \text { isodd } \\
& =0 \text { if } k \text { is evan } k \neq 0 \\
& =t \text { if } k=0
\end{aligned}
$$

and when n is odd we have

$$
d_{n}(1)=(-1)^{n}+1=0
$$

So $\operatorname{kerd}_{n}=\mathbb{Z}$ and $I_{m} d_{n+1}=0$

$$
\Rightarrow \quad 1 t_{n}^{e w}(x)=r / 0=z
$$

Hence for n odd we have
$H_{k}^{C W}(x)=\mathbb{Z}_{2}$ if k is odd, $k \neq n$
$=0$ if k is even $k \neq 0$

$$
=Z_{B} \quad \text { if } k=0, n
$$

Homology with Coefficient.
$X=\{p\}$ with coefficient in \mathcal{I}_{m}.
\Rightarrow We have the Universal coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes Z_{m} \rightarrow H_{n}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{n-1}(x), Z_{m}\right) \rightarrow 0
$$

Now we have

$$
\begin{aligned}
H_{i}(x) & =Z \text { if } i=0 \\
& =0 \text { if otherwise }
\end{aligned}
$$

If $n=0$

If $n>0$

$$
\begin{aligned}
& \left.0 \rightarrow H_{n}(x) \otimes \nabla_{m}^{0} \rightarrow H_{n}\left(c_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{tor}^{1}(H) H_{n-1}(x), I_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{n}\left(C .(x) \otimes I_{m}\right)=0
\end{aligned}
$$

So we have the homology of coefficients

$$
\begin{aligned}
H_{n}\left(C_{0}(x) \otimes Z_{m}\right) & =Z_{m} \quad \text { if } n=0 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

2. $X=s^{1}$ with coefficients in Z_{m}.
\Rightarrow We have the Universal coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(C .(x) \otimes \mathbb{Z}_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{n-1}(x), \mathbb{Z}_{m}\right) \rightarrow 0
$$

We have $H_{i}(x)=Z \quad i=0,1$

$$
=0 \text { otherwise }
$$

If $n=0$ then

$$
\begin{aligned}
& t n=0 \quad H_{0}^{n}(x) \otimes Z_{m} \rightarrow H_{0}\left(e_{0}(x) \otimes Z_{m}\right) \rightarrow T_{0 r^{1}}^{1} /\left(H_{-1}^{\prime \prime}(x), z\right) \rightarrow 0 \\
& 0 \rightarrow H_{0}\left(c .(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n_{2} \perp \text { hen }_{\underline{Z}} \\
& 0 \rightarrow H_{1}^{\prime \prime}(x) \otimes Z_{m} \rightarrow H_{1}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{0}^{\prime \prime}(x), z\right) \rightarrow 0 \\
& \quad \Rightarrow H_{1}\left(c .(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n>1$ then

So we have the homology with coefficient in $\mathbb{E m}_{m}$

$$
\begin{aligned}
H_{n}\left(c_{0}(x) \otimes Z_{m}\right) & =Z_{m} n=0,1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

3. $x=S^{k}(k>1)$ with coefficients in Z_{m}.
\Rightarrow We have the Universal Coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(C .(x) \otimes \mathbb{Z}_{m}\right) \rightarrow \operatorname{Trr}^{1}\left(H_{n-1}(x), \#_{m}\right) \rightarrow 0
$$

We have $H_{i}(x)=z \quad i=0, k$

$$
=0 \text { otherwise }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { If } n=0 \quad Z \quad 0 \quad{ }^{\prime \prime} \\
0 \rightarrow H_{0}^{\prime}(x) \otimes Z_{m} \rightarrow H_{0}\left(c_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{1}^{\prime \prime}(x), Z_{m}\right) \rightarrow 0
\end{array} \\
& \Rightarrow H_{0}\left(C_{0}(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $\quad 0<n<k$

$$
\begin{aligned}
& 0 \rightarrow H_{n}^{11}(x) \otimes Z_{m}^{0} \rightarrow H_{n}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{1-1}(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{n}^{0}\left(c .(x) \otimes Z_{m}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n=k \\
& 0 \rightarrow H_{k}(x) \otimes Z_{m} \rightarrow H_{k}\left(C .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}(H / k-1 /(x), Z) \rightarrow 0 \\
& \Rightarrow H_{k}\left(c(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m} \\
& \text { If } n>k \\
& 0 \rightarrow H_{n}(x)>Z_{m}^{0} \rightarrow H_{n}\left(C .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}(H /(x), Z) \rightarrow 0 \\
& \Rightarrow H_{n}\left(c .(x) \otimes I_{m}\right)=0
\end{aligned}
$$

So the homology with coefficient in Z_{m} is given by

$$
\begin{aligned}
H_{n}\left(C_{0}(x) \otimes Z_{m}\right) & =z_{m} \quad n=0, k \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

4. $X=M_{k}$ with coefficients in Z_{m}.
\Rightarrow We have the Universal Coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(C .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tr}^{1}\left(H_{n-1}(x), \mathbb{Z}_{m}\right) \rightarrow 0
$$

We have $H_{i}(x)=z \quad i=0$

$$
\begin{aligned}
& =\bigoplus_{i=1}^{2 k} \notin \quad i=1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n=0 \quad Z \\
& 0 \rightarrow H_{0}(x) \otimes \mathbb{Q}_{m} \rightarrow H_{0}\left(e,(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{-1}^{11}(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{0}\left(C_{0}(x) \otimes Z_{m}\right)=\mathbb{Z} \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n=1 \quad \begin{gathered}2 k \\ \substack{2 i=2 \\ i 11}\end{gathered}$

$$
\begin{aligned}
& 0 \rightarrow H_{1}^{(1)} \otimes Z_{m} \rightarrow H_{1}\left(C_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H /{ }_{0}^{Z}(x), Z_{m}^{0}\right) \rightarrow 0 \\
& \Rightarrow H_{1}\left(e .(x) \otimes Z_{m}\right)=\left(\bigoplus_{i=1}^{2 k} Z\right) \otimes \mathbb{Z}_{m}=\bigoplus_{i=1}^{2 k} \nabla \otimes \mathbb{Z}_{m}=\bigoplus_{i=1}^{2 k} \mathbb{Z}_{m}
\end{aligned}
$$

If $n>1$

$$
\begin{aligned}
& 0 \rightarrow H_{n}^{i}(x) * Z_{m}^{0} \rightarrow H_{n}^{0}\left(c .(x) \otimes z_{m}\right) \rightarrow \operatorname{Tor}^{1}(H \overbrace{-1}^{0}(x), Z_{m}) \rightarrow 0 \\
& \Rightarrow H_{n}\left(c_{0}(x) \otimes z_{m}\right)=0
\end{aligned}
$$

So the homulogy of eoefficients in Z_{m} is given by

$$
\begin{aligned}
H_{n}\left(C_{0}(x) \otimes \mathbb{Z}_{m}\right) & =\mathbb{Z}_{m} \quad n=0 \\
& =\bigoplus_{i 21}^{2 k} Z_{m} \quad n=1 \\
& =0 \quad \text { onherwise }
\end{aligned}
$$

$5 . \quad X=\mathbb{P}_{\mathbb{C}}^{k}$ with coefficients in Z_{m}.
\Rightarrow We have the Universal coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(C .(x) \otimes \mathbb{Z}_{m}\right) \rightarrow \operatorname{Tr}^{1}\left(H_{n-1}(x), \mathbb{Z}_{m}\right) \rightarrow 0
$$

We hove $H ;(x)=Z \quad 0 \leqslant i \leqslant 2 k \quad i$ is even

$$
=0 \text { otherwise }
$$

$$
\begin{aligned}
& \text { If } n=0 \quad Z \\
& 0 \rightarrow H_{0}^{(x)}(x) \otimes Z_{m}^{\prime \prime} \rightarrow H_{0}\left(C .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{-1}^{\prime \prime}, x_{1}^{0} Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{0}\left(e_{0}(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n=1$

$$
\begin{aligned}
& n=1 H_{11}^{0}{H_{1}^{0}}_{0}^{0}(x) \otimes Z_{m} \rightarrow H_{1}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{0}^{N}(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{1}\left(c .(x) \otimes Z_{m}\right)=0
\end{aligned}
$$

If $1<n \leq 2 k$ and n is evan

$$
\begin{aligned}
& 0 \rightarrow H_{n}(x) \otimes Z_{m} \rightarrow H_{n}\left(C_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{L}\left(H_{n-1}^{11}(x), Z_{m}\right) \rightarrow 0 \\
\Rightarrow & H_{n}\left(e .(x) \otimes \not \mathbb{Z}_{m}\right)=\mathbb{Z} \otimes \mathbb{Z}_{m}=Z_{m}
\end{aligned}
$$

If $L<n<2 k$ and n is odd

$$
0 \rightarrow 1_{n}^{(x)} \otimes^{0} Z_{m}^{0} \rightarrow H_{n}\left(c,(x) \otimes Z_{m}\right) \rightarrow \operatorname{tor}^{1}\left(H H_{-1}^{L^{\prime}}(x), Z_{m}\right) \rightarrow 0
$$

$$
\Rightarrow H_{n}\left(e .(x)\left(\otimes t_{m}\right)=0\right.
$$

If $n>2 k$ then

$$
\begin{aligned}
& 0 \rightarrow H_{n}^{0}(x) \otimes Z_{m} \rightarrow H_{n}\left(C_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H / n /(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{n}\left(e_{0}(x) \otimes Z_{m}\right)=0
\end{aligned}
$$

So we have the homology with coefficients in I m

$$
\begin{aligned}
H_{n}\left(C_{0}(x) \otimes Z_{m}\right) & =E_{m} \quad 0 \leq n \leq 2 k \quad n \text { is even } \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

6. $\quad X=\mathbb{P}_{\mathbb{R}}^{k}$ with coefficient in \mathbb{Z}_{m}.
\Rightarrow We have the Universal coefficient theorem we have the split exact sequence

$$
0 \rightarrow H_{n}(X) \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(C_{0}(x) \otimes \mathbb{Z}_{m}\right) \rightarrow \operatorname{Tr}^{1}\left(H_{n-1}(x), Z_{m}\right) \rightarrow 0
$$

Now if k is crow then

$$
\begin{aligned}
& H_{i}(x)=\mathbb{Z}_{2} \quad i \text { is odd } \\
& =0 \quad i \text { is every } i \neq 0 \\
& =Z \quad i=0
\end{aligned}
$$

if k is odd then

$$
\begin{aligned}
H_{i}(x) & =\mathbb{B}_{2} \quad i \text { is odd } i \neq n \\
& =0 \quad i \text { is even } i \neq 0 \\
& =Z \quad i=0, k
\end{aligned}
$$

If k be evan
If $n=0$

$$
\begin{aligned}
& \text { If } n=0 \text { Z } \\
& \Rightarrow H_{0}\left(e_{0}(x) \otimes Z_{m}\right)=Z \otimes Z_{m}=Z_{m} \\
& \text { If } n=1 \quad Z_{2} \\
& 0 \rightarrow H_{1}(x) \otimes Z_{m}^{\prime \prime} \longrightarrow H_{\perp}\left(C(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{0}(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{1}\left(C .(X) \otimes Z_{m}\right)=Z_{2} \otimes Z_{m}=Z_{\operatorname{ged}(2, m)}
\end{aligned}
$$

If $n=2$

$$
\begin{aligned}
& 0 \rightarrow H_{2}(x) \otimes Z_{m}^{0} \rightarrow H_{2}\left(C_{0}(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{L}\left(H_{1}^{\prime \prime}(x), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{2}\left(C_{0}(x) \otimes Z_{m}\right)=\operatorname{Tor}^{\prime}\left(Z_{2}, Z_{m}\right)=Z_{j \operatorname{cd}(2, m)}
\end{aligned}
$$

If $L<n \leq k$ is even

$$
\begin{aligned}
& 0 \rightarrow H_{n}^{\prime \prime}(x) \otimes Z_{m}^{0} \rightarrow H_{n}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{n-1}^{Z_{2}}(x), z_{m}\right) \rightarrow 0 \\
& \Rightarrow H_{n}\left(c(x) \otimes Z_{m}\right)=\operatorname{Tor}^{1}\left(z_{2}, ⿴_{m}\right)=Z_{\operatorname{ged}(2, m)}
\end{aligned}
$$

If $L<n<k$ is odd

$$
\stackrel{Z_{2}}{Z_{n}^{\prime \prime}} H_{n}^{\prime}(x) \otimes Z_{m} \rightarrow H_{n}\left(c .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tr}^{1}\left(H_{n}^{\prime \prime}(x), Z_{m}\right) \rightarrow 0
$$

$$
\Rightarrow H_{n}\left(C_{0}(X) \circledast Z_{m}\right)=Z_{2} \otimes Z_{m}=Z_{\operatorname{ged}}(z, m)
$$

If $n>k$

$$
\begin{aligned}
& 0 \rightarrow H_{n}(x)\left(\otimes z_{m}^{0} \rightarrow H_{n}\left(C .(x) \otimes Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H_{n}(x), Z_{m}\right) \rightarrow 0\right. \\
& \Rightarrow H_{n}\left(C,(x) \otimes Z_{m}\right)=0
\end{aligned}
$$

So the homology in coefficient z_{m} is given by (where kiseven)

$$
\begin{aligned}
H_{n}\left(C_{0}(X) \otimes \mathbb{Z}_{m}\right) & =\mathbb{Z}_{m} \quad n=0 \\
& =Z_{\text {ged }}(2, m) \quad 1 \leq n \leq k \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Similark if k is odd then using the same results we have

$$
\begin{aligned}
H_{n}\left(C .(x) \otimes \mathbb{Z}_{m}\right) & =R^{2} \quad n>0, k \\
& =Z_{\operatorname{jed}}(2, m) \quad L \leq n<k \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

Cohomology

1. Cohomology of $X=\{p\}$ with
(a) Coefficients in Z
(b) Coefficients in Z_{m}.
\Rightarrow (a) We have the universal coefficient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ex}^{1}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, Z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now we have $H_{i}(x)=$ \& if $i=0$

$$
=0 \text { if } i>0
$$

so if $n=0$ we have

$$
\begin{aligned}
& \Rightarrow H^{\circ}(x, Z)=Z
\end{aligned}
$$

If $n>0$ then we havre $\operatorname{Ext}^{1}\left(H_{n-1}(x), Z\right)=0$

$$
\operatorname{Hom}\left(H_{n}(x), T\right)=0
$$

Hence $H^{n}(X, Z)=0$
So the Ghomolory of x is

$$
\begin{array}{rlrl}
H^{n}(x, T) & =Z & n=0 \\
& =0 & n>0
\end{array}
$$

(b) We hare the split exact sequence $\forall n \geq 0$

$$
0 \rightarrow H^{n}(x, Z) \otimes Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tr}^{1}(H^{n+1}(x, a), \underbrace{}_{m})
$$

If $n=0$ we have

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(x^{11}, Z\right) \otimes Z_{m} \rightarrow H^{0}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{1}\left(x^{11}, Z^{0}\right), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{0}\left(x, Z_{m}\right)=Z \otimes Z_{m} \simeq Z_{m}
\end{aligned}
$$

If $n>0$ we have

$$
\begin{aligned}
& 0 \rightarrow H^{n}\left(x^{\prime \prime}, Z Z^{0} \ddot{Z}_{m}^{0} \rightarrow H^{n}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}\left(H^{n+1}\left(\not \|^{1}, z\right), Z_{m}\right) \rightarrow 0\right. \\
& \Rightarrow H^{n}\left(X, Z_{m}\right)=0
\end{aligned}
$$

Hence we have the Cohomologyy with coefficients in Z_{m}

$$
\begin{aligned}
H^{n}\left(x, Z_{m}\right) & =Z_{m} \quad n=0 \\
& =0 \quad n>0
\end{aligned}
$$

2. Cohomologn of S^{1} with
(a) Coefficients in ${ }^{2}$
(b) Coefficients in z_{m}
\Rightarrow (a) We have the universal eseffieient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ext}^{1}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, Z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now wis have

$$
\begin{aligned}
H_{i}(x) & =z \text { if } i=0,1 \\
& =0 \text { if otherwise }
\end{aligned}
$$

If $n=0$ then

$$
0 \rightarrow \operatorname{Ext}^{\perp}\left(H_{\text {"_ }}^{0}(x), T\right) \rightarrow H^{0}(x, Z) \rightarrow H_{\text {an }}^{0}\left(H_{0}^{\prime \prime}(x), Z^{Z}\right) \rightarrow 0
$$

$$
\Rightarrow \quad H^{\circ}(x, z)=Z
$$

If $n=1$ then

$$
\begin{aligned}
& \Rightarrow H^{\prime}(x, Z)=Z
\end{aligned}
$$

If $n>1$ then $E_{x}{ }^{1}\left(H_{n},(x), z\right)=0$
$\operatorname{Ham}\left(1_{n}(x), \Phi\right)=0$

$$
\Rightarrow \quad H^{n}(x, Z)=0
$$

So the cohomology of X is

$$
\begin{array}{rlrl}
H^{n}(x, Z) & =z & \text { if } n=0,1 \\
& =0 & & \text { otherwise }
\end{array}
$$

(b) We have the split exact sequence $\forall n \geq 0$

$$
0 \rightarrow H^{n}(X ; z) \otimes Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tr}^{1}(H^{n+1}(X, z), \underbrace{\left(Z_{m}\right)})
$$

If $n=0$

$$
\begin{aligned}
& 0 \rightarrow H^{0}(x, Z) \otimes Z_{m} \rightarrow H^{0}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{1}\left(x, Z^{Z}\right), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{0}\left(x, Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n=1$

$$
\begin{aligned}
& 0 \rightarrow H^{\prime}\left(X^{\prime \prime}, Z\right) \otimes Z_{m} \rightarrow H^{\perp}\left(X, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{2}(x, I), Z_{m}^{\prime \prime}\right) \rightarrow 0 \\
& \Rightarrow H^{1}\left(X, Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n>1$ then

$$
\begin{aligned}
0 & \rightarrow H^{n}(X, T)^{\theta^{0}} \mathbb{z}_{m}^{0} \rightarrow H^{n}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+1}\left(x, Z^{0}\right), z_{n}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(X, z_{m}\right)=0
\end{aligned}
$$

So we have cohomolory with coefficients in Z_{m}

$$
\begin{array}{rlr}
H^{n}\left(x, z_{m}\right) & =z_{m} \quad n=0,1 \\
& =0 \quad \text { otherwise }
\end{array}
$$

3. Cohomology of $X=s^{k}(k>1)$ with
(a) Coefficients in Z
(b) Coefficients in z_{m}
\Rightarrow (a) We have the universal coefficient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ext}^{\perp}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, Z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now we have

$$
\begin{aligned}
H_{i}(x) & =z \quad i>0, k \\
& =0 \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad H^{\circ}(X, Z)=Z
\end{aligned}
$$

if $0<n<k$

$$
\begin{aligned}
& 0 \rightarrow E x t^{L}(H / n-1(x), Z) \rightarrow H^{n}(x, Z) \rightarrow H_{a m}^{0}\left(H_{n}^{0,}(x), Z\right) \rightarrow 0 \\
& \Rightarrow \quad H^{n}(x, z)=0
\end{aligned}
$$

if $n=k$

$$
\Rightarrow \quad H^{k}(x, z)=z
$$

If $n>k$

$$
\begin{aligned}
0 & \rightarrow E x t^{1}\left(H_{n-1}^{0}(x), z\right) \rightarrow H^{n}(x, z) \rightarrow H a m(H / n(x), z) \rightarrow 0 \\
& \Rightarrow H^{n}(x, Z)=0
\end{aligned}
$$

So the Cohomoloyy of X is

$$
\begin{array}{rlrl}
H^{n}(X, Z) & =Z \quad n=0, k \\
& =0 \quad & & \text { otherwise }
\end{array}
$$

(b) We hare the split exact sequence $\forall n \geq 0$

$$
0 \rightarrow H^{n}(X ; z) \otimes Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tr}^{1}(H^{n+1}(X, Z), \underbrace{Z_{m}})
$$

If $n=0$

$$
\begin{aligned}
& \text { If } n=0 \quad z \quad H^{Z} \\
& 0 \rightarrow H^{0}(X, Z) \otimes Z_{m}^{0} \rightarrow H^{0}\left(X, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{+}(x, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{0}\left(X, Z_{m}\right)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $\quad 0<n<k$

$$
\begin{aligned}
& 0 \rightarrow H^{n}\left(x^{\prime \prime}, \not\right)^{0} \otimes^{0} Z_{m} \rightarrow H^{n}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+1}(x, z), z_{m}^{0}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(x, z_{m}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n=k \stackrel{Z}{Z} \\
& \quad 0 \rightarrow H^{k}(x, z) \otimes Z_{m}^{\prime \prime} \rightarrow H^{k}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{k+1}(x, z), z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{k}\left(x, Z_{m}\right)=Z \otimes z_{m}=z_{m}^{0}
\end{aligned}
$$

If $n>k$

So we have the Cohomolory of X with coefficients in $Z \mathrm{~m}$.

$$
\begin{aligned}
H^{n}\left(x, z_{m}\right) & =z_{m} \quad n=0, k \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

4. $\quad X=M_{k}$
(a) Coefficient in Z
(b) Coefficient in z_{m}
\Rightarrow (a) We have the universal coefficient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ext}^{\perp}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now we have

$$
\begin{aligned}
H_{i}(x) & =Z \quad i=0 \\
& =\bigoplus_{i=1}^{2 k} Z \quad i=1 \\
& =0 \quad \text { Sherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\text { If } n=0 & z \\
0 \rightarrow \operatorname{Ext}^{1}\left(H_{-1}^{* / 4}(x), z\right) \rightarrow H^{0}(x, z) \rightarrow \operatorname{Ham}_{\text {"1 }}^{\prime \prime}\left(H_{0}^{\prime \prime}(x), Z\right) \rightarrow 0 \\
& \text { Z }
\end{array} \\
& \Rightarrow H^{\circ}(x, Z)=Z \\
& \text { If } n=1 \\
& \underset{\substack{i=1 \\
i=1 \\
i n}}{2 k} \\
& 0 \rightarrow \operatorname{Ext}^{1}\left(H^{\prime 1} /(x), Z\right) \rightarrow H^{\perp}(x, Z) \rightarrow \operatorname{Ham}\left(H_{1}(x), Z\right) \rightarrow 0 \\
& \Rightarrow H^{\prime}(x, z)=\operatorname{Ham}\left(\bigoplus_{i=1}^{2 k} z, z\right)=\bigoplus_{i=2}^{2 k} \operatorname{Hom}(z, z)=\bigoplus_{i=1}^{2 k} z
\end{aligned}
$$

If $n>1$

$$
\Rightarrow H^{n}(x, \Psi)=0
$$

So the Cohomology is given by

$$
\begin{aligned}
H^{n}(x, z) & =Z \quad n=0 \\
& =\bigoplus_{i=1}^{2 k} z \quad n=1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

(b) We have the split exact sequence $\forall n \geq 0$

$$
\begin{aligned}
& 0 \rightarrow H^{n}(X, Z) \otimes Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tr}^{1}(H^{n+1}(X, Z), \underbrace{2 k} Z_{m}) \\
& \text { If } n=0 \\
& 0 \longrightarrow H^{0}\left(x^{\prime \prime}, Z\right) \otimes Z_{m} \rightarrow H^{0}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{1}(x, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow \quad H^{0}(X, Z)=Z \otimes Z_{m}=Z_{m}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow H^{1}(x, z) \otimes Z_{m}^{\prime \prime} \underset{2 k}{ } H^{1}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}_{2 k}^{1}\left(H^{2}(x, Z)^{1)^{0}}, z_{m}^{0} \rightarrow 0\right. \\
& \Rightarrow H^{1}\left(X, Z_{m}\right)=\left(\bigoplus_{i=1}^{2 k}\right) \otimes Z_{m}=\bigoplus_{i=1}^{2 k}\left(Z \otimes Z_{m}\right)=\bigoplus_{i=1}^{2 k} Z_{m}
\end{aligned}
$$

If $n>1$

$$
\begin{aligned}
0 & \rightarrow H^{n}\left(X, Z^{\prime}\right)^{0} \otimes z_{m} \rightarrow H^{n}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+1}(x, z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(X, z_{m}\right)=0
\end{aligned}
$$

So the Cohomolory with coefficients in Z_{m} is

$$
\begin{aligned}
H^{n}\left(x, Z_{m}\right) & =Z_{m} \quad n=0 \\
& =\bigoplus_{i 21}^{2 k} Z_{m} \quad n=L \\
& =0 \quad \text { Stherwise }
\end{aligned}
$$

5. $X=\mathbb{P}_{¢}^{k}$ with
(a) Coefficient in Z
(b) Coefficient in Em
\Rightarrow (a) We have the universal coefficient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ext}^{\perp}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now $\quad H_{i}(x)=Z \quad 0 \leq i \leq 2 k \quad i$ is even
$=0$ Otherwise

$$
\begin{aligned}
& \text { If } n=0 \\
& 0 \longrightarrow E_{x} t^{\perp} \int_{\left(H_{-1}^{\prime \prime}(x), Z\right) \rightarrow H^{0}(x, Z) \rightarrow \operatorname{Han}_{\|}^{0}\left(H_{0}^{\prime \prime}(x), Z\right) \longrightarrow 0}^{Z} \\
& \Rightarrow \quad 1 t^{0}(x, z)=7
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } n=1 \\
& \begin{array}{l}
n=1
\end{array} \sum_{0}^{0} \\
& \Rightarrow H^{\prime}(X, T)=0
\end{aligned}
$$

If $1<n \leq 2 k$ and n is even

$$
\begin{aligned}
& 0 \rightarrow E x t^{L} /\left(\vec{H}_{n-1}^{0}(x), z\right) \rightarrow H^{n}(x, z) \rightarrow \operatorname{Hom}_{\text {I }}^{\prime \prime}\left(H_{n}^{\prime \prime}(x), z\right) \rightarrow 0 \\
\Rightarrow & H^{n}(x, z)=Z
\end{aligned}
$$

If $1<n<2 k$ and n is odd then

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}^{1}\left(H_{n-1}^{(\prime 1}(x), z\right) \rightarrow H^{n}(x, z) \rightarrow \operatorname{Hag}^{0}\left(H_{n}^{\prime \prime}(x), z\right) \rightarrow 0 \\
& \quad \Rightarrow H^{n}(x, z)=0
\end{aligned}
$$

So the Colomology of X is given by

$$
\begin{aligned}
H^{n}(x, z) & =r \quad 0 \leq n \leq 2 k \quad n \text { is even } \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

(b) We hare the split exact sequence $\forall n \geq 0$

$$
0 \rightarrow H^{n}(x, z) \otimes Z_{m} \rightarrow H^{n}\left(x, \mathbb{Z}_{m}\right) \rightarrow \operatorname{Tr}^{1}(H^{n+1}(x, z), \underbrace{Z_{m}})
$$

$$
\begin{aligned}
& \text { If } n=0 \quad \stackrel{Z}{\|} \\
& \left.0 \rightarrow H^{0}(X, Z) \otimes Z_{m} \rightarrow H^{0}\left(X, Z_{m}\right) \rightarrow \operatorname{Tor}^{1} /^{0} H^{0}(x, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{0}\left(X, Z_{m}\right)=\mathbb{Z}^{0} \otimes \mathbb{Z}_{m}=\mathbb{Z}_{m}
\end{aligned}
$$

If $n=1$

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(X^{11} Z^{0}\right)^{0} \otimes Z_{m} \rightarrow H^{1}\left(X, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{2}(X, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{1}\left(X, Z_{m}\right)=0
\end{aligned}
$$

If $1<n \leq 2 k$ is even

$$
\begin{aligned}
& 0 \rightarrow H^{n}\left(x_{1}^{\prime \prime} z\right) \otimes z_{m} \rightarrow H^{n}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{L}\left(\not t^{n+1}(x, z), z_{m}^{\prime \prime}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(x, z_{m}\right)=z \otimes z_{m}=z_{m}
\end{aligned}
$$

If $L<n<2 k$ and n is odd.

$$
\begin{aligned}
& 0 \rightarrow H^{n}\left(\text { I' }_{1}^{0} Z\right) \otimes \otimes^{0} Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+1}(X, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(X, Z_{m}\right)=0
\end{aligned}
$$

So the colomology with coefficient in It is

$$
\begin{array}{rlrl}
H^{n}\left(x, z_{m}\right) & =z_{m} \quad 0 \leq n \leq 2 k, n \text { is even } \\
& =0 \quad & & \text { otherwise }
\end{array}
$$

6. Cohomology of $\mathbb{P}_{\mathbb{R}}^{k}$ with
(a) Coefficient in Z
(b) Coefficient in z_{m}
\Rightarrow (a) We have the universal coefficient theorem which says $\forall n \geq 0$ we have the split exact sequence

$$
0 \rightarrow \operatorname{Ext}^{1}\left(H_{n-1}(x), Z\right) \rightarrow H^{n}(x, Z) \rightarrow H_{m}\left(H_{n}(x), Z\right) \rightarrow 0
$$

Now if k is even then

$$
\begin{aligned}
H_{i}(x) & =Z_{2} \quad i \text { is odd } \\
& =0 \quad i \text { is even } i \neq 0 \\
& =Z \quad i=0
\end{aligned}
$$

if k is odd then

$$
\begin{aligned}
H_{i}(x) & =\mathbb{B}_{2} \quad i \text { is odd } i \neq n \\
& =0 \quad i \text { is even } i \neq 0 \\
& =\mathbb{Z} \quad i=0, k
\end{aligned}
$$

let k be even.
If $n=0$

$$
\begin{aligned}
& \text { If } n=2 \xrightarrow{Z_{2}} \\
& 0 \rightarrow \operatorname{Ext}^{1}\left(H_{1}^{\prime \prime}(x), Z\right) \rightarrow H^{2}(x, Z) \rightarrow \operatorname{Hom}\left(H_{2}^{\prime \prime}(x), \vec{Z}\right) \rightarrow 0 \\
& Z_{2}^{\prime \prime} \\
& \Rightarrow H^{2}(x, Z)=Z_{2}^{0}
\end{aligned}
$$

[We have $\operatorname{Ext}^{L}(t / m Z, D)=\$ / m z$
\Rightarrow We have the exact sequence

$$
\begin{aligned}
& \begin{aligned}
0 \longrightarrow{ }^{x} \longrightarrow m x & \longrightarrow z
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow E x t^{1}\left(\nabla / m z^{\prime} z\right)=Z / \operatorname{Imf}=z / m z\right] .
\end{aligned}
$$

Now if n is odd $n<k$

$$
\begin{aligned}
& \Rightarrow H^{n}(x, z)=0
\end{aligned}
$$

If n is even $n \leq k$

$$
\begin{aligned}
& 0 \rightarrow E x t^{1}\left(H_{n-1}^{\mathbb{Z}_{2}}(x), z\right) \rightarrow H^{n}(x, z) \rightarrow \operatorname{Ham}\left(H_{n}(x), z\right) \rightarrow 0 \\
& \quad \rightarrow H^{n}(x, z)=Z_{2}^{0}
\end{aligned}
$$

If $n>k$ then

$$
\begin{aligned}
& 0 \rightarrow E x t^{\perp}\left(H^{\prime} / n-(x), z\right) \rightarrow H^{n}(x, z) \rightarrow H_{\operatorname{com}\left(H_{y}(x), z\right) \rightarrow 0}^{0}{ }^{0} \rightarrow 0 \\
& \Rightarrow H^{n}(x, z)=0
\end{aligned}
$$

So if k is even Cohomology is given by

$$
\begin{aligned}
H^{n}(x, z) & =Z_{2} \quad n \text { is even } 0<n \leq k \\
& =Z \quad n=0 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Similarly it k is odd using the same results we howe

$$
\begin{aligned}
H^{n}(X, Z) & =Z_{2} \quad 0<n<k \quad n \text { is even } \\
& =Z \quad n=0, k \\
& =0 \quad \text { Otherwise }
\end{aligned}
$$

(b) We have the split exact sequence $\forall n \geq 0$

$$
0 \rightarrow H^{n}(X, I) \otimes Z_{m} \rightarrow H^{n}\left(X, Z_{m}\right) \rightarrow \operatorname{Tr}^{1}\left(H^{n+1}(X, Q), Z_{m}\right)
$$

If k be even
If $n=0$

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(X^{\prime \prime}, Z\right) \otimes Z_{m} \rightarrow H^{0}\left(X, T_{m}\right) \rightarrow \operatorname{Tor}^{1}(H^{1}(X, Z), \underbrace{11}_{m} Z_{0}^{s o} \\
& \Rightarrow H^{0}\left(X, Z_{m}\right)=Z^{11} \otimes Z_{m}=Z_{m}
\end{aligned}
$$

If $n=1$

$$
\begin{aligned}
& 0 \rightarrow H^{1}(x, Z) \otimes Z_{m}^{0} \rightarrow H^{1}\left(x, Z_{m}\right) \longrightarrow \operatorname{tor}^{1}\left(H^{2}\left(x, Z_{2}^{\prime \prime}\right), Z_{m}\right) \\
& \Rightarrow H^{1}\left(x, Z_{m}\right)=\operatorname{Tor}^{\perp}\left(Z_{2}, Z_{m}\right)=Z_{\operatorname{red}}(2, m) \\
& {\left[\operatorname{Tor}^{L}(Z / m z, \tau / n \mathbb{Z})=z / d z \quad \text { where } d=\operatorname{gcd}(m, n)\right.}
\end{aligned}
$$

\Rightarrow We have the exact sq.

$$
\begin{aligned}
& \begin{aligned}
0 \longrightarrow t \longrightarrow & x \\
a & \longrightarrow z / m z \longrightarrow 0 \\
a & \longrightarrow a+m z
\end{aligned} \\
& \Rightarrow 0 \rightarrow \operatorname{Tor}^{L}(z / m z, z / n z) \rightarrow z \otimes \pi / n z \rightarrow Z \otimes \pi / n z
\end{aligned}
$$

$$
\Rightarrow \operatorname{Tor}^{1}(\nabla / m z, \bar{z} / n t)=k e r f
$$

Now we have kerf $f=n^{\prime} t / n \notin$ where $n^{\prime}=\frac{n}{d}$

$$
=n^{\prime} z / n^{\prime} d z=z / d z
$$

Similarly wing the same exact sequence we hove

$$
\begin{aligned}
& \operatorname{Ham}(z, Z / n z) \longrightarrow \operatorname{Ham}(z, Z / n z) \rightarrow E x t^{L}(z / m z, Z / n z) \rightarrow 0 \\
& \text { In } x \xrightarrow{f} m x \text { I } / n z \\
& \Rightarrow \operatorname{Ext}(\mathbb{t} / m z, T / n z)=\frac{\nabla / n z}{\operatorname{Imf}} \\
& =\frac{\pi \mathbb{Z} / n z}{m(z / n z)}=\mathbb{Z} / n z / d z / n z \\
& =z / d z]
\end{aligned}
$$

If $1<n \leq k$ is even then

$$
\begin{aligned}
& Z_{2} \\
& 0 \rightarrow H^{n}(X, Z) \otimes Z_{m} \rightarrow H^{n}\left(x, Z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+1}(x, Z), Z_{m}\right) \rightarrow 0 \\
& \Rightarrow H^{n}(x, Z)=Z_{2}\left(X Z_{m}=Z_{\operatorname{ced}(2, m)}\right.
\end{aligned}
$$

If $1<n<k$ is odd then

If $n_{2} k$ then

$$
\begin{aligned}
& 0 \rightarrow H^{k}\left(x, \|^{z_{2}} \otimes Z_{m} \rightarrow H^{k}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{k+1}\left(k, z^{0}\right), z_{m}\right) \rightarrow 0\right. \\
& \Rightarrow H^{k}\left(x, z_{m}\right)=z_{2} \otimes z_{m}=z^{\prime} \operatorname{ged}(2, m)
\end{aligned}
$$

If $n>k$ then

$$
\begin{aligned}
& \text {-f } n>k \text { then } \\
& 0 \rightarrow H^{n}\left(x, x^{0} x^{\prime}\right) \otimes_{m}^{0} \rightarrow H^{n}\left(x, z_{m}\right) \rightarrow \operatorname{Tor}^{1}\left(H^{n+(}(x, z), z_{m}^{\prime} z_{m}^{0}\right) \rightarrow 0 \\
& \Rightarrow H^{n}\left(x, z_{m}\right)=0
\end{aligned}
$$

So the Cohomology with coefficients in t_{m} is given by

$$
\begin{array}{rlr}
H^{n}\left(x, z_{m}\right) & =z_{\operatorname{gcd}(2, m)} \quad 0<n \leq k \\
& =z_{m} & n=0 \\
& =0 \quad \text { oTherwise }
\end{array}
$$

Similarly if k is odd wing the same results we have

$$
\begin{aligned}
H^{n}\left(x, z_{m}\right) & =z_{m} \quad n=0, k \\
& =z_{j e d(2, m)} \quad 0<n<k \\
& =0 \quad \text { Therwise }
\end{aligned}
$$

