ALGEBRAIC TOPOLOGY Computations If you find any errors or have any comments then please write to us at sagnik2019;it@gmail.com saikatmaji 1997@ gmail.com rasulparvez@gmail.com

1 Fundamental Group

- $1.1 \quad {\rm Fundamental\,group\,of\,Wedge\,of\,n\,circles}$
- 1.2 Fundamental group of $\mathbb{P}^2_{\mathbb{R}}$
- 1.3 Fundamental group of $\mathbb{P}^n_{\mathbb{C}}$
- 1.4 Fundamental group of compact orientable surface of genus k M_k

2 Homology

- 2.1 Homology of $\mathbb{P}^n_{\mathbb{C}}$
- **2.2** Homology of $\mathbb{R}^m \setminus \{p_1, p_2, .., p_r\}$ for m > 2
- 2.3 Homology of $\mathbb{P}^2_{\mathbb{R}}$
- **2.4** Homology of M_k
- **2.5** Homology group of $\vee_{i=1}^{r} S^{m}$ for $m \geq 1$

3 CW- Complex

- 3.1 CW-Structure of S¹
- **3.2 CW-Structure of** S^n
- 3.3 CW-Homology group of $\mathbb{P}^1_{\mathbb{C}}$
- 3.4 CW-Homology of $\mathbb{P}^n_{\mathbb{C}}$
- **3.5 CW-Homology of** M_2
- **3.6** CW-Homology of $\mathbb{P}^2_{\mathbb{R}}$
- 3.7 CW-Homology of $\mathbb{P}^n_{\mathbb{R}}$
- 4 Homology with coefficients
- 4.1 Homology of point with coefficients in \mathbb{Z}_m
- 4.2 Homology of S^1 with coefficients in \mathbb{Z}_m
- 4.3 Homology of $S^k(k > 1)$ with coefficients in \mathbb{Z}_m
- 4.4 Homology of M_k with coefficients in \mathbb{Z}_m
- 4.5 Homology of $\mathbb{P}^k_{\mathbb{C}}$ with coefficients in \mathbb{Z}_m
- 4.6 Homology of $\mathbb{P}^k_{\mathbb{R}}$ with coefficients in \mathbb{Z}_m

5 Cohomology

- 5.1 Cohomology of point
- 5.2 Cohomology of S^1
- **5.3** Cohomology of S^k
- **5.4** Cohomology of M_k
- 5.5 Cohomology of $\mathbb{P}^k_{\mathbb{C}}$
- 5.6 Cohomology of $\mathbb{P}^k_{\mathbb{R}}$

Fundamental Grap 1. Let Xn be the wedge of n circles. Compute the fundamental group of Xn. =) First we comput $\pi_1(X_2)$ P () Yo ? $U = X_2 - \overline{V}, V = X_2 - \overline{P}, U, V both deformation retracts to the point xo.$ and X = UUV So by Van-Kampen theorem we have $\overline{\Lambda}_{(X_{2},\pi_{0})} = \overline{\Lambda}_{(U,\pi_{0})} * \overline{\Lambda}_{2}(V,\pi_{0})$ $= \pi_{1}(s') * \pi_{1}(s') = \mathbb{Z} * \mathbb{Z}$ Now we use induction to find T, (Xn). U deformation retracts to S^L = X_L V deformation retracts to X n-1 UNV deformation retracts to Ko n-1 times by induction hypothesis T (Xn-1, No) = Z* Z* - * Z and by Van-Kampen theorem we have n times $\pi_{|}(X_{n}, k_{o}) = \pi_{|}(U, k_{o}) * \pi_{|}(V, k_{o}) = \mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$

2. Fundamental group of PR. =) Procan be visualized as · * 0 | we take U = Pp - 1703 and V be the disk centered at no. U deformation retracts to 5^L V deformation retrack to a point. let YOEUNV UNV deformation retracts to 5¹. by Van-Kampon theorem $\overline{\Lambda}_{|}(R_{|2},) = \overline{\Pi}_{|}(U, Y_{0}) * \overline{\Pi}_{|}(V, Y_{0})$ $\pi_1(\cup, Y_0) = \mathbb{Z}, \quad \pi_1(\vee, Y_0) = \langle e \rangle$ and $N = \langle a \rangle$ Have $\pi_1(\mathbb{P}_p, \mathbb{Y}_p) = \mathbb{Z} \times \{e\} = \mathbb{Z} \times \{e\}$

3. Fundamental group of
$$P_{q}^{n}$$
.
 \Rightarrow We first compute fundamental group $A - P_{q}^{n}$.
1. $U = P_{q}^{n} < [1, 0]$, $V = C$ centered of $(1, 0]$
 U deformation retracts to $P_{q}^{-1} \cong S^{-1}$
 V deformation retracts to a point
UNV deformation vetracts to S^{3} .
Now we know $\pi_{+}(S^{k}) = (eS \neq k \ge 2$
So $\pi_{1}(V, x_{0}) = (eS, \pi_{1}(V, x_{0}) \ge (eS \land dere \forall e \in UNV)$
Hence by Van-Kampen theorem $\pi_{1}(P_{q}^{n}, x_{0}) = (eS \land$
Now we was induction and find $\pi_{1}(P_{q}^{n})$. $n \ge 2$
U etake $U = P_{q}^{n} < [1, 0, ..., 0]$
 $V = C^{n}$ contered at $[1, e, ..., 0]$
 $V = C^{n}$ contered at $[1, e, ..., 0]$
 V deformation retracts to $P_{q}^{n-1}(See 2.1)$
 V deformation retracts to S^{2n-1}
by induction we have $\pi_{1}(V, x_{0}) = feS$
and $\pi_{1}(V, x_{0}) = \pi_{1}(U, x_{0}) \Rightarrow \pi_{1}(V, x_{0}) = AeS$.

4. Fundamental group of compact orientable surface of genus k > MK can be visualized in the following way $b_2 = \frac{1}{2}$ i.e a 9k gon with edges and vertices identified as given in the picture. Now we take U as given in the picture and V be the open set MK18703 It x. EUNV Now U deformation referencts to a point V deformation retracts to a wedge of 2k circlos UNV deformation retracts to st. So by Van-Kampen theorem $\pi_{1}(M_{k}, \mathbf{x}_{o}) = \overline{\pi}_{1}(U, \mathbf{x}_{o}) * \overline{\pi}_{1}(V, \mathbf{x}_{o})$ N 2k times $\overline{\Lambda}_{(1)}(1, 1_{0}) = \langle 2 \rangle, \quad \overline{\Lambda}_{(1)}(1, 1_{0}) = \mathbb{Z}_{*}\mathbb{Z}_{*} - \mathbb{Z}_{*}\mathbb{Z}_{*}$

and N is given by the inclusion of V > M_k and as V deformation retracks to the wedge of 2k circles hence N is generated by the relation II a; b; a; -1 b; -1 Hence $\pi_{(M_{K}, x_{o})} \sim \frac{\mathbb{Z} \times \cdots \times \mathbb{Z}}{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}$

Homology
L Compute homology groups of
$$\mathbb{P}_{e}^{n}$$
.
 \Rightarrow 13 $\mathbb{P} = [1,0,0,\cdots,0]$ and take two open sets U, V of
 \mathbb{P}_{p}^{n} such that $\mathbb{P}_{p}^{n} = UVV$ and we will use these two
sets to compute the homology groups of \mathbb{P}_{p}^{n} .
 $U = \mathbb{P}_{p}^{n} \cdot (\mathbb{P}_{p}^{n})$.
 $U = \mathbb{P}_{p}^{n} \cdot (\mathbb{P}_{p}^{n})$.
 $U = ([20,21,\cdots,2n] | 20 \neq 0]$ and $\mathbb{P} \in V$.
Chim I. (i) U deformation retracts to \mathbb{P}_{p}^{n-1} .
(ii) V is homeomorphic to \mathbb{C}^{n} .
(i) Define $\mathbb{F}: U \times \mathbb{I} \longrightarrow U$ by.
 $\mathbb{F}([20,\cdots,2n] \times \mathbb{I}) = [(1-1)20, 21,\cdots,2n]$
also Abserve that
 $\mathbb{P}_{p}^{n-1} = \sqrt{[20]}(1-1, 2n) = 20 = 0 = 0$
Now \mathbb{F} is induced by the continuous map
 $(\mathbb{C}^{n+1} \setminus \{3\}) \times \mathbb{I} \longrightarrow \mathbb{C}^{n+1} \setminus \{0\}$ by
 $([2n, 21, \dots, 2n], 1) \longrightarrow ((1-1)20, 21, \dots, 2n)$
So \mathbb{F} is continuous. Now
 $\mathbb{F}([20, \dots, 2n], 0) = [2n, 21, \dots, 2n] \in \mathbb{P}_{p}^{n-1}$

 $F([o_1, z_1, \dots, z_n], t) = [o_1, z_1, \dots, z_n]$ ¥EE[0, L] So U deformation retracts to Pp-! (ii) Now we define $\varphi_i: V \longrightarrow \mathcal{C}^n \quad by \quad \varphi_i \left([1, 2_1, -., 2_n] \right) = (2_1, -., 2_n)$ Clearly QL is a homeomorphism. Claim-2 Per~S Now we know If X is a locally compact, Hausdorff space and let \widehat{X} be its one point compactification. If XCT is an open set and T is compact then there exists a unique map $\varphi: T \longrightarrow \widehat{X}$ for which we have $T \xrightarrow{\phi} \widetilde{X}$ and I maps Tix to a. Now we take T= TPq and X= & and X= S So we have $\phi: P_{q} \to S$ is a continuous bijection. Now P_{q} is compact and S^{2} is Itausdorff. Itence Q is a homeomorphism. = $\mathbb{P}_{p}^{\perp} \simeq S^{\sim}$

Now we use M-V sequence to compute homology groups of

$$P_q^n$$
.
First we compute for P_q^r
U = $P_q^r \land p_1^r$, $V = Q^r$, $U \land V \ge Q^r \land p_2^r$.
By M-V sequence we have
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \oplus H_n(V) \longrightarrow H_n(P_q^r)$
 $\rightarrow H_{n-1}(U \land V) \longrightarrow --$.
Now $T_r \land \gamma \land q$ then
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \oplus H_n(V) \longrightarrow H_n(P_q^r) \longrightarrow H_n(U \land V)$
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \oplus H_n(V) \longrightarrow H_n(P_q^r) \longrightarrow H_n(U \land V)$
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \oplus H_n(V) \Rightarrow H_n(P_q^r) \longrightarrow H_n(U \land V)$
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \oplus H_n(V) \Rightarrow H_n(V \land V) \Rightarrow O$
 $\rightarrow H_n(U \land V) \longrightarrow H_n(V) \Rightarrow H_n(V) \Rightarrow H_n(V \land V) \ge O$
 $\downarrow h_n(V \land V) \implies H_n(V \land V) \Rightarrow H_n(V) \Rightarrow H_n(V \land V) \ge O$
 $\downarrow h_n(P_q^r) \ge O \lor N > Q$
 $\downarrow h_n(P_q^r) \ge O \lor N > Q$
 $\downarrow h_n(P_q^r) \implies H_q(P_q^r) \longrightarrow H_3(U \land V)$
 $\rightarrow H_3(V) \oplus H_3^r(V) \implies H_q(P_q^r) \implies H_3(U \land V)$
 $\rightarrow H_3(V) \oplus H_3^r(V)$
 $\Rightarrow H_q(V) \oplus H_3^r(V) \implies H_q(P_q^r) \implies H_3(V \land V)$
 $\Rightarrow H_q(V) \oplus H_q^r(V) \implies H_q(P_q^r) \implies H_3(U \land V)$

Now if
$$1 \le n \le q$$
 we have the reduced M-V sequence
 $\Rightarrow H_3(5) = H_1(\mathbb{P}_1^{\vee}) \Rightarrow H_2(\mathbb{P}_q^{\vee}) \Rightarrow H_2(\mathbb{P}_2^{\vee}) \Rightarrow H_1(\mathbb{P}_2^{\vee}) \Rightarrow H_1(\mathbb{P}_q^{\vee}) \Rightarrow$

Now if k>21+2 then by M-V sequence we have $\rightarrow H_{k}(U) \oplus H_{k}(V) \rightarrow H_{k}(P_{e}^{n+1}) \rightarrow H_{k-1}(UAV) \rightarrow \cdots$ $\Rightarrow \left[H_{k}(P_{q}^{n+1}) = 0 \quad \forall k > 2n+2 \right]$ Now if K=21+2 $\rightarrow H_{2n+2}(U) \oplus H_{2n+2}(V) \rightarrow H_{2n+2}(\mathbb{P}_{\mathfrak{p}}^{n+1}) \rightarrow H_{2n+2}(UnV)$ $\rightarrow H_{2n+1}(\cup) \oplus H_{2n+1}(\vee) \rightarrow - \exists H_{2n+2} (P_{\mathcal{C}}^{n+1}) \simeq H_{2n+1} (UnV) \simeq H_{2n+1} (S^{2n+1}) = \mathbb{Z}$ Now if K=2n+1 we have $\xrightarrow{} H_{2n+1}(U) \oplus H_{2n+1}(V) \longrightarrow H_{2n+1}(\mathbb{P}_{e}^{n+1}) \to H_{2n}(UnV)$ \rightarrow $H_{2n+1}(P_{d}^{n+1})=0$ Now if I<k<2n+1 then $\rightarrow H_{k}(\mathcal{Y}(\mathcal{V})) \longrightarrow H_{k}(\mathcal{U}) \oplus H_{k}(\mathcal{V}) \rightarrow H_{k}(\mathcal{P}_{\mathcal{Q}}^{\mathcal{V}+1}) \rightarrow H_{k}(\mathcal{V})$ $= H_{k}(P_{\mathcal{H}}) \simeq H_{k}(\mathcal{D}) \oplus H_{k}(\mathcal{D}) = H_{k}(P_{\mathcal{C}})$

Now if k=1 then we have

$$\rightarrow H_1(U) \oplus H_1(N \rightarrow H_1(\mathbb{P}_q^{N+1}) \rightarrow H_0(UNV) \rightarrow H_0(U) \oplus H_0(V) \oplus H_0(V) \rightarrow H_0(U) \oplus H_0(V) \rightarrow H_0(U) \oplus H_0(V) \rightarrow H_0(\mathbb{P}_q^{N+1}) \rightarrow 0$$
and $UnV, U, V, \mathbb{P}_q^{N+1}$ are all path connected, hence

$$0 \rightarrow H_0(UNV) \rightarrow H_0(U) \oplus H_0(V) \rightarrow H_0(\mathbb{P}_q^{N+1}) \rightarrow 0 \text{ is exact.}$$

$$\Rightarrow 0 \rightarrow H_1(\mathbb{P}_q^{N+1}) \rightarrow 0 \text{ is exact.}$$

$$\Rightarrow [H_1(\mathbb{P}_q^{N+1}) = 0]$$

$$H_{\mathbb{R}}(\mathbb{P}_q^{N+1}) = 0$$

2. Conjute the handley graps of
$$\mathbb{R}^{n} \in \mathbb{P}, \dots, \mathbb{P}_{1}^{n}$$
 for $m \ge 2$
deg $\chi = \mathbb{R}^{n}$, $h = (\mathbb{R}^{n} \in \mathbb{P}_{1}, \dots, \mathbb{P}_{n}^{n}]$
Let \mathbb{R}^{r} is one disjoint closed bolls contended at \mathbb{P}_{1}^{r} respectively.
Let $Z = (\bigcup_{i=1}^{n} \mathbb{B}_{i})^{r}$ Thun $\Xi \subset \mathbb{A}^{r}$ and $\chi \ge [\mathbb{H}^{n}, \mathbb{A} \ge \mathbb{H}^{r}(\mathbb{R}^{n})]$
Therefore we can apply existion.
 $H_{n}(\chi, h) \cong H_{n}(\chi, Z, A, Z) \neq n \ge 0$
Step1 in This step we aill compute The homology graps $H_{n}([\mathbb{A}^{n}, \mathbb{H}^{r}(\mathbb{B}^{n})]$
For $n\ge 1$ using the long exist sequence for pair $(\mathbb{H}^{n}, \mathbb{H}, [\mathbb{A}^{n}, \mathbb{H}^{n})]$
 $\longrightarrow H_{n}([\mathbb{A}^{n}, \mathbb{B}^{n}) \longrightarrow H_{n}([\mathbb{A}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})]$
 $\xrightarrow{For n \ge 1}$
 $\longrightarrow H_{n}([\mathbb{B}^{n}, \mathbb{B}) \longrightarrow H_{n}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})]$
 $\xrightarrow{For n \ge 1}$
 $\longrightarrow H_{n}([\mathbb{H}^{n}, \mathbb{H}^{n}, \mathbb{H}^{n}) \cong H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})]$
 $\mu = get H_{n}([\mathbb{H}^{n}, \mathbb{H}^{n}) \cong H_{n-1}([\mathbb{H}^{n}, \mathbb{H}^{n})] \longrightarrow H_{n}([\mathbb{H}^{n}, \mathbb{H}^{n})$
 $\mu = how : \mathbb{H}^{n} (\mathbb{H}^{n}, \mathbb{H}^{n}) \longrightarrow H_{n}([\mathbb{H}^{n})] \xrightarrow{n} H_{n}([\mathbb{H}^{n}, \mathbb{H}^{n}) \longrightarrow H_{n}([\mathbb{H}^{n})] \longrightarrow H$

Since
$$B_i - \{P_i\}$$
 deformation itstrates to j is building which is
homeomorphic to S^{m-1} for all $i=1-\cdots c$ we have
 $H_n(\chi,Z,A-Z) = \{P_i Z \ if n=m$
 $O \ n \ge 1, n \ne m$
Therefore by excision, $H_n(R^m; R^n-A_i) = \{P_i Z \ if n=m$
 $G \ if n \ge m$
 $Step 2$. In this step we will compute homology of $R^m - \{P_i, \dots, P_i\}$ for not
using long each sequence of pairs $(R^m; R^n - \{P_i, \dots, P_i\})$ and (1)
For n >1
 $\rightarrow H_n(R^m) \rightarrow H_n(R^m; R^n - \{P_i \dots P_i\}) \rightarrow H_{n-1}(R^m - \{P_i \dots P_i\}) \rightarrow H_{n-1}(R^m)$
 $gince H_n(R^m) = H_{n-1}(R^m) = for n >1$
 $H_{n-1}(R^m - \{P_i \dots P_i\}) \cong H_{n+1}(R^m - \{P_i \dots P_i\}) = n >1$
 $for H_n(R^m - \{P_i \dots P_i\}) = \{P_i Z \ when n = m - 1$
 $O \ when n > 1 \ n \neq m - 1$
 $G^m + H_n(R^m - \{P_i \dots P_i\}) = \{P_i Z \ when n = m - 1$
 $O \ when n > 1 \ n \neq m - 1$
 $G^m + H_n(R^m - \{P_i \dots P_i\}) = \{P_i Z \ n = 0$
 $H_n = R^m - \{P_i \dots P_i\} \ is path connected, H_n(R^m + \{P_i \dots P_i\}) \cong Z$
 $Therefore, H_n(R^m - \{P_i \dots P_i\}) = \{Z \ n = 0$
 $H_n = M_n(R^m - \{P_i \dots P_i\}) = \{Z \ n = 0$
 $H_n = M_n(R^m - \{P_i \dots P_i\}) = \{P_i Z \ n = m - 1 \ i^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ odd E \ m = m - 1$
 $I^m O \ n = m - 1$
 I

Alternative solution: - Also it is easy to see that R \ (P1,P2, -; Pr} is homotopy equivalent to Y Sm-1 Sowe have $\frac{1}{H_{k}} (R^{N} \langle P_{1}, P_{2}, \dots, P_{Y} \rangle) \cong H_{k} (V \varsigma^{m-1})$ $\forall k \ge 0$ For homologies of VSm-1 See 2.5.

to S' and V is contractible.
So,
$$H_n(U) \ge H_n(S') \cong \begin{cases} Z & if n \ge 0 \\ Z & if n \ge 1 \\ 0 & otherwise \end{cases}$$

Now,
$$U \cap V = \{ Z \in D^{2} \{ o \} : |Z| < 1 \}$$

 $\subseteq S'$
So, $H_{n}(U \cap V) = \{ Z = I \}$
 $Z = I \}$
 $I = 0$
 $Z = I \}$
 $I = 0$
 I

By Mayer-Vielonis sequence, we get

$$\rightarrow H_n(unv) \rightarrow H_n(u) \oplus H_n(v) \rightarrow H_n(\mathbb{R}^2)$$

 $\longrightarrow H_n(unv) \rightarrow \cdots$

Now for $n \ge 2$, it is clear that. $H_n(\mathbb{P}_R^2) \ge 0$

Now, ne have, $\rightarrow H_2(u) \oplus H_2(v) \rightarrow H_2(P_{\mathcal{B}}) \rightarrow H_1(u \cap v)$ $j_r \rightarrow H_1(u) \oplus H_1(v) \rightarrow H_1(P_R) \rightarrow ...$

Now, j: UNV -> U is the inclusion it induces a commutation diagnam

Now, we know that $j_*: \pi_i(u \cap V) \longrightarrow \pi_i(u)$ $\frac{1}{2}$ is given by $1 \longmapsto 2$

So, $\rightarrow 0 \rightarrow H_2(P_R) \rightarrow H_1(u \wedge V) \rightarrow H_1(u) \rightarrow$ $\rightarrow H_{(P_{R})} \rightarrow H_{o}(UNV) \rightarrow \cdots$ $\rightarrow 0 \rightarrow H_2(P_R) \rightarrow \mathbb{Z} \xrightarrow{x^2} \mathbb{Z} \rightarrow H_1(P_R)$ $\xrightarrow{S} H_{\theta}(u \cap V) \rightarrow H_{\theta}(u) \oplus H_{\theta}(v) \rightarrow H_{\theta}(\mathbb{R}^{2}) \rightarrow 0$ Since UNV, U, V and PP are path commented, so get, $0 \to H_0(u \cap V) \to H_0(u) \oplus H_0(v) \to H_0(\mathbb{R}^2) \to 0$ is exact.

This implies that,

 $0 \to H_2(\mathbb{P}_{\mathbb{R}}^{2}) \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to H_1(\mathbb{P}_{\mathbb{R}}^{2}) \to 0$

4. C is the closed oriented surface of genus K. Compute the homogy groups of C. Ans. Let pEC. <u>step</u>I: We will compute homology groups of the pair (C,C-p) stepti: We will compite Homology graups of C-p. stepIII: We will compute Homebogy graups of C.

Step]: Let B be an open dise around p in C. Let Z = C - BThen $\overline{Z} \leq C - p$

By excision theorem, $H_n(\mathcal{C},\mathcal{C}-\{p\})\cong H_n(\mathcal{C}-Z,(\mathcal{C},\{p\},Z)$ ¥n>0

Now, for n > 1, the ends in the above long exact sequence are 0. So, $H_n(B, B-p) = 0$ for n > 2. Now we have, $\rightarrow H_{2}(B) \rightarrow H_{2}(B, B - p) \rightarrow H_{1}(B - p)$ $\rightarrow H_{1}(B) \rightarrow H_{1}(B, B - p) \rightarrow \cdots$ $Now, \quad H_{2}(B) = 0 = H_{1}(B)$ $Se, \quad H_{2}(B, B - p) \cong H_{1}(B - p)$ $\cong H_{1}(S') \cong \mathbb{Z}$

Agenn, $0 \rightarrow H_{0}(B, B \rightarrow P) \rightarrow H_{0}(B \rightarrow P) \rightarrow H_{0}(B)$ $\rightarrow H_{o}(B, B \land P) \rightarrow O$

Now since B-F & B are path connected & the inclusion B-P C-> B induces isomorphism on Ho. So, H, (B, B-P) = O and Ho (B, B-P) = O

So, we have, $H_n(B, B - p) = \begin{cases} \mathbb{Z} & \text{if } n = 2 \\ 0 & \text{if } n \neq 2 \end{cases}$ This finishes Step I. stepII: We can present C as a 4k-gon with identification on boundary as follows: $\begin{array}{c} a_1 \\ b_1 \\ b_1 \\ b_2 \\$ From diagram, it is clear that C-p deformation retracts onto the boundary which is hemeomorphic to wedge of 2k cincles.

l

So, $H_n(C \rightarrow p) \cong H_n(VS') \cong \int_{Z_1}^{Z_1} \int_{Z_2}^{Z_1} \int_{Z_1}^{Z_2} \int_{Z_1}^{Z_2}$ This finishes step I. stepII: We have long exact sequence of the pair (C, C-+): $\longrightarrow H_{\eta}(\mathcal{C}) \longrightarrow H_{\eta}(\mathcal{C}, \mathcal{C}, \mathcal{P}) \longrightarrow H_{\eta-1}(\mathcal{C}, \mathcal{P})$ $\rightarrow H_{n-1}(c) \rightarrow$ For n>2, H, (C-p) =0 2 Hn (C, C) =0 for n>2 So, $H_n(c) = 0$ Now me have, $\rightarrow H_2(e^-p) \rightarrow H_2(e) \rightarrow H_2(e,c-p)$ $\rightarrow H_1(e^-p) \rightarrow H_1(e) \rightarrow H_1(e,e^-p) \rightarrow$

So, we have $0 \to H_2(c) \to \mathbb{Z} \to H_1(c, p) \xrightarrow{l_*} H_1(c) \to 0$ is exact. have commutative diagroam! We $\pi_1(c \cdot \varphi) \xrightarrow{l_*} \pi_1(c)$ $(\pi_i(c-\nu))_{ab} \xrightarrow{\overline{i_r}} (\pi_i(e))_{ab}$ 12 $H_1(e \sim b) \xrightarrow{i_*} H_1(c)$ Now, Ty(C-p) is the free group 2K generators and $\pi_{i}(c) = \pi_{i}(c \cdot p) \left\langle \pi_{a_{i}b_{i}a_{i}} \cdot \overline{b_{i}} \right\rangle$ Since, $\overline{\Pi}(a_i b_i a_i b_i) \in [\overline{\Pi}(c - p), \overline{\Pi}(c - p)]$ It follows that.

$$\begin{split} \overline{i_{0}}: (\overline{TL}_{1}(c-p))_{ab} & (\overline{TL}_{1}(c))_{ab} \\ is an isomorphism . \\ From the commutative disappen, we get \\ i_{+}: H_{1}(e-p) \longrightarrow H_{2}(c) \\ i_{5} an isomersphism. \\ so from @ we have, \\ 0 \rightarrow H_{2}(c) \rightarrow \mathbb{Z} \longrightarrow H_{1}(c-p) \xrightarrow{r=} H_{1}(c) \rightarrow o \\ So, H_{2}(c) \cong \mathbb{Z} \\ and H_{1}(c) \cong H_{1}(c-p) \cong \mathbb{Z}^{2K} \\ Since C is connected, so H_{0}(c) = \mathbb{Z}. \\ So, H_{n}(c) = \begin{cases} \mathbb{Z} & if n=0 \\ \mathbb{Z}^{2K} & if n=1 \\ \mathbb{Z} & if n=2 \\ 0 & if n=2 \end{cases} \\ 0 & if n=2 \\ 0 & if n=2 \end{cases}$$

5. Homology group of
$$VS^{m} = 21$$

 \Rightarrow First we compute homology groups of $X=S^{m} \vee S^{m}$.
 $U = X \setminus \{V\}$
 $V = X \setminus \{V\}$

So we have
$$H_k(V s^m) = H_k(s^m) \oplus H_k(s^m) k \ge 1$$

 $= Z$ $k=0$
So Let us use induction on r to compute homology
granges $f = V s^m$
 $I t is assume \frac{r_1 s^m}{r_1} = \bigoplus H_r(s^m) k \ge 1$
 $H_k(V s^m) = \bigoplus H_r(s^m) k \ge 1$
 $I = 1$
 I

 $\begin{array}{c} \text{If } k=1 \text{ then } \\ \longrightarrow H_1(UAV) \xrightarrow{} H_1(U) \oplus H_1(V) \xrightarrow{} H_1(X) \end{array}$ \rightarrow $H_{o}(U \land V) \rightarrow$ $H_{o}(V) \oplus H_{o}(V) \rightarrow$ $H_{o}(X) \rightarrow O$ Now UNV, U, V, X are path connected so $0 \longrightarrow H_{0}(U \land V) \longrightarrow H_{0}(U) \oplus H_{0}(V) \longrightarrow H_{0}(X) \rightarrow 0$ $=) \quad [H_1(X) \simeq H_1(S) \oplus H_1(VS^{m}) = \bigoplus H_1(S^{m})$ and Ho(X) = Z og X is path connected. So we have $H_{k}(v^{r}s^{m}) = \bigoplus_{i=1}^{r} H_{k}(s^{m}) k \ge 1$ = Z K ZO

CW- Complex

CW structure of St L. 0-cell K>2 $CW_{k}(X) = H_{k}(X^{k}(X^{k-1})) = 0$ $CW_{1}(X) = H_{1}\left(\frac{X^{1}}{X^{2}}\right) = H_{1}(S^{1}) = \mathbb{Z}$ $CW_{p}(X) = H_{n}(X^{0}) = \mathbb{Z}$ Homology sequence of the pair (X^L, X°) we have $\rightarrow H^{}(X_{0}) \rightarrow H^{}(X_{7}) \rightarrow H^{}(X_{1}, X_{0}) \rightarrow H^{}(X_{0}) \rightarrow H^{}$ $\begin{array}{c} \text{SI} \\ \text{H}_{1}\left(X^{\prime}\right) \\ \end{array}$ $\rightarrow H_1(X^0) \rightarrow H_1(X^1) \rightarrow H_1(X', X^0) \rightarrow 0$ is exact =) the map from CW,(X) -> CW,(X) is O. $\Rightarrow \int_{U} : CW_{(X)} \longrightarrow CW_{(X)} \text{ is } 0.$ R

 $CW(X) \xrightarrow{d_2} CW(X) \xrightarrow{d_2} CW_0(X)$ $U \xrightarrow{d_1} U \xrightarrow{d_2} CW_0(X)$ $U \xrightarrow{d_1} U \xrightarrow{d_1} U$ $K \geq 2 \\ H_{K}(X) = 0$ If k= L $(W) = \mathbb{Z}$ $H_n^{ew}(X) = E$

2. CW structure
$$f \leq S^{n}$$

 $\Rightarrow \qquad \bigcirc \qquad D^{n} \qquad f : \partial D^{n} \rightarrow rP3$
No $1,2,...,n-1-colls$ arc present.
 $CW_{k}(x) = O \qquad f \quad k \geq n+1$
 $= P \qquad f \quad k = n$
 $= O \qquad f \quad o < k < n$
 $= P \qquad f \quad k = 0$
 $O \rightarrow P \qquad d_{n} \qquad O \rightarrow \cdots \qquad d_{2} \qquad O \qquad d_{2} \qquad P \rightarrow O$
 $CW_{k}(x) \qquad \qquad CW_{k}(x) \qquad \qquad CW_{k}(x)$
 $H_{k}^{CW}(x) = O \qquad f \quad k \geq n+1$
 $= P \qquad f \quad k \geq n+1$
 $= O \qquad f \quad 1 < k < n$
 $= P \qquad f \quad k = 0$

3.
$$\mathbb{P}_{\mathbb{P}}^{\perp} \cong S^{\times}$$
, Hence the CW-homology of $\mathbb{P}_{\mathbb{Q}}^{\perp}$'s we
computed.
4. We first compute CW-homology of $\mathbb{P}_{\mathbb{Q}}^{\perp}$.
There is no n-cells for $n>4$ and $n=1,2$.
 $X^{4} = \mathbb{P}_{\mathbb{Q}}^{\times}$, $X^{*} = \mathbb{P}_{\mathbb{Q}}^{\perp}$, $X^{0} = \langle P_{3}^{\times} \rangle = P$ is the 0-cell.
If $k>4$
 $CW_{k}(X) = H_{k} (X^{k}/X^{k-1}) = 0$
If $k>4$
 $CW_{k}(X) = H_{k} (X^{k}/X^{k-1}) = 0$
If $k>4$
 $CW_{k}(X) = H_{k} (X^{k}/X^{k-1}) = 0$
If $k>3$.
 $CW_{k}(X) = O = CW_{k}(X)$
If $k>3$.
 $CW_{k}(X) = O = CW_{k}(X)$
If $k>2$
 $CW_{k}(X) = O = CW_{k}(X)$
If $k>2$
 $CW_{k}(X) = H_{k}(X^{0}) = H_{k}(\mathbb{P}_{\mathbb{Q}}^{\perp}) = \mathbb{Z}$
So we have the chain complex.
 $D = CW_{k}(X) = H_{k}(X^{0}) = H_{k}(\langle P_{k}^{\perp} \rangle) = \mathbb{Z}$
So we have the chain complex.
 $D = \frac{1}{2} O = \mathbb{Z}$

Now we have Ho (X) = kerdo = Loz = Z $H_{(X)} = \frac{\text{kerd}_{L}}{\text{Im}d_{1}} = \langle 0 \rangle$ $H_2^{cw}(x) = \frac{\ker d_2}{\operatorname{Im} d_2} = \frac{Z}{103} = Z$ $H_3^{cw}(X) = \frac{kerd_3}{Imd_4} = \{0\}$ $H_q(X) = k \sigma d_q = \frac{2}{\sqrt{2}} 2 \frac{2}{\sqrt{2}}$ and elearly $|f_{k}^{CW}(X) = 0 \quad \forall k > q$ So we have $H_{k}^{CW}(X) = \frac{7}{4} \quad \text{if } k = 0, 2, 4$ = O stherwise Now we compute CW-homology JX=IPe using induction. $| e^{t} |_{k} (I_{e}^{t}) = \mathbb{Z} \quad i_{f} \quad 0 \leq k \leq 2t \text{ and } k \text{ is even}$ = O if otherwise $\forall t \leq n$

In Pre we don't have meetly for m>2n+2 and m = 2n+1, 2n-1, --, 3, L Now we have only one k-cell for each k= 0, 2, 4, ---, 2n+2 Now we have $C_{W_o}(X) = (H_o(X^{\circ}) = \mathbb{Z})$ $CW_{(X)} = H_{(X)} = 0$ $CW_{2}(X) = H_{2}(X/X) = H_{2}(P_{e}) = \mathbb{Z}$ $CW_{2n+1}(X) = H_{2n+1}(X^{2n+1}(X^{2n+1})) = 0$ $CW_{2N+2}(X) = I_{2N+2}(X^{2n+2}(X^{2n-1}) = H_{2N+2}(P_{\mathcal{C}}^{n+1})$ - 'A and $CW_{k}(x) = 0 \quad \forall k > 2n_{+2}$ _____ O

So we have $H_{p}^{cw}(X) = \mathbb{Z}$ $H_{l}^{ev}(x) = 0$ $\frac{dw}{H_{2n+1}}(X) = 0$ $\frac{dw}{H_{2n+2}}(X) = \mathbb{Z}$ and $H_{k}^{(W)} = 0 \quad \forall k \ge 2n+2$ So we have $H_{k}^{CW}(X) = \mathbb{P} \quad \forall 0 \leq k \leq 2n+2 \quad and \quad k is even$ A = -i = in= 0 stherwise

5. Compute the CW-homology of compact oriented surface of genus 2, (M2) given below Now X° is the print (o-cell), X' is obtained by attaching 9 1-cells to X°. X^r is obtained by attaching L 2-eell by the attaching map. S'→X' by Now YK>2 we have CW (X) = 0 If k=2 then CW, (x) = H, (x/x1) = H, (s) = Z If k=1 then $CW_1(X) = H_1(X|_{X^0}) = H_1(VS')$. = @ Z If k=0 then CWO(X) = HO(X0) = Z.

Hence we have the complex $O \xrightarrow{d_3} CW_2(X) \xrightarrow{d_2} CW_1(X) \xrightarrow{d_1} CW_0(X) \xrightarrow{d_0} O$ Now we have the long exact sequence of the pair (X', X°) which is $\longrightarrow H_{1}(X^{\circ}) \longrightarrow H_{1}(X^{\prime}) \longrightarrow H_{1}(X^{\prime}, X^{\circ}) \longrightarrow H_{0}(X_{0})$ $(+,(\times)) \rightarrow (\times)$ No X°, X' are path convected so Ho(X°) ~ Ho(X') $\Rightarrow \longrightarrow H_1(x') \longrightarrow H_1(x'_{x^0}) \longrightarrow O \quad \text{is exact}$ =) d'_ CW,(X) -> CW,(X) is the zero map. Now we see the behavior of d_2 . We have $S^{\perp} \longrightarrow X^{\perp}$ the attaching map, then we have the collapsing maps which collapses all but one circle which gives the component of $d_2(1)$. 10 $X^{\perp} \longrightarrow S^{\perp}$ be the map which is given by

 a_{1} b_{1} a_{1} b_{2} b_{2} b_{2} b_{2} b_{2} b_{2} b_{2} b_{3} b_{4} b_{2} b_{2} b_{3} b_{4} b_{2} b_{3} b_{4} b_{2} b_{3} b_{4} b_{4 So us the orientation of the circle given by attacking mp $S' \longrightarrow X' \longrightarrow S' maps S to a, -a, = 0$ =) Lit component of d_(1) is O. and by the description of the attaching map we see each component of d2(1) is 0. Hence d2=0 Another explanation using Fundamental group. We have the attaching map takes the generator in $\pi_1(s^{\perp})$ to the relation $a_{b}a_{b}a_{b}b_{c}a_{b$ which clearly belongs to [T1(VS), T1(VS) So we have the diagram

 $= \pi (\cdot \vee \varsigma^{1}) = \# \mathcal{P}$ $\mathcal{Z} = \pi_1(s^{\perp}) Z = H_{1}(S^{\perp}) \xrightarrow{A_{1}} H_{1}(S^{\perp}) \xrightarrow{A$ =) d, taken a to 0 $=) d_{1} = 0$ So we have $\begin{array}{c} F_{o}(x) = \frac{\operatorname{Kerd}_{p}}{\operatorname{Frd}_{p}} = \frac{\mathbb{E}}{4} = \frac{1}{4} \\ \end{array}$ $(-)_{1}^{CW}(\chi) = \text{kerd}_{L} = \bigoplus_{i=L}^{4} \mathbb{E}_{\{0\}} = \bigoplus_{i=L}^{9} \mathbb{E}_{\{0\}}$ $H_{2}^{cw}(X) = \frac{\ker d_{2}}{\operatorname{Imd}_{3}} = \frac{\mathbb{P}}{\{0\}} = \mathbb{P}$ $\operatorname{cm} d \left(H_{k}^{cw}(X) = 0 \quad \forall k > 2 \right)$ In case of genus >2 the method is exactly same and in that case we have to use the relation defined as 1.4

Now we show $deg(Z \rightarrow Z') = 2$ It V(t) = e the generator of $\pi(S^{\perp}, L) \cong \mathbb{P}, U \neq f: S \to S^{\perp} b_{\gamma} f(z) = z^{\perp}$ and p' IR - IS The covering map P(2) = 2712 where For is the unique lift of the path for. Now if we define g'. [", 1] -, IR by g(t) = 2t then we have g(0)=0 and pog=for = pofor = g=for (by imiquement) So deg f = g(1)=2

 $H_{6}^{cw}(X) = \frac{kerdo}{Irrd_{L}} = \frac{2}{1/203} = \frac{2}{1}$ $[+\frac{cw}{l}(X) = \frac{kerd}{Imd} = \frac{Z}{2Z} = Z_{2}$ $H_2^{CW}(\chi) = \frac{\ker d_2}{\operatorname{Im} d_2} = \frac{\langle 0 \rangle}{\langle 0 \rangle} = 0$ $H_{k}(X) \ge 0 \quad \forall k > 2.$

7. CW-homology of
$$\mathbb{P}_{\mathbb{R}}^{n}$$
.
 \Rightarrow We have only one k-cell $\forall k = 0, 1, 2, ..., n$ and we have
 $X^{0} = \{1\}, \chi^{1} = \mathbb{P}_{\mathbb{R}}^{1}, ..., \chi^{n-1} = \mathbb{P}_{\mathbb{R}}^{n-1}$
Now we blee n-cell and define $f: S^{n-1} \rightarrow \mathbb{P}_{\mathbb{R}}^{n-1}$ to
be usual quotients may with antipodal prints identified.
Then we get $\chi^{n} = \mathbb{P}_{\mathbb{R}}^{n}$.
 $CW_{0}(X) = H_{0}(X^{0}) = \mathbb{Z}$
 $CW_{0}(X) = H_{0}(X^{0}) = \mathbb{Z}$
 $CW_{0}(X) = H_{1}(X^{1}/X_{0}) = H_{1}(S^{1}) = \mathbb{Z}$
 $CW_{1}(X) = H_{1}(X^{1}/X_{0}) = H_{1}(S^{1}) = \mathbb{Z}$
 $W_{1}(X) = H_{1}(X^{1}/X_{0}) = H_{1}(X^{1}/X_{0}) = H_{1}(S^{1}) = \mathbb{Z}$
 $CW_{1}(X) = H_{1}(X^{1}/X_{0}) = H_{1}(X^{1}/X_{0}) = H_{1}(S^{1}) = \mathbb{Z}$
 $W_{1}(X) = H_{1}(X^{1}/X_{0}) = H_{1}(X^{1}/X_{0}) = H_{1}(S^{1}) = H_{1}(X^{1}/X_{0}) = H_{1}(X^{1}$

 $\chi_{1} \left(\right) \longrightarrow \left(\begin{array}{c} \\ \end{array} \right)$ Collapsing the red Collapsing the south Coll χ_{2} χ_{1}^{2} β If we take the map α which collapses the equator of χ_{1} to a point, then the map $\chi_{1} = s^{k} \rightarrow \chi_{1}^{k} \rightarrow \chi_{1}^{k} = s = \chi_{3}^{k} \text{ factors through } \alpha$ and we get a map from B from X2 -> X3. So we compute (BOR) (1) and we will find First 1 et us take two quotient maps $Y_1: X_2 \rightarrow X_2/2$ given by So we have $Y_1|_{X_2^\perp} = Id_{X_2^\perp}$ and $Y|_{X_2^\perp} = Constant maps to the point$ $Y_2: X_2 \longrightarrow X_2/\chi_2$ given by X_2/χ_2 So we have $Y_{2}|_{X_{2}^{1}} = \text{constant maps on the point and } Y_{2}|_{X_{2}^{r}} \text{ Id } X_{2}^{r}$

Hence by the description of river we have the map EBE EBE $(a,b) \longrightarrow (((),(x),(y_{2}),(b)) = (a,b)$ is an iso morphism. So to find (X, (1) we find (X, 0 x) (1) and (Y, 0 x) (1) claim 1: -. rod and rod are homotopic to identity map. which implies (r,ox) (1)= (r,ox) (1)=1 Now we see the geometric description of rio a Now ris a is homotopic to Idek because -----> Z_{k+1}= E at time Z_{fel}=t we can collapse the lower blue-colored part SI-SK. =) rod~Id<k =) (rox) (1)=1

Similarly
$$Y_{12} a \approx Id_{SE} \Rightarrow (Y_{2} a)_{*}^{(1)} = L$$
, Hence we
have the map
 $H_{E}(X_{1}) \xrightarrow{d_{*}} H_{E}(X_{2}/X_{2}) \oplus H_{E}(X_{2}/X_{2})$
by $L \xrightarrow{d_{*}} CL_{L}$
Now observe we have inclusions $X_{2}^{L} \xrightarrow{I} X_{2}, X_{2}^{-1} \exists X_{2}$
and an isomorphism
 $H_{E}(X_{2}^{L}) \oplus H_{E}(X_{2}^{-1}) \longrightarrow H_{E}(X_{2})$
 $U_{1}^{Incd} by (a, b) \xrightarrow{d_{*}} (I_{1})_{S}(a)_{I}(J_{2})_{S}(J_{1})$
 $= (a, L)$
So we have
 $H_{E}(X_{2}^{L}) \oplus H_{E}(X_{2}^{-1})$
 $H_{E}(X_{2}^{L}) \oplus H_{E}(X_{2}^{-1})$
 $H_{E}(X_{2}^{L}) \oplus H_{E}(X_{2}^{L})$
 $H_{E}(X_{2})$
 $H_{E}(X_{2})$
 $H_{E}(X_{2})$
 $H_{E}(X_{2})$
 $H_{E}(X_{2}) \oplus H_{E}(X_{2}^{L})$
 $H_{E}(X_{2}) \oplus H_{E}(X_{2}^{L})$
 $H_{E}(X_{2}) \oplus H_{E}(X_{2}^{L})$
 $H_{E}(X_{2}) \oplus H_{E}(X_{2})$
 $H_{E}(X_{2}/X_{2}) \oplus H_{E}(X_{2})$
 $H_{E}(X_{2}/X_{2}) \oplus H_{E}(X_{2})$
 $H_{E}(X_{2}/X_{2}) \oplus H_{E}(X_{2}/X_{2})$
 $H_{E}(X_{2}/X_{2}) \oplus H_{E}(X_{2}/X_{2})$

Claim 2:-
$$\beta \circ i_{1} = Id_{1}$$
, $\beta \circ i_{2} = Antipodal map on st.$
Nade to compute $\beta_{2}(1,1)$ it is enough to compute
 $(\beta \circ i_{2})_{2}(1)$ and $(\beta \circ i_{2})_{2}(1)$. Now we see the description
 $f \beta \circ i_{2}$ and $\beta \circ i_{2}$.
 $X_{2}^{L} = \underbrace{i_{1}}_{l} \xrightarrow{l}_{l} \xrightarrow{l}_{l} \xrightarrow{l}_{l}$
Hence by the description $\beta \circ i_{1} = Id_{sk}$.
Now we see $\beta \circ i_{2} = Antipodal map on st as below.$

So we have Roiz = Antipodal map on St. $\frac{(l_{ijm} 3)}{(l_{k+1})} = l + (-1)^{k+1}$ Now we have the diagram $H_{\sharp}(X_{2}) \oplus H_{\sharp}(X_{2})$ $H_{k}(X_{L}) \xrightarrow{\chi} H_{k}(X_{2}) \xrightarrow{\beta} H_{k}(X_{3})$ $H_{k}(X_{2}, Y) \oplus H_{k}(X_{2}, Y)$ Now B (a,b) = (30ì) (a) + (Boi) (b) as we have the isomorphism $H_{k}(X_{2}^{l}) \oplus H_{k}(X_{2}^{r}) \longrightarrow H_{k}(X_{2})$ Hence $(Bod)(L) = \beta_{*}(J,L) = (Boi_{1})(L) + (Boi_{2})(L)$ $= \perp_{+} (-1)^{||x|+1|}$ (By Question-11 on chapter 16 we have degree of Antipodal map on 5th is (-1)k+1). So we have proven our claim and so we found 9 Ktl AK. So our chain complex becomes

 $0 \longrightarrow \mathcal{F} \xrightarrow{d_{n}} \mathcal{F} \xrightarrow{d_{n-1}} - \cdots \xrightarrow{d_{2}} \mathcal{F} \xrightarrow{d_{1}} \mathcal{F} \xrightarrow{\rightarrow} 0$ | [N n-1 where d(i) = 1 + (-i) $\forall \neq 20, 2, ..., n-i$ ind defi= 0 if kiseren = 2 if kis odd So we have if X=PR How(X) = Kerdo = Z/202 Z $H_{\perp}^{cw}(X) = \text{Kerd}_{\perp} = \frac{\mathbb{Z}}{2\mathbb{Z}} = \mathbb{Z}_{\perp}$ $H_2^{CW}(x) = krd_2 = 0$ Irrdz $H_3^{CW}(\chi) = kord_3 = \frac{E}{2R} = \frac{E}{2}$ Indg | | | So we have different answer depending on n is erm or odd.

Hence if n is even then HE (X) = Z if k isod = O if kiseren K=0 - Z (J K=20 and when n is odd we have $d_{-}(L) = (-1)^{n} + (= 0)$ So kerdy = 2 and Indy, = 0 $=) (+_{n}^{CW}(X) = \mathbb{Z}_{(n)} = \mathbb{Z}$ Flence for nodd we have HL(X) = Z, If kisodd, Kan = 0 if kis won K=0 = Z (k=0, n

Homology with Coefficient:
1.
$$X = \langle r^2 \rangle$$
 with Coefficient in \mathbb{P}_m .
 \Rightarrow We have the Universal Coefficient theorem we have the split
 $exact sequence$
 $0 \longrightarrow H_n(X) \otimes \mathbb{P}_n \longrightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Trr^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
Nay we have
 $H_1(X) = \mathbb{P}$ if i-0
 $= 0$ if otherwise
If $n \rightarrow 0$
 $n \rightarrow H_n(X) \otimes \mathbb{P}_m \rightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Tor^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
 $= H_n(C, (X) \otimes \mathbb{P}_m) = \mathbb{P} \otimes \mathbb{P}_m = \mathbb{P}_m$
If $n > 0$
 $\rightarrow H_n(X) \otimes \mathbb{P}_m \rightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Tor^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
 $\rightarrow H_n(X) \otimes \mathbb{P}_m \rightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Tor^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
 $\rightarrow H_n(X) \otimes \mathbb{P}_m \rightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Tor^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
 $\rightarrow H_n(X) \otimes \mathbb{P}_m \rightarrow H_n(C, (X) \otimes \mathbb{P}_m) \rightarrow Tor^1(H_n(X), \mathbb{P}_n) \rightarrow 0$
 $\rightarrow H_n(X) \otimes \mathbb{P}_m) = 0$
So we have the homology A coefficients
 $H_n(C, (X) \otimes \mathbb{P}_m) = C$ otherwise

2. X= 5 with coefficients in Zm. =) We have the Universal Coefficient theorem we have the split exact sequence $\bigcirc \longrightarrow H_n(X) \otimes \mathbb{F}_m \longrightarrow H_n(\mathbb{C}_{\bullet}(X) \otimes \mathbb{F}_m) \to \mathbb{T}_n^{\perp}(H_{u-1}(X), \mathbb{F}_m) \to 0$ We have H;(X) = Z 1=0,1 = O Aherwise If not then $T \to H_0(X) \otimes \mathbb{Z}_m \to H_0(\mathcal{C}_0(X) \otimes \mathbb{Z}_m) \to T_0(H_1(X), Z) \to 0$ $= H_{0}(C.(X)\otimes \mathbb{Z}_{m}) = \mathbb{Z}\otimes \mathbb{Z}_{m} = \mathbb{Z}_{m}$ $\begin{array}{cccc} & & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & &$ =) $H_{1}(C.(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{m} = \mathbb{F}_{m}$ $\begin{array}{c} \downarrow & n > 1 & \text{them} & 0 \\ 0 & \longrightarrow H_{n}(x) \otimes \mathbb{Z}_{m} \longrightarrow H_{n}(\mathbb{C}(X) \otimes \mathbb{Z}_{m}) \rightarrow \text{Tor}^{1}(H_{n}(x), \mathbb{Z}_{m}) \rightarrow 0 \end{array}$ =) Hy (C.(x)@Fm)=0 So we have the homology with coefficient in Em H, (C,(X) (X) Zm) = Zm N20,1 O otherwise Ŧ

3.
$$X = S^{k}$$
 (k>1) with coefficient in \mathbb{E}_{M} .

$$\Rightarrow We have the Universal Coefficient theorem we have the split
exact sequence
 $0 \rightarrow H_{M}(X) \otimes \mathbb{F}_{M} \rightarrow H_{N}(C.(X) \otimes \mathbb{F}_{M}) \rightarrow Trr^{1}(H_{u}(X),\mathbb{F}_{m}) \rightarrow 0$
We have $H_{1}(X) = \mathbb{E}$ isolk
 $= 0$ otherwise
If $n=0$ \mathbb{F}_{0} $0 \rightarrow 0$
 $0 \rightarrow H_{0}(X) \otimes \mathbb{F}_{M} \rightarrow H_{0}(C(X) \otimes \mathbb{F}_{M}) \rightarrow Tor^{1}(H_{u}(X),\mathbb{F}_{m}) \rightarrow 0$
 $\Rightarrow H_{0}(C(X) \otimes \mathbb{F}_{M}) = \mathbb{F} \otimes \mathbb{F}_{M} = \mathbb{F}_{M}$
If $0 \leq n \leq k$
 $0 \rightarrow H_{n}(X) \otimes \mathbb{F}_{m} \rightarrow H_{n}(C.(X) \otimes \mathbb{F}_{m}) \rightarrow Tor^{1}(H_{n}(X),\mathbb{F}_{m}) \rightarrow 0$
 $\Rightarrow H_{n}(C.(X) \otimes \mathbb{F}_{m}) = 0$
If $n=k$ \mathbb{F}_{0}
 $0 \rightarrow H_{k}(X) \otimes \mathbb{F}_{m} \rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) \rightarrow Tor^{1}(H_{k-1}(X),\mathbb{F}_{m}) \rightarrow 0$
 $\Rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{M} = \mathbb{F}_{m}$
If $n=k$ \mathbb{F}_{0}
 $0 \rightarrow H_{k}(X) \otimes \mathbb{F}_{m} \rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) \rightarrow Tor^{1}(H_{k-1}(X),\mathbb{F}) \rightarrow 0$
 $\Rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{M} = \mathbb{F}_{m}$
If $n > k$ \mathbb{F}_{0}
 $0 \rightarrow H_{k}(X) \otimes \mathbb{F}_{m} \rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) \rightarrow Tor^{1}(H_{k-1}(X),\mathbb{F}) \rightarrow 0$
 $\Rightarrow H_{k}(C.(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{M} = \mathbb{F}_{m}$
If $n > k$ \mathbb{F}_{0}
 $0 \rightarrow H_{k}(X) \otimes \mathbb{F}_{m} \rightarrow \mathbb{F}_{k}(C.(X) \otimes \mathbb{F}_{m}) \rightarrow Tor^{1}(H_{k-1}(X),\mathbb{F}) \rightarrow 0$
 $\rightarrow H_{k}(X) \otimes \mathbb{F}_{m} \rightarrow \mathbb{F}_{k}(C.(X) \otimes \mathbb{F}_{m}) = 0$$$

So the homology with coefficient in Zm is given by $H_{n}(C_{\bullet}(X)\otimes \mathbb{Z}_{m}) = \mathbb{Z}_{m} \quad n=0, k$ = 0 Mernisc

4.
$$X = M_{k}$$
 with eachtions in \Im_{m} .
We have the Universal Coefficient theorem we have the split
expect coordinates
 $0 \longrightarrow H_{n}(X) \otimes \Im_{m} \longrightarrow H_{n}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X) \Im_{m}) \rightarrow 0$
We have $H_{i}(X) = \Im$ iso
 $= \Im_{i} \Im_{i} \Im_{i}$
 $= 0$ Athenials.
If $n=0$ \Im_{i}
 $0 \longrightarrow H_{0}(X) \otimes \Im_{m} \rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X) \Im_{m}) \rightarrow 0$
 $\rightarrow H_{0}(X) \otimes \Im_{m} \rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X) \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{0}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{0}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \rightarrow Tar^{1}(H_{n}(X), \Im_{m}) \rightarrow 0$
 $\Rightarrow H_{1}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{2}(C_{n}(X) \otimes \Im_{m}) \Rightarrow H_{2}(C$

So the homology of expericients in Zm is given by $H_{n}(C(X)\otimes \mathbb{Z}_{m}) = \mathbb{Z}_{m} \qquad n = 0$ $= \bigoplus_{i=1}^{2k} \mathbb{Z}_{m} \qquad n = 1$ = 0 Alernise

5.
$$X = \mathbb{P}_{\mathbb{C}}^{\mathbb{K}}$$
 with coefficients in \mathbb{F}_{m} .

$$\Rightarrow Wc have to Universal coefficient theorem we have to split
exact compared
$$0 \longrightarrow H_{n}(X) \otimes \mathbb{F}_{m} \longrightarrow H_{n}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow \operatorname{Trr}(H_{n}(X),\mathbb{F}_{n}) \rightarrow 0$$
We have $H_{1}(X) = \mathbb{F}$ $0 \leq i \leq 2k$ i is own

$$= 0 \quad \operatorname{Mervisc}$$
If $n = 0$

$$0 \longrightarrow H_{0}(X) \otimes \mathbb{F}_{m} \longrightarrow H_{0}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow \operatorname{Tor}(H_{1}(X),\mathbb{F}_{n}) \rightarrow 0$$

$$\Rightarrow H_{0}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow H_{0}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow \operatorname{Tor}(H_{1}(X),\mathbb{F}_{n}) \rightarrow 0$$

$$\Rightarrow H_{0}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{m} = \mathbb{F}_{m}$$
If $n = 1$

$$0 \longrightarrow H_{1}(X) \otimes \mathbb{F}_{m} \rightarrow H_{1}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow \operatorname{Tor}(H_{0}(X),\mathbb{F}_{n}) \rightarrow 0$$

$$\Rightarrow H_{1}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) = 0$$
If $1 \leq n \leq 2k$ and n is even
$$H_{1}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) \rightarrow \operatorname{Tor}(H_{-1}(X),\mathbb{F}_{m}) \rightarrow 0$$

$$\Rightarrow H_{n}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{m} = \mathbb{F}_{m}$$
If $1 \leq n \leq 2k$ and n is odd
$$0 \longrightarrow H_{n}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{m} = \mathbb{F}_{m}$$
If $1 \leq n < 2k$ and n is odd
$$0 \longrightarrow H_{n}(\mathbb{C},(X) \otimes \mathbb{F}_{m}) = \mathbb{F} \otimes \mathbb{F}_{m} = \mathbb{F}_{m}$$$$

 $=) H_{n}(C.(X)\otimes \mathbb{P}_{m}) = 0$ If n > 2k then $0 \rightarrow H_n(X) \otimes \mathbb{Z}_m \rightarrow H_n(C_0(X) \otimes \mathbb{Z}_m) \rightarrow Tor(H_{n-1}(X), \mathbb{Z}_m) \rightarrow 0$ =) $(-1_n (C_{(X)} \otimes \mathbb{F}_m) = 0$ So we have the homology with coefficients in Zm $H_n(C(X)\otimes \mathbb{F}_m) = \mathbb{F}_m \quad 0 \leq n \leq 2k \quad n \text{ is even}$ = 0 otherwise

6.
$$X = \mathbb{P}_{R}^{k} \text{ with coefficient in } \mathbb{P}_{y_{n}}.$$

$$\Rightarrow We have the Universal Coefficient theorem we have the split exact conjunct
$$0 \longrightarrow H_{n}(X) \otimes \mathbb{P}_{n} \longrightarrow H_{n}(C_{n}(X) \otimes \mathbb{P}_{n}) \rightarrow \operatorname{Trr}(H_{n}(X),\mathbb{P}_{n}) \rightarrow 0$$
Now if k is even then
$$H_{i}(X) = \mathbb{P}_{2} \quad i \text{ is odd}$$

$$= 0 \quad i \text{ is even } i \neq 0$$

$$= \mathbb{P} \quad i = 0$$

$$\text{ if } k \text{ is odd theor}$$

$$H_{i}(X) = \mathbb{P}_{2} \quad i \text{ is odd } i \neq n$$

$$= 0 \quad i \text{ is even } i \neq 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ if } k \text{ be even}$$

$$H_{i}(X) = \mathbb{P}_{2} \quad i = 0,$$

$$\text{ if } k \text{ be even}$$

$$H_{i}(X) = \mathbb{P}_{2} \quad i = 0,$$

$$\text{ if } k \text{ be even}$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 0$$

$$= \mathbb{P} \quad i = 0,$$

$$\text{ If } n = 1,$$

$$= 0$$

$$= \mathbb{P} \quad \mathbb{P} = \mathbb{P} = \mathbb{P} = \mathbb{P} = 0,$$

$$\text{ If } n = 1,$$

$$= 0$$

$$= 1,$$

$$= 0$$

$$= \mathbb{P} \quad \mathbb{P} = \mathbb{P} = \mathbb{P} = \mathbb{P} = 1,$$

$$= 0$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$

$$= 0,$$$$

 $\begin{array}{c} 1f \quad n=2 \\ & & \\ & & \\ & & \\ & & \\ 0 \longrightarrow H_2(X) \otimes \mathbb{Z}_m \longrightarrow H_2(C_{\bullet}(X) \otimes \mathbb{Z}_m) \longrightarrow \operatorname{Tor}\left(H_1(X), \mathbb{Z}_m\right) \longrightarrow 0 \end{array}$ $\longrightarrow (H_2(C_{\bullet}(X) \otimes \mathbb{Z}_m) = \operatorname{Tor}^1(\mathbb{Z}_2, \mathbb{Z}_m) = \mathbb{Z}_{\text{fed}(2,m)}$ If Lanck is even = $H_{n}(C(X)\otimes Z_{m}) = Tor^{L}(Z_{2}, Z_{m}) = Z_{ged}(Z_{m})$ If L<n<k is odd =) $H_n(C(X)\otimes \mathbb{P}_m) = \mathbb{P}_2 \otimes \mathbb{P}_m = \mathbb{P}_{\text{red}(2,m)}$ It n>k $0 \longrightarrow H_n(X) \otimes \mathbb{Z}_n \longrightarrow H_n(C_n(X) \otimes \mathbb{Z}_n) \longrightarrow \operatorname{Tor}^1(H_{n_1}(X), \mathbb{Z}_n) \longrightarrow D$ $\Rightarrow H_n(C(x) \otimes \mathbb{Z}_n) = 0$

So the homology in coefficient Zm is given by (where kiseran) $H_n(C_{\bullet}(X)\otimes \mathbb{Z}_m) = \mathbb{Z}_m \quad n = 0$ $= \mathbb{Z}_{ged(2,m)} \quad 1 \leq n \leq k$ otherwise Similarly if k is odd then using the same results we have $H_n(C(X)\otimes \mathbb{Z}_m) = \mathbb{Z}$ n=0,k = Bjed (2,m) L<n<k = O stherwise

Colomology
1. Colomology of X = {P} with
(A) Coefficients in
$$\mathbb{E}$$
.
(b) Coefficients in \mathbb{E} m.
(c) We have the universal coefficient theorem which says
 $\forall n \ge 0$ we have the universal coefficient theorem which says
 $\forall n \ge 0$ we have the split exact conjunct
 $0 \longrightarrow \mathbb{E}xt^{-1}(H_{n-1}(X), \mathbb{P}) \longrightarrow H^{-1}(X, \mathbb{P}) \rightarrow Hm(H_{n}(X)/\mathbb{P}) \longrightarrow 0$
Now we have $H_{1}(X) = \mathbb{P}$ $1 := 0$
 $= 0$ $f :> 0$
So $f = n = 0$ we have
 $0 \longrightarrow \mathbb{E}xt^{-1}(H_{-+}(X), \mathbb{P}) \rightarrow H^{0}(X, \mathbb{P}) \rightarrow Hom((H_{0}(X), \mathbb{P}) \rightarrow 0)$
 \mathbb{P}
 $= 0$ $H^{0}(X, \mathbb{P}) = \mathbb{P}$
 $= 1$ $H^{0}(X, \mathbb{P}) = \mathbb{P}$
 $= 0$ $Home$ $H^{1}(X, \mathbb{P}) = 0$
Hence $H^{1}(X, \mathbb{P}) = \mathbb{P}$ \mathbb{P}
 $= 0$ H^{20}

(b) We have the split exact sequence
$$\forall n \ge 0$$

 $\supset \rightarrow H^{n}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \rightarrow H^{n}(X, \mathbb{Z}_{m}) \rightarrow Trr^{1}(H^{n+1}(X, \mathbb{Z}), \mathbb{Z}_{m})$
 $1f = n = 0$ we have
 $2 = 0$
 $0 \rightarrow H^{0}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \rightarrow H^{1}(X, \mathbb{Z}_{m}) \rightarrow Tor^{1}(H^{1}(X, \mathbb{Z}), \mathbb{Z}_{m}) \rightarrow 0$
 $= H^{0}(X, \mathbb{Z}_{m}) = \mathbb{Z} \otimes \mathbb{Z}_{m} \cong \mathbb{Z}_{m}$
 $1f = n > 0$ we have
 $0 \rightarrow H^{n}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \rightarrow H^{n}(X, \mathbb{Z}_{m}) \rightarrow Trr(H^{n+1}(X, \mathbb{Z}), \mathbb{Z}_{m}) \rightarrow 0$
 $= H^{n}(X, \mathbb{Z}_{m}) = 0$
Hence we have the Cohomology with coefficients in \mathbb{Z}_{m}
 $H^{n}(X, \mathbb{Z}_{m}) = \mathbb{Z}_{m} = 0$
 $= 0 = n > 0$

2. Cohomology of S. with (4) Coefficients in Z (b) Coefficients in Zm =) (a) We have the universal coefficient theorem which says Yn≥o we have the split exact sequence $0 \longrightarrow E_{\times} L^{1}(H_{m}(X), \mathbb{Z}) \longrightarrow H^{n}(X, \mathbb{Z}) \longrightarrow H_{m}(H_{n}(X), \mathbb{Z}) \longrightarrow 0$ Now we have Hi(K) = 7 1 1=0,1 = 0 If otherwise If n=0 then || P $=) \quad H^{\circ}(X, \mathbb{P})_{=} \quad \mathbb{P}$ -) $H^{1}(X,\mathbb{Z}) = \mathbb{Z}$ If n > 1 then $E \times t^{1}(\mu_{n,1}(x), \mathcal{F}) = 0$ $(+m(x), \mathbb{Z}) = 0$ $=) \quad H^{N}(X, \mathbb{P}) = 0$

So the cohomology of X is $H^{n}(X,\mathbb{Z})=\mathbb{Z}$ = 0 Therwise (b) We have the split exact sequence ¥n≥o $\xrightarrow{\circ} H^{n}(X,\overline{z}) \otimes \overline{z}_{m} \rightarrow H^{n}(X,\overline{z}_{m}) \rightarrow Tar^{1}(H^{n+1}(X,\overline{z}), \overline{z}_{m})$ $= \mathcal{H}^{\circ}(X, \mathbb{Z}_{m}) = \mathbb{Z} \otimes \mathbb{Z}_{m} = \mathbb{Z}_{m}$ $\begin{array}{cccc} I & & & I \\ I & & & I \\ O & \rightarrow & H^{\prime}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \rightarrow & H^{\prime}(X, \mathbb{Z}_{m}) \rightarrow \operatorname{Tor}^{\prime}(H^{\prime}(X, \mathbb{Z}), \mathbb{Z}_{m}) \rightarrow O \\ & & & & & & & & \\ \end{array}$ = $H'(X, \mathbb{P}_m) = \mathbb{P} \otimes \mathbb{P}_m = \mathbb{P}_m$ If N>1 then $\xrightarrow{0} H^{n}(X, \mathcal{Z}) \otimes \mathcal{Z}_{m} \rightarrow H^{n}(X, \mathcal{Z}_{m}) \rightarrow Tor^{\perp}(H^{n+1}(X, \mathcal{Z}_{m}) \rightarrow 0$ $\xrightarrow{=} H^{n}(X, \mathcal{Z}_{m}) = 0$

So we have Cohomology with coefficients in Em $H^{n}(X,\mathbb{Z}_{m})=\mathbb{Z}_{m} \quad n \ge 0, 1$ = 0 Therwise

3. Cohomology of X = 5^K (K>1) with (a) Coefficients in Z (b) Coefficients in Zm -> (a) We have the universal coefficient theorem which says $\forall n \ge 0$ we have the split exact sequence $0 \longrightarrow E_{X}E^{1}(H_{n-1}(X), \mathbb{Z}) \longrightarrow H^{n}(X, \mathbb{Z}) \longrightarrow H_{m}(H_{n}(X), \mathbb{Z}) \longrightarrow 0$ Now we have Hi(X) = 7 i20,k = 0 Meruise \rightarrow $H^{\circ}(X, Z) = Z$. it ozn <k $0 \longrightarrow Ext^{\perp}(H_{n-1}(X), \mathbb{Z}) \rightarrow \mu^{\prime\prime}(X, \mathbb{Z}) \longrightarrow H_{om}(H_{n}(X), \mathbb{Z}) \rightarrow 0$ -) H°(X,Z)=0

 $=) H^{k}(X,\mathbb{Z}) = \mathbb{Z}$ If n>k $0 \longrightarrow E_{\times}t^{1}(H_{n-1}(X), \mathbb{Z}) \longrightarrow H^{n}(X, \mathbb{Z}) \longrightarrow H^{n}(H_{n}(X), \mathbb{Z}) \longrightarrow 0$ =) $H(X, \mathbb{P}) = 0$ So the Cohomology of X is $H'(X, \mathbb{Z}) = \mathbb{Z} \quad N=0, \mathbb{K}$ = 0 Aherwise (b) We have the split exact sequence ¥n≥o $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \rightarrow H^{n}(X, \mathbb{Z}_{m}) \rightarrow Trr^{1}(H^{n+1}(X, \mathbb{Z}_{m}), \mathbb{Z}_{m}) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$ $=) H^{\circ}(X, \mathbb{Z}_{m}) = \mathbb{Z} \otimes \mathbb{Z}_{m} = \mathbb{Z}_{m}$ If OCNCK $0 \longrightarrow H^{n}(X,\mathbb{Z}) \otimes \mathbb{Z}_{m} \longrightarrow H^{n}(X,\mathbb{Z}_{m}) \rightarrow \mathbb{T}_{or}^{1}(H^{n+1}(X,\mathbb{Z}),\mathbb{Z}_{m}) \rightarrow 0$ =) H"(X,Zm)=0

=) (+ (X, Zm) = 20 Zm = Zm $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{}$ \rightarrow $H^{(X)}(X) = 0$ So we have the Cohomology of X with coefficients in Zm. $H'(X, \mathbb{Z}_m) = \mathbb{Z}_m \quad n=0, k$ = 0 otherwise

4. X = Mk (a) Coefficient in Z (b) Coefficient in Zm =) (a) We have the universal experient theorem which says $\forall n \ge 0$ we have the split exact sequence $0 \longrightarrow Ext^{1}(H_{n-1}(X), \mathbb{R}) \longrightarrow H^{n}(X, \mathbb{R}) \longrightarrow Hom(H_{n}(X), \mathbb{R}) \longrightarrow 0$ Now we have $H_i(X) = \mathbb{Z}$ i=0 = @ Z i=1 i=1 = 0 Mernisc If n=0 $= H^{\circ}(X, \mathbb{Z}) = \mathbb{Z}$ =) H(X,Z) = Hom(PZ,Z) = Hom(Z,Z) = PZ =) H(X,Z) = Hom(PZ,Z) = PZ =) I=I

=) H (X, 7) = 0 So the Cohomology is given by $H^{n}(X, Z) = Z \quad n=0$ $= \bigoplus Z \quad n=1$ $= 0 \quad \text{Thermise}$ (b) We have the split exact sequence ¥n>0 $= H^{\circ}(X, \mathbb{P}) = \mathbb{P} \otimes \mathbb{P}_{M} = \mathbb{P}_{M}$ If N>L $0 \longrightarrow H^{n}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \longrightarrow H^{n}(X, \mathbb{Z}_{m}) \longrightarrow \operatorname{Tar}^{1}(H^{n+1}(X, \mathbb{Z}), \mathbb{Z}_{m}) \rightarrow 0$ =) H'(X,Zm)=0

So the Cohomology with coefficients in Zm is $H^{N}(X, \mathbb{Z}_{m}) = \mathbb{Z}_{m} \qquad n=0$ $= \bigoplus_{i=1}^{2k} \mathbb{Z}_{m} \qquad n=1$ $= 0 \qquad \text{Stherwise}$

5. X = Pe with (a) Coefficient in Z (b) Coefficient in Zm =) (a) We have the universal experient theorem which says $\forall n \ge 0$ we have the split exact sequence $0 \longrightarrow Ext^{1}(H_{n-1}(X), \mathbb{R}) \longrightarrow H^{n}(X, \mathbb{R}) \longrightarrow Hom(H_{n}(X), \mathbb{R}) \longrightarrow 0$ Now Hi(X) = 7 O ≤ i ≤ 2k i is even = 0 Aperinice = $(H^{\circ}(X, \mathbb{P}) = \mathbb{P}$ =) H'(X, Z) = 0P =) H"(X, 2) = 2

If
$$1 \leq n \leq 2k$$
 and $n is add then$

$$0 \longrightarrow Ext^{1}(H_{n-1}(X), \mathcal{F}) \rightarrow H^{n}(X, \mathcal{F}) \rightarrow H^{n}((H_{n}(X), \mathcal{F}) \rightarrow 0$$

$$=) + H^{n}(X, \mathcal{F}) = 0$$
So the Cohomology of X is given by
 $H^{n}(X, \mathcal{F}) = \mathcal{F}$ $o \leq n \leq 2k$ wis even
 $= 0$ There is a
(b) We have the split exact sequence $\forall n \geq 0$
 $0 \rightarrow H^{n}(X, \mathcal{F}) \otimes \mathcal{F}_{m} \rightarrow H^{n}(X, \mathcal{F}_{m}) \rightarrow Ter^{1}(H^{n+1}(X, \mathcal{F}), \mathcal{F}_{m})$
 $i \rightarrow 0$
If $n = 0$
 $1 \neq n = 1$
 $i \neq n = 0$
 $i \neq h^{n}(X, \mathcal{F}_{m}) = 0$

If I<n < 2k is even $\begin{array}{c} & & \\$ $= (H^{n}(X,\mathbb{Z}_{m}) = \mathbb{Z}\otimes\mathbb{Z}_{m} = \mathbb{Z}_{m}$ If L<N<2k and n is odd. $0 \longrightarrow H^{\prime}(X, \mathbb{Z}) \otimes \mathbb{Z}_{m} \longrightarrow H^{\prime}(X, \mathbb{Z}_{m}) \rightarrow \operatorname{Tor}^{1}(H^{\prime}(X, \mathbb{Z}), \mathbb{Z}_{m}) \rightarrow 0$ =) H (X,Zm) = 0 So the cohomology with coefficient in Im is $H(X,Z_m) = Z_m \quad o \leq n \leq 2k, n is even$ = 0 otherwise

6. Cohomology of PR with (a) Coefficient in (b) Coefficient in Zm =) (a) We have the universal experient theorem which says Yn≥0 we have the split exact sequence $0 \longrightarrow E_{X}E^{1}(H_{n}(X), \mathbb{Z}) \longrightarrow H^{n}(X, \mathbb{Z}) \longrightarrow H_{m}(H_{n}(X), \mathbb{Z}) \longrightarrow 0$ Now if k is even them Hi(X) = Z2 i is old = 0 i is even i ≠0 = Z i=0 if k is odd then Hi(X) = B, is odd i = n = O lis even 1=0 =) H°(X, E) = Z $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array} \right) \xrightarrow{} H^{1}(X,\overline{Z}) \xrightarrow{} H$ $\frac{1}{1}$ n = 1

 $f = 2 \qquad P_{2} \qquad (1, 3^{\circ}) \rightarrow F_{2} + (H_{1}(X), P) \rightarrow H(X, P) \rightarrow H(M(H_{2}(X), P) \rightarrow 0)$ (1) $=) \quad H^{\gamma}(\chi, \mathbb{Z}) = \mathbb{Z}_{2}$ We have Ext (Z/m Z, Z) = Z/mZ =) We have the exact sequence $\xrightarrow{\forall x \underline{f}, mx \overline{z}} = \underbrace{\xrightarrow{f}, mx \overline{z}}_{\mu \overline{z}} \underbrace{\xrightarrow{f}, mx \overline{z}} \underbrace{$ Ext (2, 2) ->0 $=) E_{x} + \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{1}{2} = \frac{1}{2}$ Now if nisold n<k → H"(X,Z)=0

If n is even
$$n \leq k$$

 \mathbb{P}_{L}
 $0 \rightarrow \mathbb{E} \times \mathbb{E}^{L} (H_{N-1}(X), \mathbb{P}) \rightarrow \mathbb{H}^{n}(X, \mathbb{P}) \rightarrow \mathbb{H}_{n}(H_{n}(X), \mathbb{P}) \rightarrow \mathbb{P}$
 $\Rightarrow \mathbb{H}^{n}(X, \mathbb{P}) = \mathbb{P}_{L}$
If $n > k$ Den
 $0 \rightarrow \mathbb{E} \times \mathbb{E}^{L} (\mathbb{H}_{n-1}(X), \mathbb{P}) \rightarrow \mathbb{H}^{n}(X, \mathbb{P}) \rightarrow \mathbb{H} an (\mathbb{H}_{n}(X), \mathbb{P}) \rightarrow 0$
 $\Rightarrow \mathbb{E}^{n} (\mathbb{K}, \mathbb{P}) = 0$
 $\Rightarrow \mathbb{I}^{n} (\mathbb{K}, \mathbb{P}) = 0$
 $\Rightarrow \mathbb{I}^{n} (\mathbb{K}, \mathbb{P}) = \mathbb{P}_{L}$ n is even $0 \leq n \leq k$
 $= \mathbb{P} \quad \mathbb{H}^{n} = 0$
 $\equiv 0 \quad \text{Stherwise}$
 $\text{Similarly } \mathbb{E} k \text{ is odd wing the same vesalts we have
 $\mathbb{H}^{n}(X, \mathbb{P}) = \mathbb{P}_{L} \quad 0 < n < k \quad n = 0$
 $= 0 \quad \text{Stherwise}$
 $= \mathbb{P} \quad \mathbb{H}^{n} = 0$$

(b) We have the split exact sequence ¥n>0 $\supset \rightarrow H^{N}(X,\overline{z}) \otimes \overline{z}_{m} \rightarrow H^{N}(X,\overline{z}_{m}) \rightarrow Trr^{1}(H^{n+1}(X,\overline{z}),\overline{z}_{m})$ le k be even $\begin{array}{c} I \neq & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & &$ = $H^{\circ}(K, \mathbb{Z}_{m}) = \mathbb{P} \otimes \mathbb{Z}_{m} = \mathbb{Z}_{m}$ Ìf n=L $\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \xrightarrow{\mathsf{H}^{L}} (X, \overline{Z}) \otimes \overline{Z}_{m} \xrightarrow{\mathsf{H}^{L}} (X, \overline{Z}_{m}) \xrightarrow{\mathsf{Tor}} (\mathsf{H}^{L}(X, \overline{Z}), \overline{Z}_{m}) \\ \longrightarrow 0 \end{array}$ \exists $H'(X, \mathbb{Z}_m) = Tor'(\mathbb{Z}_{2}, \mathbb{Z}_m) = \mathbb{Z}_{ged(2,m)}$ $\left[Tor \left(\frac{1}{2}/m_{\overline{e}} \right) \frac{1}{2}/m_{\overline{e}} \right) = \frac{1}{2}/d\overline{e} \quad \text{where } dz \text{ ged}(m, n)$) atmz =) O - , Tor (F/mg, F/mg) -> ZO F/2 -> ZO F/2 E/nZ f EnZ arnZ marnZ

=) Tor (P/mZ, Z/nZ) = Kerf Now we have kerf = n Z/n Z where n =] = n'Z/nd Z = Z/dZ Similarly using the same exact sequence we have Hom (Z, Z/nZ) - Hom (Z, Z/nZ) -> Ext (Z/mZ, Z/nZ) -> 0 E/ng x _ f mx E/ng $=) E_{x}t^{1}\left(\frac{\mathcal{P}_{m_{z}}}{\mathcal{P}_{m_{z}}}\right) = \frac{\mathcal{P}_{m_{z}}}{\mathcal{I}_{m_{z}}} = \frac{\mathcal{P}_{m_{z}}}{\mathcal{I}_{m_{z}}}$ $= \frac{\mathcal{E}_{n\mathcal{Z}}}{m(\mathcal{E}_{n\mathcal{Z}})} = \frac{\mathcal{E}_{n\mathcal{Z}}}{d\mathcal{E}_{n\mathcal{Z}}}$ = = = If Iznzk is even then $\xrightarrow{\mathbb{Z}_{L}} \xrightarrow{\mathbb{Q}_{M}} \xrightarrow{\mathbb$ ⇒ (+ (x, Z) = Z & Z m = Z ged(2,m) If I <n <k is old them

$$\begin{split} & If n_{2} \models \text{then} \\ & & \downarrow_{i}^{\mathbb{Z}_{2}} \\ & 0 \rightarrow H^{\mathbb{E}}(\mathcal{K}, \mathbb{F}) \otimes \mathbb{F}_{m} \rightarrow H^{\mathbb{E}}(\mathcal{K}, \mathbb{F}_{m}) \rightarrow \mathbb{T}_{0} \cdot (H^{\mathbb{E}}(\mathcal{K}, \mathbb{F}), \mathbb{F}_{m}) \rightarrow 0 \\ & = H^{\mathbb{E}}(\mathcal{K}, \mathbb{F}_{m}) = \mathbb{F}_{2} \otimes \mathbb{F}_{m} = \mathbb{F}_{ged(2, m)} \end{split}$$
If n>k then $0 \rightarrow H^{(\chi, Z)} \otimes Z_{M} \rightarrow H^{(\chi, Z_{M})} \rightarrow Tor(H^{(\chi, Z)}, Z_{M}) \rightarrow 0$ $\Rightarrow H^{(\times, \mathbb{F}_m)} = 0$ So the Cohomology with coefficients in I'm is given by $H^{n}(\chi, \mathbb{Z}_{m}) = \mathbb{Z}_{gcd(2,m)} \quad o < n \leq k$ - Zm 1-0 = 0 Aherwise Similarly if k is old using the same rosults we have $(+(x, z_m) = Z_m \quad n = 0, k$ = Zged(2,m) O<n<k = 0 Mernisc