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Chapter 1

Definition of topological space and
examples

1.1 Topological spaces

Definition 1.1.1 (Power set). Let X be a set. The power set of X is the set whose
elements are all possible subsets of X. It is denoted P(X).

In particular, the entire set X and the empty set ∅ are elements of P(X).

Definition 1.1.2 (Topology). Let X be a set and let T ⊂P(X) be a subset of the power
set which satisfies the following three conditions:

(1) The empty set ∅ and X are in T ,

(2) If U1, U2, . . . , Ur are finitely many subsets of X which are in T , then the intersection⋂r
i=1 Ui is in T ,

(3) Let I be any set and suppose for each i ∈ I we are given a subset Ui ∈ T . Then⋃
i∈I Ui is in T .

Then we say that T defines a topology on X. The elements of T will be called open subsets
of X for the topology T .

Remark 1.1.3. Often we will write “Let (X, T ) be a topological space”. By this we shall
mean that X is a set and T is a topology on X.

Let us see some examples of topological spaces.
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1.2 Trivial topology

Let X be any set. Let T := {∅, X}. In this example the topology consists of only two
open subsets. It is easy to check that the three defining conditions for T to be a topology
are satisfied. This topology is called the trivial topology on X.

1.3 Discrete topology

Let X be any set. Let T = P(X). In this example, every subset of X is open. It is
easy to check that the three defining conditions for T to be a topology are satisfied. This
topology is called the discrete topology on X.

1.4 Finite complement topology

Let X be any set. Let S be the collection of all subsets U ⊂ X such that X \U is a finite
set (possibly empty). Let T = S

⋃
{∅}. Let us check that the three conditions for being a

topology are satisfied.

1. The empty set is in T since T = S
⋃
{∅}. The set X is in S since X \X = ∅. Thus,

X is in T .

2. Let U1, U2, . . . , Ur be in T . We need to show that
⋂r
i=1 Ui is in T . This is true if

any one of the Ui is empty, since then
⋂r
i=1 Ui = ∅. So let us assume that none of

the Ui are empty. We will show that X \
⋂r
i=1 Ui is a finite set. But

X \
r⋂
i=1

Ui =
r⋃
i=1

(X \ Ui) .

The right hand side is a finite union of finite sets and so is finite. This shows that
the second condition is satisfied.

3. For the third condition, let I be any set. Suppose we are given a collection of subsets
Ui, for every i ∈ I, such that Ui is in T . Then we need to show that

⋃
i∈I Ui is in T .

If all the Ui are empty, then the union is also empty and so it is in T . So now assume
that one of the Ui is not empty. We will be done if we can show that X \

⋃r
i=1 Ui is

a finite set. But

X \
r⋃
i=1

Ui =

r⋂
i=1

(X \ Ui)

and the right hand side is a subset of X \ Ui. Since one of the X \ Ui is a finite set,
it follows that

⋂r
i=1(X \ Ui) is a finite set. This verifies the third condition.
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1.5 Standard topology on R

Let R denote the set of real numbers. Let T be the collection of all subsets U ⊂ R which
satisfy the following condition (∗1).

(∗1) For every x ∈ U there is an ϵ > 0 (which depends on x) such that the interval
(x− ϵ, x+ ϵ) ⊂ U .

Let us check that T satisfies the three conditions for defining a topology.

1. The empty set is in T , this is vacuously true. The entire set R is in T , since if x ∈ R,
then we may take ϵ = 1 and we see that (x− 1, x+ 1) ⊂ R.

2. Let U1, U2, . . . , Ur be in T . We need to show that
⋂r
i=1 Ui is in T . This is true

if
⋂r
i=1 Ui = ∅. So let us assume that

⋂r
i=1 Ui ̸= ∅. Choose x ∈

⋂r
i=1 Ui. For

every i, there is an ϵi > 0 such that (x − ϵi, x + ϵi) ⊂ Ui. Let ϵ = min{ϵi}. Then
(x−ϵ, x+ϵ) ⊂ Ui for every i, and so (x−ϵ, x+ϵ) ⊂

⋂r
i=1 Ui. This verifies the second

condition.

3. For the third condition, let I be any set. Suppose we are given subsets Ui, for
every i ∈ I, such that Ui is in T . Then we need to show that

⋃
i∈I Ui is in T .

Let x ∈
⋃
i∈I Ui. Then x ∈ Ui for some i. Since Ui is in T , there is ϵ such that

(x − ϵ, x + ϵ) ⊂ Ui. Since (x − ϵ, x + ϵ) ⊂ Ui ⊂
⋃
i∈I Ui, this shows that T satisfies

the third condition.

The above topology is called the standard topology on R.

1.6 Standard topology on R2

Let R2 denote the set of tuples (x, y) with x, y ∈ R.

Definition 1.6.1. Let ϵ > 0 and (x, y) ∈ R2. Define

Bϵ(x, y) := {(a, b) ∈ R2
∣∣ |x− a| < ϵ, |y − b| < ϵ}.

Let T be the collection of all subsets U ⊂ R which satisfy the following condition (∗2).

(∗2) For every (x, y) ∈ U there is an ϵ > 0 (which depends on (x, y)) such thatBϵ(x, y) ⊂ U .

Let us check that T satisfies the three conditions for defining a topology.

1. The empty set is in T , this is vacuously true. The whole set R2 is in T , since if
(x, y) ∈ R2, then we may take ϵ = 1 and we see that Bϵ(x, y) ⊂ R2.
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2. Let U1, U2, . . . , Ur be in T . We need to show that
⋂r
i=1 Ui is in T . This is true if⋂r

i=1 Ui = ∅. So let us assume that
⋂r
i=1 Ui ̸= ∅. Choose (x, y) ∈

⋂r
i=1 Ui. For every

i, there is an ϵi > 0 such that Bϵ(x, y) ⊂ Ui. Let ϵ = min{ϵi}. Then Bϵ(x, y) ⊂ Ui
for every i, and so Bϵ(x, y) ⊂

⋂r
i=1 Ui. This verifies the second condition.

3. For the third condition, let I be any set. Suppose we are given subsets Ui, for
every i ∈ I, such that Ui is in T . Then we need to show that

⋃
i∈I Ui is in T . Let

(x, y) ∈
⋃
i∈I Ui. Then (x, y) ∈ Ui for some i. Since Ui is in T , there is ϵ such that

Bϵ(x, y) ⊂ Ui. Since Bϵ(x, y) ⊂ Ui ⊂
⋃
i∈I Ui, this shows that T satisfies the third

condition.

1.7 Standard topology on Rn

Let Rn denote the vector space of n-tuples of real numbers.

Definition 1.7.1. Let ϵ > 0 and (x1, x2, . . . , xn) ∈ Rn. Define

Bϵ(x1, x2, . . . , xn) := {(a1, a2, . . . , an) ∈ Rn | |xi − ai| < ϵ}.

Let T be the collection of all subsets U ⊂ Rn which satisfy the following condition (∗n).

(∗n) For every (x1, x2, . . . , xn) ∈ U there is an ϵ > 0 (which depends on (x1, x2, . . . , xn))
such that Bϵ(x1, x2, . . . , xn) ⊂ U .

Let us check that T satisfies the three conditions for defining a topology.

1. The empty set is in T , this is vacuously true. The whole set Rn is in T , since if
(x1, x2, . . . , xn) ∈ Rn, then we may take ϵ = 1 and we see that Bϵ(x1, x2, . . . , xn) ⊂
Rn.

2. Let U1, U2, . . . , Ur be in T . We need to show that
⋂r
i=1 Ui is in T . This is true if⋂r

i=1 Ui = ∅. So let us assume that
⋂r
i=1 Ui ̸= ∅. Choose (x1, x2, . . . , xn) ∈

⋂r
i=1 Ui.

For every i, there is an ϵi > 0 such that Bϵ(x1, x2, . . . , xn) ⊂ Ui. Let ϵ = min{ϵi}.
Then Bϵ(x1, x2, . . . , xn) ⊂ Ui for every i, and so Bϵ(x1, x2, . . . , xn) ⊂

⋂r
i=1 Ui. This

verifies the second condition.

3. For the third condition, let I be any set. Suppose we are given subsets Ui, for
every i ∈ I, such that Ui is in T . Then we need to show that

⋃
i∈I Ui is in T . Let

(x1, x2, . . . , xn) ∈
⋃
i∈I Ui. Then (x1, x2, . . . , xn) ∈ Ui for some i. Since Ui is in T ,

there is ϵ such that Bϵ(x1, x2, . . . , xn) ⊂ Ui. Since Bϵ(x1, x2, . . . , xn) ⊂ Ui ⊂
⋃
i∈I Ui,

this shows that T satisfies the third condition.
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1.8 Exercises

1.8.1. Let X be a set and suppose we are given a collection of topologies {Ti}i∈I on X.
Let

T =
⋂
i∈I
Ti

Since each Ti ⊂ P(X) their intersection T is also a subset of P(X). Show that T is a
topology on X. Is

⋃
i∈I
Ti is a topology on X ?

1.8.2. Let {Ti}i∈I be a family of topologies on X. Show that there is a topology T
contained in all Ti which has the following property: If T ′ is another topology which is
contained in all Ti then T ′ ⊂ T . Thus, T is the unique largest topology contained in all
Ti.
1.8.3. Let {Ti}i∈I be a family of topologies on X. Show that there is a topology T
containing all Ti which has the following property: If T ′ is another topology containing
all Ti then T ⊂ T ′. Thus, T is the unique smallest topology containing all Ti.
1.8.4. Show that

[0, 1] := {x ∈ R | 0 ⩽ x ⩽ 1}

is not an open subset of R in the standard topology.

1.8.5. Let a, b ∈ R. Show that for a < b the interval

(a, b) := {x ∈ R | a < x < b}

is an open set in the standard topology.

1.8.6. Let X be a topological space. Let A be a subset of X such that for every x ∈ A
there is an open subset U such that U ⊂ A and x ∈ U . Show that A is open.

1.8.7. Show that
∞⋂
n=1

(−1
n
,
1

n

)
is not open in standard topology.

1.8.8. Consider the sets [a, b), (a, b] and [a, b]

1. [a, b) = {x | a ⩽ x < b},

2. (a, b] = {x | a < x ⩽ b},

3. [a, b] = {x | a ⩽ x ⩽ b}.

Show that for any a < b the above sets are not open in the standard topology.

1.8.9. This problem uses some concepts from a first course in Real Analysis
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1. Let X = C[0, 1] be the space of all continuous functions f : [0, 1] → R. For any
f ∈ C[0, 1], the supremum norm of f is defined as

||f ||∞ := sup{|f(x)| : x ∈ [0, 1]} .

Notice that ||f ||∞ is well defined in this case. Given any ϵ > 0 and f ∈ C[0, 1], let

Bϵ(f) := {g ∈ C[0, 1] : ||f − g||∞ < ϵ} .

Let T be the collection of all subsets U ⊆ C[0, 1] which satisfy the following con-
dition: for every f ∈ U there exists an ϵ > 0 such that Bϵ(f) ⊂ U . Show that
(C[0, 1], T ) is a topological space.

2. Let p ∈ [0, 1]. Consider the subset Fp ⊂ C[0, 1] defined as

Fp = {f ∈ C[0, 1] | f(p) = 0} .

Show that C[0, 1] \ Fp is an open set in (C[0, 1], T ).



Chapter 2

Basis for a topology

Now that we know what a topology on a set X is, we will see methods of how to specify
a topology on a set X. In this chapter we will see that, roughly speaking, to define a
topology it is enough to specify “sufficiently small” open sets. The open sets will then be
arbitrary unions of these “sufficiently small” sets.

2.1 Basis for a topology

Definition 2.1.1 (Basis). Let T be a topology on a set X. A subset B ⊂ T is called a
basis for T if it satisfies the following property. Let U be in T and let x ∈ U . Then there
is a V in B such that x ∈ V and V ⊂ U .

Lemma 2.1.2. Let B be a basis for a topology T . Then⋃
U∈B

U = X .

Proof. Let x ∈ X. Then there is a V in B such that x ∈ V . Thus,

x ∈
⋃
U∈B

U .

This shows that
X ⊂

⋃
U∈B

U

But every U ⊂ X, and so we also have⋃
U∈B

U ⊂ X .

13
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Proposition 2.1.3. Let B be a subset of P(X) which satisfies the following two condi-
tions

(1)
⋃
U∈B U = X,

(2) If U1, U2, . . . , Ur are in B, then for every x ∈
⋂r
i=1 Ui, there is a W ∈ B such that

x ∈W and W ⊂
⋂r
i=1 Ui.

Let T be the collection of subsets U of X which satisfy the following condition:

(∗) If x ∈ U , then there is a W ∈ B such that x ∈W and W ⊂ U .

Then T is a topology on X. This topology is called the topology generated by B.

Proof. Let us check that T satisfies the three conditions defining a topology. The empty
set is in T because (∗) is vacuously true for ∅. Since

⋃
U∈B U = X, for every x ∈ X there

is a U ∈ B such that x ∈ U ⊂ X. This shows that X is in T . This verifies the first
condition.

For the second condition we need to show that a finite intersection of members of T is
in T . Let U1, U2, . . . , Ur be members of T . If the intersection is empty then it lies in T .
So assume that the intersection is not empty and let x ∈

⋂r
i=1 Ui. Now there is a subset

W in B such that x ∈W and W ⊂
⋂r
i=1 Ui. This shows that

⋂r
i=1 Ui satisfies (∗) and so

it is in T .
The third condition is easily checked and is left as an exercise.

Lemma 2.1.4. Let T be the topology generated by B. (In particular, this means that B
satisfies the two conditions of the previous proposition.) Then B is a basis for T .

Proof. Obvious from the definition of T .
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2.2 Exercises

2.2.1. Let B be the collection of subsets of R of the type (a, b) with a, b ∈ Q. Show that
B is a basis for the standard topology on R.
2.2.2. Let B be the collection of subsets of R2 of the type Bϵ(a, b) with ϵ, a, b ∈ Q. Show
that B is a basis for the standard topology on R2.

2.2.3. Let B be the collection of subsets of Rn of the type Bϵ(a1, a2, . . . , an) with ϵ, ai ∈ Q.
Show that B is a basis for the standard topology on R2.

2.2.4. Let B be a basis for a topology T . Note that B satisfies the two conditions

1.
⋃
U∈B U = X,

2. For finitely many Ui in B, for any x ∈
⋂r
i=1 Ui, there is a W ∈ B such that x ∈ W

and W ⊂ ∩ri=1Ui.

Therefore, by the Proposition 2.1.3, B generates a topology TB. Show that TB = T .
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Chapter 3

Producing new topological spaces

In this chapter we will see how to construct new topological spaces out of known ones.

3.1 Subspace topology

Let X be a topological space and let Y ⊂ X be a subset. Then we can specify a topology
on Y as follows. Let T denote the topology on X. Let TY be the following collection of
subsets of Y .

TY := {U
⋂
Y | U ∈ T } .

Proposition 3.1.1. TY is a topology on Y .

Proof. Taking U = ∅ and U = X we see that ∅, Y ∈ TY . This verifies the first condition
for a topology. If Ui∩Y ∈ TY for i = 1, 2, . . . , r, then ∩ri=1Ui∩Y is in TY since ∩ri=1Ui ∈ T .
This verifies the second condition for being a topology. Finally if Ui ∩ Y ∈ TY for i ∈ I,
then ∪i∈IUi ∩ Y is in TY since ∪i∈IUi ∈ T . This proves that TY is a topology on Y .

The following statements are easy to check:

1. If X is any set with the trivial topology and Y ⊂ X, then the subspace topology on
Y is the trivial topology.

2. If X is any set with the discrete topology and Y ⊂ X, then the subspace topology
on Y is the discrete topology.

3. Let X = R2 with the standard topology and let Y = Z (the set of integers on the
X-axis). Then the subspace topology on Y is the same as the discrete topology.
To see this it is enough to check that every {n} ⊂ Z is in TY . This is true since
{n} = B1/4(n, 0) ∩ Z (see Definition 1.6.1).

17
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Proposition 3.1.2. Let X be a set and let T1 and T2 be two topologies on X. Let B1 be
a basis for T1. If B1 ⊂ T2 then T1 ⊂ T2.

Proof. Let U ∈ T1 be an open subset in the first topology. We need to show that U ∈ T2.
By the definition of a basis, the set U is a union of subsets U =

⋃
i∈I Vi, where each

Vi ∈ B1. As B1 ⊂ T2 we get Vi ∈ T2. By the third condition in the definition of a
topology, it follows that U ∈ T2.

Corollary 3.1.3. Let X be a set and let T1 and T2 be two topologies on X. Let B1 be a
basis for T1 and B2 be a basis for T2. If B1 ⊂ T2 and B2 ⊂ T1 then T1 = T2.

Proposition 3.1.4. Let X be a topological space. Suppose B is a basis for the topology.
If Y ⊂ X then

BY := {V
⋂
Y | V ∈ B}

is a basis for the subspace topology on Y .

Proof. Left as an exercise to the reader.

The point of the next Proposition is the following. On the one hand we have the
standard topology on R, which we denote by SY . On the other hand we have the following
topology on R. We may embed R into R2 by the map i : R → R2 given by x 7→ (x, 0).
This map identifies R with the horizontal axis in R2 and using this identification we can
transfer the subspace topology from the horizontal axis to R. More precisely we mean
the following. Let T denote the standard topology on R2. Let TY denote the subspace
topology on the horizontal axis. Then

TY = {i−1(U) | U ∈ T }

defines a topology on R. The claim of the next proposition is that the above two topologies
are the same.

Proposition 3.1.5. Let X = R2 and let Y = {(x, 0) | x ∈ R}. Then the subspace topology
on Y is the same as the standard topology on R. Here we have identified R with the subset
Y by the map x 7→ (x, 0).

Proof. Let SY denote the standard topology on R and let TY denote the topology on R
described above. A basis for TY is given by sets of the type

i−1(Bϵ(x, y)).

The set i−1(Bϵ(x, y)) is nonempty iff 0 ∈ (y − ϵ, y + ϵ). If it is nonempty then it is equal
to

(x− ϵ, x+ ϵ) = Bϵ(x).
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This shows that the collection i−1(Bϵ(x, y)) is equal to {Bϵ(x)} ∪ {∅}. Thus,

B := {Bϵ(x)} ∪ {∅}

is a basis for TY . But this is also basis for SY . Now using Corollary 3.1.3 it follows that
SY = T .

3.2 Product topology(1)

Let X and Y be topological spaces. Let TX and TY denote the topologies on X and Y .
Consider the set B ⊂P(X × Y ) defined as

B := {U × V | U ∈ TX , V ∈ TY } .

Let us check that B satisfies the two conditions in Proposition 2.1.3. The first is true since
X × Y is in B. For the second condition, let us take (x, y) ∈

⋂r
i=1 Ui × Vi. In particular,

this means that x ∈
⋂r
i=1 Ui and y ∈

⋂r
i=1 Vi. Thus, (x, y) ∈ (

⋂r
i=1 Ui)× (

⋂r
i=1 Vi). Since(

r⋂
i=1

Ui

)
×

(
r⋂
i=1

Vi

)
is in B and

(x, y) ∈

(
r⋂
i=1

Ui

)
×

(
r⋂
i=1

Vi

)
⊂

r⋂
i=1

Ui × Vi

we see that the second condition is also satisfied. Let T denote the topology on X × Y
generated by B. This is called the product topology on X × Y . As we saw in Lemma
2.1.4, B is a basis for the product topology.

We now have two topologies on R2, the first being the standard topology and the
second the product topology, where each factor R is given the standard topology. The
following proposition shows that both these topologies are the same.

Proposition 3.2.1. The product topology on R× R is the same as the standard topology
on R2.

Proof. A basic open set in the standard topology for R2 is of the type Bϵ(x, y). Since

Bϵ(x, y) = Bϵ(x)×Bϵ(y)

it follows that Bϵ(x, y) is open in the product topology.

It is easily seen that if U, V ⊂ R are open sets then U × V is open in the standard
topology on R2. From this it follows that each basic open set in the product topology is
open in the standard topology.

The Proposition now follows from Corollary 3.1.3.
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3.3 Product topology(2)

Let X1, X2, . . . , Xn be topological spaces. We can generalize the preceding discussion and
make X1 ×X2 × . . .×Xn into a topological space. A basis for this topology is given by

B := {U1 × . . .× Un | Ui ∈ TXi} .

It is easily checked that B satisfies the two conditions mentioned in Proposition 2.1.3.
This check is left to the reader.

3.4 Product topology(3)

Now we consider an infinite collection of topological spaces Xi, for i ∈ I. In this case, we
define a collection B as follows

B := {
∏
i∈I

Ui | Ui = Xi for all but finitely many i} .

For each i, we have Ui ⊂ X. Let S ⊂ I be the collection of those indices i such that
Ui ̸= X. The phrase “Ui = Xi for all but finitely many i” is to say that the cardinality of
S is finite.

It is easily checked that B satisfies the two conditions mentioned in Proposition 2.1.3.
This check is left to the reader.
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3.5 Exercises

3.5.1. Let X be a topological space. Suppose B is a basis for the topology. If Y ⊂ X
then show that

BY := {V
⋂
Y | V ∈ B}

is a basis for the subspace topology on Y .

3.5.2. Check that the product topology on R× R× . . .× R (n-fold product) is the same
as the standard topology on Rn.
3.5.3. Consider R2 with the standard topology (which we denote T ). Let Y = R. Let
∆ : Y → R2 denote the map x 7→ (x, x). Note that ∆ embeds Y into R2 as the diagonal.
Let SY be the standard topology on Y and let TY be the subspace topology from R2, that
is,

TY = {∆−1(U) |U ∈ T }.

Show that S∆ = T∆.
3.5.4. Consider the set S1 := {(x, y) | x2+y2 = 1} ⊂ R2. Let T be the subspace topology
on S1. Let B consist of subsets of the type Va,b := {(cos θ, sin θ) | a < θ < b}. Show that
B is a basis for the topology T .
3.5.5. Let X and Y be topological spaces. Let A ⊂ X and let B ⊂ Y . We can give two
topologies on A × B. The first is the product topology, where A is given the subspace
topology from X and B is given the subspace topology from Y . The second is the subspace
topology from the topology on X × Y . Show that these two topologies are the same.

3.5.6. Consider topological spaces Yi, where i ∈ I is an indexing set of infinite size. Let
B be the collection of subsets of

∏
i∈I Yi of the type

∏
i∈I Ui, where each Ui is open in Yi.

1. Show that B satisfies the two conditions required to generate a topology. The
topology generated by this basis is called the box topology.

2. Give an example of topological spaces and continuous maps fi : X → Yi such that
the map f : X →

∏
i∈I Yi, given by x 7→ (fi(x)), is not continuous when

∏
i∈I Yi is

given the box topology.
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Chapter 4

Continuous maps

4.1 Definition and basic properties

Definition 4.1.1. Let X and Y be topological spaces and let f : X → Y be a map of sets.
We say f is continuous if for every open subset V ⊂ Y , the set f−1(V ) is open in X.

Lemma 4.1.2. Let B be a basis for the topology of Y . A map f : X → Y is continuous
iff for every V ∈ B the set f−1(V ) is open in X.

Proof. Let f be continuous. If V is in B, then it is open in Y . Thus, f−1(V ) is open.

Conversely, suppose that f−1(V ) is open for every V in B. Let U be an open subset
of Y and let x ∈ U . Then there is a Vx in B such that x ∈ Vx and Vx ⊂ U . Thus,
U =

⋃
x∈U Vx. Then f

−1(U) =
⋃
x∈U f

−1(Vx). Each f
−1(Vx) is open and since an arbitrary

union of open sets is open, we see that f−1(U) is open.

Lemma 4.1.3. Let f : X → Y and g : Y → Z be continuous. Then g ◦ f : X → Z is
continuous.

Proof. Easy exercise.

Theorem 4.1.4. Let R2 and R have the standard topologies. Consider the addition map
A : R2 → R given by A(x, y) := x+ y. This map is continuous.

Proof. By Lemma 4.1.2 it is enough to check that the inverse image of a basic open set
is open. Let Bϵ(a) be a basic open set. Suppose (x, y) ∈ A−1(Bϵ(a)). Then A(x, y) =
x+ y =: b ∈ Bϵ(a). This means that b ∈ (a− ϵ, a+ ϵ). Therefore, we can find δ > 0 such
that (b− δ, b+ δ) ⊂ (a− ϵ, a+ ϵ).

Let (x′, y′) ∈ Bδ/2(x, y). This means that |x− x′| < δ/2 and |y − y′| < δ/2. Then

|A(x, y)−A(x′, y′)| = |x+ y − x′ − y′| < δ .

23
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Thus, |x+ y − x′ − y′| = |b− x′ − y′| < δ. Thus,

A(x′, y′) ∈ (b− δ, b+ δ) ⊂ Bϵ(a) .

That is, we have proved that A(Bδ/2(x, y)) ⊂ Bϵ(a). Equivalently,

Bδ/2(x, y) ⊂ A−1(Bϵ(a)) .

This proves that A−1(Bϵ(a)) is open. This completes the proof of the Theorem.

Theorem 4.1.5. The multiplication map m : R2 → R given by (x, y) 7→ xy is continuous.

Proof. By Lemma 4.1.2, it suffice to show that the inverse image of a basic open set is
open. For this it suffices to show that if (x, y) ∈ m−1(Bϵ(a)), then there is a δ such that
Bδ(x, y) ⊂ m−1(Bϵ(a)). Since xy ∈ Bϵ(a), there is an ϵ′ < 1 such that Bϵ′(xy) ⊂ Bϵ(a).
Thus, it suffices to find δ such that

Bδ(x, y) ⊂ m−1(Bϵ′(xy)) ⊂ m−1(Bϵ(a)).

Let 0 < δ < 1. If |x− x′| < δ and |y − y′| < δ then

|xy − x′y′| = |xy − x′y + x′y − x′y′|
⩽ |x− x′||y|+ |x′||y − y′|
< δ(|y|+ |x′|)
⩽ δ(|y|+ |x|+ δ)

< δ(|y|+ |x|+ 1) .

As 0 < ϵ′ < 1 we have

δ′ :=
ϵ′

|y|+ |x|+ 1
< 1 .

The above computation shows that if (x′, y′) ∈ Bδ′(x, y) then

|m(x′, y′)−m(x, y)| < ϵ′ .

This shows that (x′, y′) ∈ m−1(Bϵ′(xy)) and so

Bδ′(x, y) ⊂ m−1(Bϵ′(xy)) ⊂ m−1(Bϵ(a)).

This completes the proof of the Theorem.

Theorem 4.1.6. Let X be a topological space and let Yi be a collection of topological
spaces, for i ∈ I. Assume that we are given continuous maps fi : X → Yi, for every i ∈ I.
Then the map f : X →

∏
i∈I Yi defined by f(x) = (fi(x))i∈I is continuous.
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Proof. Let U be an open subset in
∏
i∈I Yi. We need to check that f−1(U) is open in X.

By Lemma 4.1.2 it suffices to check this when U is a basic open set. Recall that in the
product topology, the basic open sets are of the form

∏
i∈I Ui, where Ui = Yi for all but

finitely many i. Let S be a finite subset of I and let us assume that if i /∈ S then Ui = Yi.
We have

f−1(
∏
i∈I

Ui) =
⋂
i∈I

f−1
i (Ui) .

If Ui = Yi, then f
−1
i (Ui) = X. Thus, the above becomes

f−1(
∏
i∈I

Ui) =
⋂
i∈S

f−1
i (Ui) .

Since each fi is continuous, the above is a finite intersection of open subsets of X and so
is open.

Proposition 4.1.7. Let f, g : X → R be continuous functions. Then the function h :
X → R given by x 7→ f(x) + g(x) is continuous.

Proof. We have seen that the map (f, g) : X → R2 given by x 7→ (f(x), g(x)) is continuous.
Also the addition map from R2 → R is continuous. Since h is the composite A ◦ (f, g), it
follows that it is continuous.

Proposition 4.1.8. Let f : X → Z be a continuous map. Suppose that the image of f is
contained in a subset i : Y ⊂ Z. Thus, there is a map fY : X → Y such that f = i ◦ fY .
If we give Y the subspace topology then the map fY : X → Y is continuous.

Proof. Let V be an open subset of Y . Then there is an open subset U of Z such that
V = U

⋂
Z, that is, V = i−1(U). Thus, f−1(U) = f−1

Y (i−1(U)) = f−1
Y (V ). As U is open

and f is continuous, it follows that f−1
Y (V ) is open. Thus, fY is continuous.

Remark 4.1.9. We shall often abuse notation and denote the map fY by f .

Proposition 4.1.10. If f : X → Z is continuous and Y ⊂ X is given the subspace
topology, then the restriction of f to Y is continuous.

Proof. This follows because the inclusion i : Y → X is continuous and the composite of
continuous functions is continuous.

Corollary 4.1.11. Let f : X → R be continuous such that f(x) ̸= 0. Then this defines a
continuous map f : X → R×.

Proposition 4.1.12. Let f, g : X → R be continuous functions such that f(x) ̸= 0. Then
the function x 7→ g(x)/f(x) is continuous.
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Proof. Note that f defines a continuous map X → R×, which we continue to denote by
f . Consider the functions

1. (g, f) : X → R× R× given by x 7→ (g(x), f(x)),

2. R× R× → R× R× given by (x, y) 7→ (x, y−1),

3. R× R× → R given by (x, y) 7→ xy.

All these are continuous and their composite is the function x 7→ g(x)/f(x).

4.2 Projection from a point

Often in geometry we encounter certain natural constructions and maps. In this section
we will give a geometric description of one such map and then use coordinates to check
that this map is continuous.

Let Ht ⊂ Rn+1 denote the hyperplane {xn+1 = t}. Let

X := Rn+1 \H1

Let x be a point in X. Consider the unique straight line in Rn+1 which joins x and the
point p := (0, 0, . . . , 0, 1) ∈ H1. Denote this line by Lx. Since p /∈ H0, Lx is not contained
in H0. The line Lx meets H0 in a point y. Define π(x) = y. Notice that if x′ is any other
point of X which is on Lx, then π(x

′) = π(x).

p = (0, 0, 1)

x

H1

H0

y

Lx
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Let us check that this map is continuous. We will do the check using coordinates. Let
x = (x1, x2, . . . , xn, xn+1). Points on the line joining x with p are of the form

t(x1, x2, . . . , xn+1) + (1− t)(0, 0, . . . , 0, 1) = (tx1, tx2, . . . , txn, txn+1 + 1− t) .

To solve for the point on this line which is on H0, we set the last coordinate equal to 0.
This gives

t =
1

1− xn+1
.

Notice that this is well defined since xn+1 ̸= 1. Thus, we get

(4.2.1) π(x1, x2, . . . , xn+1) = (
x1

1− xn+1
,

x2
1− xn+1

, . . . ,
xn

1− xn+1
) .

This map is continuous since each of the coordinate functions is continuous.

4.3 Homeomorphism

Definition 4.3.1 (Homeomorphism). Let f : X → Y be a bijective continuous map. Let
g : Y → X denote the set theoretic inverse map. If g is continuous then f is called a
homeomorphism.

Lemma 4.3.2. Let f : X → Y be a homeomorphism. Let g : Y → X denote the inverse
of f . Then g is a homeomorphism.

Proof. Left as an exercise.

We will need the following Lemma later.

Lemma 4.3.3. Let X and Y be topological spaces. Let x ∈ X be a point. Consider the
subset x× Y ⊂ X × Y with the subspace topology. This subspace is homeomorphic to Y .

Proof. Consider the natural map f : x × Y → Y given by (x, y) 7→ y. We will show that
this map is a homeomorphism. This map is a bijection with the inverse being given by
y 7→ (x, y).

The composite map x× Y → X × Y → Y , where the first is the obvious inclusion and
the second is the projection, is continuous. The inclusion is continuous since x × Y has
the subspace topology. The projection is continuous is an exercise. This shows that f is
continuous. To show that f is a homeomorphism, it suffices to show that the image of an
open set is open. An open set of x×Y is the intersection of an open subset of X×Y with
x × Y . An open subset of X × Y is the union of basic open subsets, therefore looks like⋃
i∈I Ui × Vi. We have

f
(
(x× Y )

⋂
(
⋃
i∈I

Ui × Vi)
)
=
⋃
i∈I

f((x× Y )
⋂
Ui × Vi) .
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Thus, it suffices to show that f((x × Y )
⋂
U × V ) is open in Y . If x /∈ U , then (x ×

Y )
⋂
U × V = ∅ and so this is trivially true. If x ∈ U , then x× Y

⋂
U × V = x× V , and

under f it has image V , which is open. This proves the lemma.
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4.4 Exercises

4.4.1. Let f : X → Y and g : Y → Z be continuous. Show that g ◦ f : X → Z is
continuous.

4.4.2. Let X be a topological space and let Y be a subset of X. Give Y the subspace
topology. Show that the inclusion map i : Y → X is continuous.

4.4.3. Let Xt denote X with the trivial topology. Let Xd denote X with the discrete
topology. Show that the identity map Xd → Xt is continuous. If the identity map
Xt → Xd is continuous, show that X contains only one point.

4.4.4. Let R have the standard topology. Let a ∈ R and consider the translation map
Ta : R→ R given by Ta(x) = a+ x. Show that Ta is continuous.

4.4.5. Let R have the standard topology. Consider the map R → R given by x 7→ −x.
Show that this map is continuous.

4.4.6. Let R× := R\0. Give R× ⊂ R the subspace topology. Show that the map R× → R×

given by x 7→ x−1 is continuous.

4.4.7. Let Yi be a collection of topological spaces. Consider
∏
i∈I Yi with the product

topology. Show that the projection maps pi :
∏
i∈I Yi → Yi are continuous.

4.4.8. Show that if f, g : X → R are continuous, then the function fg : X → R given by
x 7→ f(x)g(x) is continuous.

4.4.9. Prove by induction on n that the addition and multiplication map from Rn → R
are continuous. The base case for induction is n = 2, which we have already seen.

4.4.10. Use the composite map R ∆−→ Rn → R, where the first denotes the diagonal and
the second denotes multiplication, to show that the polynomial map x 7→ xn is continuous.

4.4.11. Let P be a polynomial in n-variables. Then P defines a map Rn → R, given by

(x1, x2, . . . , xn) 7→ P (x1, x2, . . . , xn)

Show that this map is continuous.

4.4.12. Let xi be a family of topological spaces indexed by i ∈ I. Show that the projection
maps

∏
i∈I Xi → Xi are continuous.

4.4.13. Let f : X → Y be a bijective map which is continuous. Then f is a homeomor-
phism iff for every open set U , the set f(U) is open.

4.4.14. Use a “linear” map to show that (0, 1) is homeomorphic to (a, b).

4.4.15. Show that (−1, 1) is homeomorphic to R.
4.4.16. Define the sphere as

Sn := {(x1, x2, . . . , xn+1) | x21 + x22 + . . .+ x2n+1 = 1}
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Give it the subspace topology from Rn+1. Restricting the map π in equation (4.2.1) to
Sn \ (0, 0, . . . , 0, 1) gives a continuous map

Sn \ (0, 0, . . . , 0, 1)→ Rn

Show that this restricted map is a bijection.

4.4.17. Let Mn(R) be the set of all n× n matrices with real entries. Then clearly Mn(R)
is an R vector space of dimension n2. Considering Mn(R) as a vector space, give it the
standard topology.

(a) Show that the determinant function det : Mn(R) → R, which sends each matrix to
its determinant, is continuous.

(b) Let f : Mn(R) → Mn(R) be given by A 7→ AAT , where AT is the transpose of the
matrix A. Show that f is continuous.

(c) Show that the map f : Mn(R) × Mn(R) → Mn(R) defined by (A,B) 7→ AB is
continuous.

4.4.18. Let GLn(R) := {A ∈Mn(R) | det(A) ̸= 0}. Show that GLn(R) is an open subset
of Mn(R).



Chapter 5

Closed subsets and closures

5.1 Closed sets

Definition 5.1.1. Let Y be a topological space. A subset Z ⊂ Y is called closed if Y \ Z
is an open subset of Y .

Proposition 5.1.2. Let f : X → Y be a map. Then f is continuous iff for every closed
subset Z ⊂ Y , f−1(Z) is a closed subset of X.

Proof. First assume that f is continuous. Let Z ⊂ Y be a closed subset. Then V := Y \Z
is an open subset of Y . Since f is continuous it follows that f−1(V ) is open. Since
f−1(V ) = X \ f−1(Z) it follows by definition that f−1(Z) is a closed subset. This proves
one direction of the Proposition.

Next let us assume that for every closed subset Z ⊂ Y we have f−1(Z) is closed in
X. If V is an open subset in Y , let Z := Y \ V . Then Z is closed in Y and so f−1(Z) is
closed in X. This shows that f−1(V ) = X \ f−1(Z) is open in X. This proves that f is
continuous.

5.2 Closure

Definition 5.2.1. Let X be a topological space and let A ⊂ X be a subspace. Define the
closure of A in X to be the set Ā which contains all points x ∈ X having the following
property: If U is an open subset and x ∈ U , then U

⋂
A ̸= ∅.

As an example, let us check that the closure of (0, 1) in R is [0, 1]. Let U be an open
set which contains 0. Then there is an ϵ such that Bϵ(0) ⊂ U . Since Bϵ(0) = (−ϵ, ϵ), it
has a nonempty intersection with (0, 1). Similarly, 1 is in the closure. Finally, we need to
show that there is nothing else in the closure. Suppose x /∈ [0, 1], then we can find an ϵ
such that Bϵ(x)

⋂
[0, 1] = ∅. This shows that x is not in the closure. In the same way we

can see that the closure of (a, b) in R is [a, b].
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We emphasize that the closure depends on where the closure is being taken. For
example, the closure of (0, 1) in (0, 3) is (0, 1]. The same proof as above shows that 1 is
in the closure. Note that 0 /∈ (0, 3) and so it is not in the closure of (0, 1) in (0, 3).

Proposition 5.2.2. A set A is closed iff A = Ā.

Proof. For any set it is obvious A ⊂ Ā. Let us assume that A is closed, which implies
that X \ A is open in X. Suppose that x /∈ A. Then x ∈ X \ A which is open. Further,
(X \ A)

⋂
A = ∅ and this shows that x /∈ Ā. This implies that (X \ A) ⊂ (X \ Ā). This

shows that Ā ⊂ A which proves that A = Ā.
Next assume that A = Ā. Let x /∈ A. Then x /∈ Ā. Thus, there is an open set which

contains x and does not meet A. In other words, there is an open set which contains x
and is completely contained in X \ A. Thus, for every x ∈ X \ A there is an open subset
U such that x ∈ U ⊂ (X \A). This shows that X \A is open. Thus, A is closed.

Definition 5.2.3. Let X be a topological space. A subset T is said to be dense in X if its
intersection with every nonempty open subset is nonempty.

Proposition 5.2.4. A is dense in A.

Proof. If not, then there is an open subset U ⊂ A such that U
⋂
A = ∅. If x ∈ U , then

on the one hand we have x ∈ Ā. On the other hand we have, by the definition of closure,
that x /∈ A. This gives a contradiction.

Let X be a topological space and let A be a subspace. Let B be a closed subset of A.
Apriori it is not clear if B is obtained by intersecting a closed subspace with A. We prove
in the next Lemma that this is indeed the case.

Lemma 5.2.5. Let A be a subset of X with the subspace topology. The closed subsets of
A are precisely the subsets of the form Z ∩A, where Z is closed in X.

Proof. Let T be a closed subspace of A. Then A \ T is an open subset of A. By the
definition of subspace topology it follows that there is an open subset U ⊂ X such that
U ∩A = A \ T .

A simple set theoretic check shows that

A \ (U ∩A) = (X \ U) ∩A .

From this it follows that

(X \ U) ∩A = A \ (U ∩A) = A \ (A \ T ) = T .

Thus, we have written T as the intersection of a closed subset with A.
Conversely, if Z is a closed subspace of X then (X \ Z) ∩ A is open in A. One easily

checks that the complement of this in A is Z ∩ A, which shows that Z ∩ A is closed in
A.
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Lemma 5.2.6. Let X be a topological space and let A be a closed subspace. Let B be a
closed subset of A. Then B is a closed subset of X.

Proof. From the previous lemma it follows that there is a closed subspace Z ⊂ X such
that B = Z ∩A. Since the intersection of two closed subspaces is closed, it follows that B
is closed in X.

5.3 Joining continuous maps

Theorem 5.3.1 (Joining continuous maps). Let X be a topological space and let A and B
be closed subsets such that X = A

⋃
B. Suppose we have continuous functions f : A→ Y

and g : B → Y such that f(x) = g(x) for all x ∈ A
⋂
B. Then the function h : X → Y

defined by

h(x) =

{
f(x) x ∈ A
g(x) x ∈ B

is continuous.

Proof. Let Z ⊂ Y be closed. It is enough to check that h−1(Z) is closed. However,

h−1(Z) = (h−1(Z)
⋂
A)
⋃

(h−1(Z)
⋂
B)

= f−1(Z)
⋃
g−1(Z) .

Since f and g are continuous, it follows that f−1(Z) is closed in A and g−1(Z) is closed
in B. Lemma 5.2.6 shows that f−1(Z) and g−1(Z) are closed in X, so their union is also
closed. This proves that h is continuous.
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5.4 Exercises

5.4.1. Show that the sphere Sn is a closed subspace of Rn.
5.4.2. Let In denotes the n×n identity matrix. Show that S := {In} is a closed subset of
Mn(R). More generally, show that for any point x ∈ Rl, the set {x} is a closed subset in
the standard topology.

5.4.3. Let On(R) := {A ∈Mn(R) | AAT = In} and SOn(R) := {A ∈ On(R) | det(A) = 1},
where In is the n×n identity matrix. Show that On(R) and SOn(R) are closed subsets of
Mn(R).
5.4.4. Let f : X → Y be a map. Then f is continuous iff for every closed subset Z ⊂ Y ,
f−1(Z) is a closed subset of X.

5.4.5. Let X and Y be topological spaces and let f : X → Y . Show that f is continuous
iff for every subset A of X, f(A) ⊂ f(A).
5.4.6. Let A,B, and Aα denote subsets of a space X. Prove the following:

(a) If A ⊂ B, then A ⊂ B.

(b) A ∪B = A ∪B.

(c)
⋃
Aα ⊂

⋃
Aα; give an example where equality fails.

5.4.7. Let A ⊂ X and B ⊂ Y . Show that in the space X × Y , A×B = A×B.

5.4.8. Show that Sn is a closed subset of Rn+1.

5.4.9. Let C :=
{( 1

n
, y
) ∣∣∣ n ∈ Z⩾1, 0 ⩽ y ⩽ 1

}
⊂ R2. Find the closure of C in R2 and

R2 \ {(0, 0)}.
5.4.10. Let a < b be real numbers and let A := {x ∈ Q | a < x < b}. Find the closure of
A in Q and in R.



Chapter 6

Metric spaces

In this chapter we will see an important class of topological spaces and explain some of
the earlier ideas like closure, continuity in terms of the metric.

6.1 Topology on a metric space

Definition 6.1.1. A metric on a set X is a function

d : X ×X → R⩾0

which satisfies the following three conditions for all x, y, z ∈ X,

1. d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x),

3. d(x, z) ⩽ d(x, y) + d(y, z).

The third condition is often called triangle inequality. The motivation for this inequality
is the following: If a, b, c ∈ R2 are three points, then the side lengths of the triangle formed
by these three points satisfy the above inequality.

If (X, d) is a metric space, then an open ball of radius r around x0 is the set

Br(x0) := {y ∈ X | d(y, x0) < r} .

The simplest examples of metric spaces are Rn equipped with the metric

d(x, y) = ||x− y||2 =

√√√√ n∑
i=1

(xi − yi)2 .

Lemma 6.1.2. The above function is a metric on Rn.

35



36 CHAPTER 6. METRIC SPACES

Proof. That d satisfies the first two conditions to be a metric is an exercise left to the
reader. To prove triangle inequality it suffices to show that

(6.1.3) ||x− y||2 ⩽ ||x||2 + ||y||2.

This is because d(x, y) = ||x− y||2 and using the above we get

d(x, y) = ||x− y||2 ⩽ ||x− z||2 + ||z − y||2 = d(x, z) + d(z, y) .

Consider the following inner product on Rn

⟨x, y⟩ :=
n∑
i=1

xiyi.

Note that ⟨x, x⟩ = ||x||22. We will first prove the Cauchy-Schwarz inequality which says
that

(6.1.4) |⟨x, y⟩| ⩽ ||x||2||y||2.

For t ∈ R define w := y − tx. Then

0 ⩽ ⟨w,w⟩ = ||y22||+ t2||x||22 − 2t⟨x, y⟩ .

This shows that for fixed x, y, the above quadratic equation (which depends on x and
y) in the variable t always takes non-negative values. Thus, it must have non-positive
discriminant. This gives

|⟨x, y⟩| ⩽ ||x||2||y||2,

which proves (6.1.4). Now

||x− y||22 = |⟨x− y, x− y⟩|
= |⟨x, x⟩+ ⟨y, y⟩ − 2⟨x, y⟩|
⩽ ⟨x, x⟩+ ⟨y, y⟩+ 2|⟨x, y⟩|
⩽ ||x||22 + ||y||22 + 2||x||2||y||2
= (||x||2 + ||y||2)2 .

This proves (6.1.3).

Given a metric on a space X, we can define a topology on X. This topology has as
basis the open balls described above. More precisely, a set U is open in X if for every
x ∈ U , there is an r > 0 (which depends on x) such that, the ball of radius r around x,
Br(x) is contained in U .



6.2. CLOSURES IN METRIC SPACES 37

6.2 Closures in metric spaces

Theorem 6.2.1. Let (X, d) be a metric space. Let Y be a subset of X. Then x ∈ X is in
Y iff there is a sequence of points yn ∈ Y such that limn→∞d(x, yn) = 0.

Proof. Let us assume that x ∈ Y . Then B1/n(x) is an open subset containing x and by

definition of x being in Y we see B1/n(x)
⋂
Y ̸= ∅. Let yn ∈ B1/n(x)

⋂
Y . Then yn is the

required sequence.

Conversely, assume that x /∈ Y . This means that there is an open subset U containing
x such that U

⋂
Y = ∅. There is r > 0 such that Br(x) ⊂ U . Thus, Br(x)

⋂
Y = ∅. Thus,

there is no sequence of points yn ∈ Y such that limn→∞d(x, yn) = 0.

Definition 6.2.2. Let (X, d) be a metric space. We say a sequence of points xn converges
to x if for every ϵ > 0, there is an N such that for all n ⩾ N , xn ∈ Bϵ(x). We denote this
by xn → x.

6.3 Continuous maps between metric spaces

Proposition 6.3.1. Let X and Y be metric spaces and consider the induced topologies
on both. A map f : X → Y is continuous iff for every sequence xn → x, the sequence
f(xn)→ f(x).

Proof. Let us assume that f is continuous. Let xn be a sequence of points converging
to x. By definition, this means that given any ϵ > 0, there is an N such that for all
n ⩾ N , xn ∈ Bϵ(x). Let us consider the open set Bϵ(f(x)). The inverse image of this
f−1(Bϵ(f(x))) is open and contains x. Thus, there is δ such that Bδ(x) ⊂ f−1(Bϵ(f(x))).
Thus, there is N such that for all n ⩾ N , xn ∈ Bδ(x). This shows that for all n ⩾ N ,
f(xn) ∈ Bϵ(f(x)), which proves that f(xn)→ f(x).

Conversely, suppose that for every sequence xn → x, the sequence f(xn) → f(x). To
show that f is continuous, it suffice to show that the inverse image of a closed subset is
closed. Let Z be a closed subset of Y , and let T := f−1(Z). We will show that T = T .
Suppose x ∈ T , this means that there is a sequence of points xn ∈ T such that xn → x.
It is given that f(xn)→ f(x). Since Z is closed and f(xn) ∈ Z, this implies by Theorem
6.2.1 that f(x) ∈ Z, which implies that x ∈ T . Thus, T = T and this shows that T is
closed.

Theorem 6.3.2 (Uniform limit theorem). Let X be a topological space and let Y be a
metric space. Let fn : X → Y , for n ⩾ 1, be continuous functions. Let f : X → Y be a
map. Suppose that for every ϵ > 0, there is N such that for all x ∈ X and for all n ⩾ N
we have d(fn(x), f(x)) < ϵ. Then f is continuous.
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Proof. Let U ⊂ Y be open. We need to show that W = f−1(U) is open. Let x0 ∈ W .
Choose ϵ > 0 such that Bϵ(f(x0)) ⊂ U . Now choose N large enough so that

(6.3.3) d(fn(x), f(x)) < ϵ/3 ∀ x ∈ X, ∀ n ⩾ N .

Since fN is continuous, there is an open subset V such that x0 ∈ V and

(6.3.4) fN (V ) ⊂ Bϵ/3(fN (x0)).

Let x ∈ V , then

1. d(f(x0), fN (x0)) < ϵ/3 by (6.3.3)

2. d(fN (x0), fN (x)) < ϵ/3 by (6.3.4)

3. d(fN (x), f(x)) < ϵ/3 by (6.3.3)

Adding these three and using triangle inequality we get that

d(f(x), f(x0)) < ϵ ∀ x ∈ V .

This shows that x0 ∈ V ⊂ f−1(Bϵ(f(x0))) ⊂ f−1(U), which proves that f−1(U) is open.

Lemma 6.3.5. Let X be a metric space and let C be a subspace. Define dC : X → R by

dC(x) := infy∈Cd(x, y).

The function dC is continuous.

Proof. Suppose z ∈ Bδ(x). Then by triangle inequality

d(z, y) ⩽ d(z, x) + d(x, y).

For y ∈ C we have dC(z) ⩽ d(z, y) and so we get

dC(z) ⩽ d(z, y) ⩽ d(z, x) + d(x, y).

Taking infimum over y ∈ C we get

dC(z) ⩽ d(z, x) + infy∈Cd(x, y) = d(z, x) + dC(x).

If z ∈ Bδ(x) then x ∈ Bδ(z), so we can repeat the above to get

dC(x) ⩽ d(z, x) + dC(z).

This give that
|dC(x)− dC(z)| ⩽ d(z, x) < δ.

Thus, for any ϵ > 0 we can take δ = ϵ and we get that if z ∈ Bδ(x) then

|dC(x)− dC(z)| < ϵ

which proves continuity.
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6.4 Exercises

6.4.1. Let ρ : Rn × Rn → R⩾0 be given by

ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

Prove that ρ defines a metric on Rn. Further, show that the topology induced by ρ is
same as the standard topology of Rn.
6.4.2. Let X be metric space and let C be a subspace of X. Show that the following are
equivalent:

(a) C is a closed subspace of X.

(b) x ∈ C if and only if dC(x) = 0.

6.4.3. Give an example of a sequence of continuous functions fn : X → Y from a metric
space X to a metric space Y such that limn→∞ fn(x) exists for each x ∈ X and the
function f : X → Y defined by f(x) = limn→∞ fn(x) is not continuous.
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Chapter 7

Connected and Path connected
spaces

In this chapter we will understand how to formulate the intuitive notion of being “con-
nected”. For example, intuitively speaking, the subspace (0, 1) ∪ {3} ⊂ R should surely
not be described as being connected, whereas, the subspace [0, 1] should be described as
being connected.

7.1 Connected topological spaces

Definition 7.1.1. Let X be a topological space. We say that X is disconnected if there is
a proper and nonempty subset U which is both open and closed in X. Equivalently, there
are nonempty open sets U and V which are disjoint and such that X = U

⊔
V .

Definition 7.1.2. We say a topological space is connected if it is not disconnected.

Proposition 7.1.3. Let X be a topological space which is disconnected. Let U ⊂ X be a
dense subset. Then U is disconnected.

Proof. In this proposition U has the subspace topology. We will prove the converse. Since
X is disconnected, there is a proper and nonempty subset W ⊂ X which is both open and
closed. Since U is dense in X, it has nonempty intersection with every nonempty open
subset. Thus,

U = (U
⋂
W ) ⊔ (U

⋂
W c).

This shows that U is disconnected since both W and W c are open.

Corollary 7.1.4. Let X be a topological space and let U be a subspace. If U is connected
then U is connected.

Proof. U is dense in U . Now apply the previous proposition.
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Theorem 7.1.5. The interval [0, 1] is connected.

Proof. Let us assume that [0, 1] is not connected. Then there are disjoint and nonempty
sets U and V which are both open and closed in [0, 1] and [0, 1] = U

⊔
V . One of these

contains 0, say U . Let
S := {x ∈ [0, 1] | [0, x] ⊂ U} .

Let a = supx∈Sx. By the definition of supremum, there is a sequence of points xn such
that [0, xn] ⊂ U and xn → a. Since U is closed and each xn is in U , Theorem 6.2.1 shows
that a ∈ U . If a = 1 then we get a contradiction, since this means that [0, 1] ⊂ U , which
would mean that V is empty. Thus, it follows that 0 < a < 1. Since U is also open, there
is an ϵ > 0 such that Bϵ(a) ⊂ U . Thus, [0, a + ϵ/2] ⊂ U , which shows that a + ϵ/2 ∈ S.
This is a contradiction since a was the supremum.

Slightly modifying the above proof yields that the subspace [a, b] ⊂ R is connected.
This is left as Exercise 7.4.1.

Theorem 7.1.6. R is connected.

Proof. Let us assume that R is not connected. Then there exist disjoint and nonempty
open subsets U and V such that R = U

⊔
V . Let a ∈ U and b ∈ V . Without loss of

generality we may assume that a < b. Thus,

[a, b] = ([a, b]
⋂
U)
⊔

([a, b]
⋂
V ) .

Note that [a, b]
⋂
U ̸= ∅ since it contains a and [a, b]

⋂
V ̸= ∅ since it contains b. This

shows that the interval [a, b] is not connected, which is a contradiction.

Note that by an interval we mean any one of the following:

1. R = (−∞,∞),

2. (−∞, b) or (−∞, b] where b ∈ R,

3. (a,∞) or [a,∞) where a ∈ R,

4. (a, b) or [a, b) or (a, b] where a < b are in R,

5. [a, b] where a ⩽ b are in R (if a = b then this has only one point).

Proposition 7.1.7. Let Y ⊂ R be a nonempty connected subspace. Then Y is an interval.

Proof. Let a = infy∈Y y and let b = supy∈Y y. Then we claim that (a, b) ⊂ Y . If not, then
there is c ∈ (a, b) which is not in Y . But then

Y =
(
Y
⋂

(−∞, c)
)⊔(

Y
⋂

(c,∞)
)
.
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This shows that Y is disconnected, which is a contradiction. Thus, (a, b) ⊂ Y as claimed.

Let us consider the case when a, b ∈ R. Then as a and b are the infimum and supremum,
for every y ∈ Y we have a ⩽ y ⩽ b, that is, Y ⊂ [a, b]. Thus, Y is one of the following:
(a, b) or (a, b] or [a, b) or [a, b]. The cases when a = −∞ or b =∞ are done similarly and
we leave these to the reader.

Theorem 7.1.8. If X and Y are connected topological spaces then X×Y with the product
topology is connected.

Proof. Recall from Lemma 4.3.3 that x × Y , with the subspace topology from X × Y , is
homeomorphic to Y . In view of this, x× Y with the subspace topology is connected.

Assume that X × Y is disconnected. Let X × Y = W ⊔W ′ be a disconnection. For
x ∈ X, the subspace x × Y is contained in W or W ′. If not then we get a disconnection
for x× Y , which is not possible since it is connected. Define

U := {x ∈ X | x× Y ⊂W} .

Since W is nonempty, it contains a point (x0, y0) and it follows that x0 × Y ⊂ W , and
so x0 ∈ U . Now consider X × y. It follows that the intersection of this set with W is
nonempty, since both contain (x0, y). Since X is connected, X × y is connected, and so
X×y ⊂W . Since this happens for every y ∈ Y , we see that X×Y ⊂W . This contradicts
the assumption that W ′ ̸= ∅.

Corollary 7.1.9. Rn is connected.

Proposition 7.1.10. Let f : X → Y be a continuous map and assume that X is con-
nected. Then f(X) (with the subspace topology from Y ) is connected.

Proof. If this is not the case, then there is a disconnection for f(X). This means that
there are open sets U and V in Y such that

f(X) = (f(X)
⋂
U)
⊔

(f(X)
⋂
V ) .

This gives a disconnection for X since

X = f−1(U)
⊔
f−1(V ) .

Let X be a topological space. Consider the following relation on the points of X. We
say x ∼ y if there is a connected subspace of X which contains both x and y. Let us check
that this is an equivalence relation. We need to check 3 conditions.

1. x ∼ x : This is clear since the subspace {x} is connected.
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2. If x ∼ y then y ∼ x : This is also clear.

3. If x ∼ y and y ∼ z then x ∼ z : Since x ∼ y, there is a connected subspace U ⊂ X
such that x, y ∈ U . Similarly, there is a connected subspace V ⊂ X such that
y, z ∈ V . Since U

⋂
V ̸= ∅, as y ∈ U

⋂
V , it follows from Exercise 7.4.4 that U

⋃
V

is connected. As x, z ∈ U
⋃
V , it follows that x ∼ z.

This equivalence relation breaks X into equivalence classes.

Proposition 7.1.11. The equivalence classes are connected and closed subsets.

Proof. Let U be an equivalence class. Fix x0 ∈ U . Let y ∈ U be any point. Then there is a
connected subset Vy ⊂ X such that x, y ∈ Vy. Clearly, every point in Vy is equivalent to x
and so Vy ⊂ U (since U is the equivalence class of x). Since this happens for every y ∈ U ,
we see that

⋃
y∈U Vy ⊂ U . However, we also have that U ⊂

⋃
y∈U Vy, since y ∈ Vy for every

y ∈ U . This shows that
⋃
y∈U Vy = U . Further x ∈

⋂
y∈U Vy and by the Exercise 7.4.4,

since each Vy is connected, we see that there union is connected. Thus, U is connected.

It follows from Corollary 7.1.4 that U is connected. This shows that every point of
U is in the equivalence class of x. Since the equivalence class of x is U , it follows that
U ⊂ U . Thus, U = U and so U is closed by Proposition 5.2.2.

Definition 7.1.12 (Components). Each equivalence class is called a component (or more
pedantically connected component) of X.

7.2 Path connected topological spaces

Definition 7.2.1 (Path connected). A topological space X is called path connected if for
any two points x and y, there is a continuous map γ : [0, 1]→ X such that γ(0) = x and
γ(1) = y.

Proposition 7.2.2. A path connected space is connected.

Proof. Let X be path connected. Suppose X is not connected, let X = U
⊔
V be a

disconnection. Let x ∈ U and y ∈ V and let γ : [0, 1] → X be a path joining x and y.
Then [0, 1] = γ−1(U)

⊔
γ−1(V ) is a disconnection for [0, 1], which is a contradiction.

Proposition 7.2.3. The sphere Sn is path connected.

Proof. Recall the stereographic projection from 4.2. Let p denote the north pole of the
sphere, that is, the point (0, 0, . . . , 0, 1) and let q denote the south pole of the sphere, that
is, the point (0, 0, . . . , 0,−1). The stereographic projection from p shows that Sn \ p is
homeomorphic to Rn. Let

πp : S
n \ p→ Rn
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denote this homeomorphism. If x, y ∈ Sn \ p, then there is a path γ : [0, 1] → Rn such
that γ(0) = πp(x) and γ(1) = πp(y). Then π

−1
p ◦ γ is a path joining x and y in Sn.

Now we show that p can be joined to x ∈ Sn \ {p, q}. Use stereographic projection
from q. Since p, x ∈ Sn \ q, it follows as above that p and x can be joined by a path.

Now let x, y ∈ Sn. We claim that x and y can be joined by a path. If x ̸= p and y ̸= p
then both of them are in Sn \ p and can be joined by a path as described above. If one of
them is equal to p, say x = p and y ̸= p then choose z ∈ Sn \ {p, q}. As described above,
there is a path from x to z and there is a path from z to y. It follows from Theorem 5.3.1
that there is a path from x to y. Finally when x = y = p we can simply take the constant
path.

Alternatively, we can do the following. Let x, y ∈ Sn Suppose x ̸= −y. Then consider
the straight line path in Rn+1 which joins x and y, and divide it by the norm. This path
is given by

γ(t) :=
tx+ (1− t)y
||tx+ (1− t)y||

.

To join x and −x, choose a different point y and join x with y and y with −x.

Similar to connected components, we can define path components. Let X be a topo-
logical space. Consider the following relation on the points of X. We say x ∼ y if there
is a continuous map γ : [0, 1] → X such that γ(0) = x and γ(1) = y. It is easy to check
that this is an equivalence relation. This equivalence relation breaks X into equivalence
classes.

Definition 7.2.4 (Path components). Each equivalence class is called a path component.

7.3 Topological space which is connected but not path con-
nected

A connected topological space need not be path connected, as the following example will
show. Let

C0 =
{( 1

n
, y
) ∣∣∣ n ∈ Z⩾1, 0 ⩽ y ⩽ 1

}⋃{
(x, 0)

∣∣∣ 0 < x ⩽ 1
}

⋃{
(0, y)

∣∣∣ 0 < y ⩽ 1
}
.
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· · · · · ·C0 :=

(1, 0)

(1, 1)

(1/2, 0)

(1/2, 1)

Let us first show that this topological space is connected. Note that (0, 0) /∈ C0.
Consider C0 with the subspace topology from R2 \ (0, 0), which is the same as the topology
coming from the metric on R2. Let us first consider the subset

C :=
{( 1

n
, y
) ∣∣∣ n ∈ Z⩾1, 0 ⩽ y ⩽ 1

}⋃{
(x, 0)

∣∣∣ 0 < x ⩽ 1
}
.

It is easily seen that this subspace is path and hence connected. Thus, it’s closure in
R2 \ (0, 0) is connected, by Corollary 7.1.4. That C0 is contained in the closure of C can
be checked in the following way. For any point (0, y) ∈ C0, the sequence ( 1n , y) is in C and
converges to (0, y). Thus, C0 is in the closure. One can easily check that the closure is
exactly C0, by checking that if (x, y) ∈ R2 \ (0, 0) and is not in C0, then there is a small
open ball around it which does not meet C.

However, C0 is not path connected. The idea is that any path joining (0, 1) to (1, 1)
will have to pass through (0, 0), which is not in C0. Let us write a formal proof.

We claim that for any path γ : [0, 1] → C0, such that γ(0) = (0, 1), the image is a
subset of L0, defined below.

(∗) γ([0, 1]) ⊂ {(0, y) | 0 < y ⩽ 1} =: L0 .

If we can show this, then this will mean that there is no continuous path which joins (0, 1)
with (1, 1).

Let us first note that L0 is a closed subset of C0. This is because it is equal to
C0
⋂
{x = 0} and {x = 0} is a closed subset of R2. Let

x0 := sup{x ∈ [0, 1] | γ([0, x]) ⊂ L0}.

There is a sequence xn ∈ [0, x0) such that xn → x0. Since γ is continuous and L0 is closed,
this shows that γ(x0) ∈ L0. If x0 = 1 then γ([0, 1]) ⊂ L0 and this shows (∗). Assume
x0 < 1 and let γ(x0) = (0, y0). Consider the open subset By0/2(0, y0)

⋂
C0. There is a

δ > 0 such that
γ(x0 − δ, x0 + δ) ⊂ By0/2(0, y0)

⋂
C0 .
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· · ·

(0, y0)

L1/n

L0

Since x0 is the supremum, there is a x0 < t < x0 + δ such that γ(t) /∈ L0. This means
that γ(t) = (1/n, y) since γ(t) ∈ By0/2(0, y0). Since (x0−δ, x0+δ) is connected, the image
under γ is connected. This shows that in By0/2(0, y0)

⋂
C0, the two sets L0

⋂
By0/2(0, y0)

and L1/n

⋂
By0/2(0, y0) are in the same connected component. But this is clearly a con-

tradiction.
In the above example, there are two path components, but only one connected com-

ponent.



48 CHAPTER 7. CONNECTED AND PATH CONNECTED SPACES

7.4 Exercises

7.4.1. Show that any interval [a, b] is connected.

7.4.2. Show that S1 is not homeomorphic to [0, 1].

7.4.3. Let X be a topological space and let x ∈ X. Show that the subspace {x} is
connected.

7.4.4. Let X be a topological space and let Ui, for i ∈ I, be a collection of subspaces of
X. If each Ui is connected and

⋂
i∈I Ui ̸= ∅ then

⋃
i∈I Ui is connected.

7.4.5. Use a “straight line” path to show that Rn is path connected.

7.4.6. Let X be path connected and let f : X → Y be a continuous map. Then f(X),
with the subspace topology from Y , is path connected.

7.4.7. Let A and B be topological spaces. Show that A×B is connected if and only if A
and B are connected.

7.4.8. Let A be a proper subset of X, and let B be a proper subset of Y . If X and Y are
connected, show that (X × Y ) \ (A×B) is connected.

7.4.9. Let R\Q denote the set of all irrational numbers. Determine whether the following
sets are connected:

(a) Q×Q ⊂ R2,

(b) R2 \Q×Q ⊂ R2,

(c) R2 \
(
(R \Q)× (R \Q)

)
⊂ R2,

(d) X = {(x, y) | y = 0} ∪ {(x, y) | x > 0 and y = 1
x} ⊂ R2.

7.4.10. Let n > 1. Show that Rn is not homeomorphic to R.
7.4.11. Show that GLn(C) is path connected. (HINT: Find a path joining a matrix A
with I.)

7.4.12. In this exercise we will show that

G := GLn(R)+ := {A ∈ GLn(R) | det(A) > 0}

is path connected.

(a) Let A ∈ G. Show that there is a matrix B ∈ G such that A and B can be joined by a
path (of course, the path has to be in G) and B11 ̸= 0.

(b) Show that there is a matrix C ∈ G of the type[
λ 0
0 D

]
such that B and C can be joined by a path.
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(c) Show that in GL2(R)+ the matrices

[
−1 0
0 −1

]
and

[
1 0
0 1

]
can be joined to[

0 1
−1 0

]
.

(d) If λ < 0 show that

[
λ 0
0 D

]
can be joined to

[
−λ 0
0 D′

]
. Clearly, D′ ∈ G.

(e) If λ > 0 show that

[
λ 0
0 D

]
can be joined to

[
1 0
0 E

]
. Clearly, E ∈ GLn−1(R)+.

(f) Complete the proof, that G is path connected, using induction, the base case being
n = 1 where GL1(R)+ = R>0.

7.4.13. Use the previous exercise to show that SLn(R) is connected.
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Chapter 8

Compactness

In this chapter we will study the properties of compact topological spaces. Compactness
is a generalization of being closed and bounded in Rn (in the standard topology).

8.1 Compact topological spaces

Definition 8.1.1 (Hausdorff). A topological space is called Hausdorff if for any two points
x, y there are open subsets Ux and Uy such that x ∈ Ux, y ∈ Uy and Ux

⋂
Uy = ∅.

If X is Hausdorff and Y ⊂ X is a subspace, then it follows immediately that Y is
Hausdorff. Similarly, if Xi are Hausdorff spaces then so is their product. These easy
assertions are left as exercises, see Exercise 8.4.1.

From now on, unless mentioned otherwise, X will be a Hausdorff topological
space.

An open cover for a topological space X is a collection {Ui, i ∈ I} of open subsets such
that X =

⋃
i∈I Ui. We say that an open cover has a finite subcover if there is a finite

subset J ⊂ I such that X =
⋃
j∈J Uj .

Definition 8.1.2 (Compact). Let X be a Hausdorff topological space. We say X is
compact if for every open cover of X, there is a finite subcover.

Theorem 8.1.3. [0, 1] is compact.

Proof. Suppose we are given an open cover Ui, i ∈ I of [0, 1]. We need to show that this
has a finite subcover. Define

S := {x ∈ [0, 1] | [0, x] is covered by finitely many Ui} .

Then S ̸= ∅ since 0 ∈ S. There is an open subset Uj0 which contains 0. Thus, Uj0 contains
[0, x) for some x > 0. So, for example, x/2 ∈ S. Let x0 := supx∈Sx. Clearly, x0 > 0. Let
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us first show that x0 ∈ S. There is some Uj such that x0 ∈ Uj . Since Uj is open, there is
an ϵ > 0 such that

(x0 − ϵ, x0 + ϵ)
⋂

[0, 1] ⊂ Uj .

There is a sequence of points xn ∈ S such that xn → x0. There is some n such that
x0 − ϵ < xn < x0. Then [0, xn] can be covered by finitely many Ui’s and [xn, x0] ⊂ Uj .
Thus, [0, x0] is covered by these finitely many Ui’s and Uj .

If x0 = 1 then we are done, as this shows that there is a finite subcover. If x0 < 1 then
we get a contradiction as follows. Since x0 ∈ Uj , there is ϵ > 0 such that (x0, x0+ ϵ) ⊂ Uj .
This shows that [0, x0 + ϵ/2] can be covered by finitely many Ui’s, which contradicts that
x0 is the supremum.

8.2 Tube Lemma and products of compact spaces

Next we want to show that the product of two compact topological spaces is compact. We
need the following important lemma for this.

Lemma 8.2.1 (Tube Lemma). Let X be a compact topological space. Let Y be any
topological space. Suppose we are given an open subset W ⊂ X ×Y such that X × y ⊂W .
Then there is an open neighborhood V of y such that X × V ⊂W .

Proof. Recall from Lemma 4.3.3 it follows that X × y is homeomorphic to X and so is
compact. For every x ∈ X, there are open subset x ∈ Ux ⊂ X and y ∈ Vx ⊂ Y such that
(x, y) ∈ Ux × Vx ⊂ Y . Since X is compact and Ux cover X, there is a finite subcover, say
by Uxi . Let V =

⋂r
i=1 Vxi . Then

X × y =
( r⋃
i=1

Uxi

)
× y ⊂

( r⋃
i=1

Uxi

)
× V ⊂

r⋃
i=1

(
Uxi × Vxi

)
⊂W .

This proves that X × V ⊂W .

Theorem 8.2.2. Let X and Y be compact topological spaces. Then X×Y with the product
topology is compact.

Proof. By Exercise 8.4.1 the space X × Y is Hausdorff. Suppose we are given an open
cover Wi, i ∈ I for X × Y . Let y ∈ Y . Then there is a finite subset Jy ⊂ I such that

X × y ⊂
⋃
i∈Jy

Wi .

By Lemma 8.2.1, there is an open Vy ⊂ Y such that y ∈ Vy and X × Vy is contained in⋃
i∈Jy Wi. Thus, for every y ∈ Y , there is an open set Vy ⊂ Y containing y such that

X × Vy is contained in a finite subcover of the Wi’s. Since Y is compact, finitely many of
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these Vy will cover Y . Thus, X×Y is covered by finitely many X×Vy’s and each of these
is covered by finitely manyWi’s. Thus, we have found a finite subcover, which proves that
X × Y is compact.

Corollary 8.2.3. [0, 1]n is compact.

Proposition 8.2.4. Closed subspace of a compact space is compact.

Proof. Let X be compact and suppose that Y ⊂ X is a closed subspace. Let Vi be an
open cover for Y . By the definition of subspace topology, for each i there is a Ui such that
Vi = Ui

⋂
Y . Thus,

X =
(
X \ Y

)⋃⋃
i

Ui

is an open cover for X. Since X is compact, this has a finite subcover. Thus,

Y ⊂ X =
(
X \ Y

)⋃ r⋃
i=1

Ui .

Intersecting both sides with Y we see that Y is covered by finitely many Vi’s.

Proposition 8.2.5. Let X be a topological space and let Y ⊂ X be compact subspace.
Then Y is closed in X.

Proof. We will show that U := X \ Y is open.

Let x ∈ U, y ∈ Y . Since X is Hausdorff, there are open subsets Vx ⊂ X and Wy ⊂ X such
that x ∈ Vy and y ∈ Wy and Vy

⋂
Wy = ∅. Since Y ⊂

⋃
y∈Y Wy and Y is compact, there

is a finite subcover. Thus, Y ⊂
⋃r
i=1Wyi . Now consider the finite intersection

⋂r
i=1 Vyi .

This is open since it is a finite intersection and it contains x. Note that

Y
⋂ r⋂

i=1

Vyi ⊂
( r⋃
i=1

Wyi

)⋂( r⋂
i=1

Vyi

)
= ∅ .

This is because if there is a point t ∈
(⋃r

i=1Wyi

)⋂(⋂r
i=1 Vyi

)
then t ∈Wyj for some j,

and then t ∈ Vyj , which is not possible. Thus,
(⋂r

i=1 Vyi

)
is an open set which contains

x and is contained in U , which shows that U is open.

Corollary 8.2.6. Let Y ⊂ Rn. Then Y is compact iff Y is closed and bounded.

Proof. Assume that Y is compact. Then Proposition 8.2.5 shows that Y is closed. Since
Y ⊂ Rn =

⋃
n⩾1B(0,0,...,0)(n) and Y is assumed to be compact, there is a finite subcover.

This shows that Y is bounded.
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Conversely assume that Y is closed and bounded. Then Y ⊂ [0, x]n for some x suffi-
ciently large. Since [0, x] is compact, as it is homeomorphic to [0, 1], and the product of
compact spaces is compact, this shows that Y is a closed subspace of a compact space.
Thus, Y is compact by Proposition 8.2.4.

Proposition 8.2.7. Let f : X → Y be a continuous map. Let Z ⊂ X be a compact
subspace. Then f(Z) ⊂ Y is a compact subspace.

Proof. Let f(Z) ⊂
⋃
i∈I Ui be an open cover. Then Z ⊂

⋃
i∈I f

−1(Ui) is an open cover for
Z. Thus, there is a finite subcover Z ⊂

⋃r
j=1 f

−1(Uij ). It follows that f(Z) ⊂
⋃r
j=1 Uij .

Thus, f(Z) is compact.

Proposition 8.2.8. Let f : X → Y be a bijective continuous map. If X is compact then
f is a homeomorphism.

Proof. Let U ⊂ X be open. We need to show that f(U) is open. The set Z := X \ U is
closed in X and so is compact. Thus, f(Z) is compact and since Y is Hausdorff, f(Z) is
closed. Since f is a bijection, it follows that f(U) = Y \ f(Z) which is open.

We will not prove the following important Theorem. For a proof see [Mun00, Theorem
37.3].

Theorem 8.2.9 (Tychonoff). An arbitrary product of compact topological spaces is com-
pact.

8.3 Compact metric spaces

Theorem 8.3.1. Let X be a metric space. Then X is compact iff every sequence has a
convergent subsequence.

Proof. First assume that X is compact and let xn ∈ X be a sequence. Let S = {xn}n⩾1.
If S is a finite set, then there is a y ∈ Y0 such that there are infinitely many n such that
xn = y and so we are done. Let us assume that S is infinite and we may further assume that
the xn’s are distinct. Let Y = {xn}n⩾1. Then Y is a closed subspace of a compact space,
and so is compact. If x ∈ Y \S, then we are done, as it is clear that there is a subsequence
converging to x. So let us assume that Y = S. Notice that all the xn are distinct. If there
is some xj such that there is a subsequence converging to xj , then we are done. Otherwise,
this means that for each j there is an ϵj > 0 such that Bϵj (xj)

⋂
Y contains only xj . Then

these form an open cover for Y which has no subcover, contradicting the compactness of Y .

Next let us assume that every sequence has a convergent subsequence and show that
X is compact. Let Ui be an open cover for X. We claim that there is a δ > 0, such that
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any ball Bδ(x), of radius δ, is contained in Ui for some i. Let us assume that this is not
the case. Then for every n > 0 there is a ball B1/n(xn) which is not contained in any Ui.
The sequence xn has a convergent subsequence, say xnj → x0. Now x0 is in some Ui0 and
so there is a δ > 0 such that Bδ(x0) ⊂ Ui0 . Since xnj → x0, we get xnj ∈ Bδ/2(x0) for

j ≫ 0. If 1
nj
< δ/2 then B1/nj

(xnj ) ⊂ Bδ(x0) ⊂ Ui0 , which is a contradiction. This proves

the claim.
We use this claim to show that X is covered by finitely many closed balls Bδ/2(x).

Since each Bδ/2(x) ⊂ Bδ(x) ⊂ Ui for some i, it will follow that finitely many Ui’s cover

X. Choose any y1 ∈ X and define X1 := Bδ/2(y1). Assume that we have defined Xn. If

Xn = X then stop, or else choose yn+1 ∈ X \Xn and define Xn+1 := Xn
⋃
Bδ/2(yn+1). If

this process does not stop in finitely many steps, then we would have produced a sequence
of point yn such that d(yi, yj) ⩾ δ for all i ̸= j. This sequence cannot have a convergent
subsequence, which contradicts our assumption.

Lemma 8.3.2 (Lebesgue number lemma). Let X be a compact metric space. Suppose we
are given an open cover Ui. Then there is a δ > 0, such that for every x, the ball Bδ(x) is
contained in one of the Ui’s.

Proof. Since X is compact, it is covered by finitely many of the Ui’s. Let us call these
U1, U2, . . . , Ur. Let Ci denote X \ Ui. Define a function

f(x) :=

r∑
i=1

dCi(x) .

By Lemma 6.3.5, each dCi(x) is continuous and so f is continuous. Since X is compact,
the image is a compact subset. If 0 ∈ f(X) then it follows that each dCi(x) = 0, that
is, x ∈ Ci for all i, which is not possible. Thus, 0 /∈ f(X). Since f(X) is closed and
0 /∈ f(X) it follows that there is δ > 0 such that δ < f(X). It follows that at least one of
the dCi(x) > δ/r. Thus, for any x, there is an i such that the ball Bδ/r(x) ⊂ Ui.

Theorem 8.3.3 (Uniform continuity). Let X be a compact metric space and let f : X → R
be a continuous function. Then for any ϵ > 0 there is a δ > 0 such that if d(x, y) < δ then
|f(x)− f(y)| < ϵ.

Proof. Apply the previous Lemma to the cover

X =
⋃
t∈R

f−1(Bϵ/2(t)) .

There is a δ > 0 such that for every x, there is a t such that the ball Bδ(x) ⊂ f−1(Bϵ/2(t)).
In particular, if y ∈ Bδ(x) then |f(y)− t| < ϵ/2. Since this holds for x ∈ Bδ(x) we get

|f(x)− f(y)| ⩽ |f(x)− t|+ |t− f(y)| < ϵ .

This proves the theorem.
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8.4 Exercises

8.4.1. Let Xi, i ∈ I be Hausdorff topological spaces. Show that
∏
i∈I Xi is Hausdorff.

Let X be a Hausdorff topological space and let Y ⊂ X be a subspace. Show that Y is
Hausdorff.

8.4.2. Show that Sn is compact.

8.4.3. Show that a finite union of compact subspaces of X is compact.

8.4.4. Show that if Y is compact, then the projection map π1 : X × Y → X is a closed
map. (HINT: For a closed subset Z ⊂ X × Y show that the X \ π1(Z) is open.)
8.4.5. Let X and Y be topological spaces and Y be compact. Then f : X → Y is
continuous if and only if the graph of f ,

Gf = {(x, f(x))|x ∈ X},

is closed in X × Y .

8.4.6. Let p : X → Y be a closed continuous map such that p−1(y) is compact for each
y ∈ Y . Show that if Y is compact, then X is compact.

8.4.7. Show that orthogonal groups O(n) are compact. Show that the unitary groups
U(n) are compact.



Chapter 9

Local compactness

A very important class of topological spaces is the class of locally compact topological
spaces. This is obvious since Rn is locally compact, and open and closed subspaces of
locally compact spaces are locally compact. These spaces are important not just because
a lot of them occur “naturally” but also because one can prove many interesting theorems
on these spaces. One such theorem is the Riesz Representation Theorem, see Rudin’s Real
and Complex Analysis, Chapter 2. We will, however, limit ourselves with the (somewhat
boring) topic of one point compactification, which is the main result of this chapter.

9.1 Locally compact topological spaces

Definition 9.1.1. A topological space X is called locally compact if for every x ∈ X, there
is an open set U such that x ∈ U and U is compact.

Lemma 9.1.2. Rn is locally compact.

Proof. Obvious.

Proposition 9.1.3. X is locally compact iff given any neighborhood W of x, there is an
open set V such that V̄ is compact and x ∈ V ⊂ V̄ ⊂W .

Proof. It is obvious that if this condition is satisfied then X is locally compact. Let us
prove the converse.

First recall the proof of Proposition 8.2.5. We proved that if Y is a compact subset
and x /∈ Y , then there are open sets C and D such that Y ⊂ C, x ∈ D and C

⋂
D = ∅.

Let U be a neighborhood of x such that Ū is compact. Let Y := Ū \W
⋂
U . Since Y is

a closed subspace of a compact space, it follows that Y is compact. Since x /∈ Y , there
are open sets C ⊃ Y and x ∈ D as mentioned. Intersecting D with U we may assume
that D ⊂ U . It is clear that D̄

⋂
Y = ∅. Now D̄ ⊂ Ū and D̄

⋂
Y = ∅ implies that
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D̄ ⊂ (Ū \ Y ) =W
⋂
U . Thus,

x ∈ D ⊂ D̄ ⊂W
⋂
U ⊂W .

Since D̄ ⊂ Ū , it follows that D̄ is compact.

9.2 One point compactification

Given a locally compact topological space which is not compact, we can compactify it
in many ways. For example, take the interval I := (−1, 1). This is a locally compact
topological space. This is contained in [−1, 1] which is compact. On the other hand, note
that I is homeomorphic to R and via the stereographic projection R is homeomorphic to
S1 \ {(0, 1)}. Thus, there is a continuous inclusion (−1, 1) ⊂ S1 and since S1 is compact,
we may view S1 also as a compactification of I. However, as we have already seen, S1

is not homeomorphic to [−1, 1] and so these are two different compactifications. Given a
locally compact topological space, we describe a “natural” way to compactify it.

Theorem 9.2.1 (One point compactification). Let X be a locally compact topological
space which is not compact. Then there is a compact topological space X̂ such that

(1) X ⊂ X̂ is an open subspace,

(2) X̂ is compact and Hausdorff,

(3) X̂ \X is a point.

If Y is another topological space satisfying the above conditions, then Y is homeomorphic
to X̂.

Proof. Let X̂ be the set X ⊔ {p}. For open subsets of X̂ take those subsets U ⊂ X̂ which
satisfy any one of the following conditions

(1) U is ∅ or X̂,

(2) p /∈ U and U is open in X,

(3) p ∈ U and X̂ \ U(= X \ U) ⊂ X is compact.

Let us check that this collection, call it T , satisfies the conditions for being a topology on
X̂. Obviously, the empty set and X̂ are in T .

Let Ui be a finite collection in T . First assume that p ∈
⋂
i Ui. In this case, for

⋂
i Ui

to be open we need to check that

X \
⋂
i

Ui =
⋃
i

X \ Ui
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is compact. But this being a finite union of compact sets is compact. Next assume that
p /∈

⋂
i Ui. Then ⋂

i

Ui =
⋂
i

(
X
⋂
Ui

)
.

If p /∈ Ui, then X
⋂
Ui = Ui. However, if p ∈ Ui then X

⋂
Ui = Ui \ {p} ⊂ X. Let

Z denote X \ Ui = X \
(
Ui \ {p}

)
. Since Z is compact, it is closed and it follows that

X \ Z = Ui \ {p} = X
⋂
Ui is open in X. It follows that each X \ Ui is open in X. Since

a finite intersection of open sets is open it follows that
⋂
i Ui is open in X and so is in T .

Let Ui be an arbitrary collection of elements in T . If p /∈
⋃
i Ui then p /∈ Ui and each

Ui is open in X. Thus,
⋃
i Ui is open in X and so it is in T . Next consider the case when

p ∈
⋃
i Ui. This means that p ∈ Uj for some j. Now

X \
⋃
i

Ui =
⋂
i

X \ Ui .

Notice that X \Ui is always closed in X, since if p ∈ Ui then X \Ui is compact and hence
closed, and if p /∈ Ui then Ui is open in X and so X \Ui is closed. Since X \Uj is compact,
and a closed subspace of a compact space is compact, it follows that

⋃
i Ui is in T .

It is clear that X̂ \X is a point. Let us check that X̂ is Hausdorff. If x, y ∈ X, then
there are open sets Ux, Uy in X such that Ux contains x, Uy contains y and Ux

⋂
Uy = ∅.

Clearly Ux and Uy are open in X̂. Let x ∈ X. Since X is locally compact, there is a
neighborhood U of x such that Ū ⊂ X is compact. Let V := X̂ \ Ū . Then V is an open
neighborhood of p which does not meet U . This shows that X̂ is Hausdorff.

Let us check that X̂ is compact. Suppose we are given an open cover Ui of X̂. There is
a j such that p ∈ Uj . Then X̂ \ Uj is compact. There is a finite subcollection of Ui which
covers X̂ \ Uj . This subcollection along with Uj covers all of X̂. Thus, X̂ is compact.

Let us check that X ⊂ X̂ is a subspace. Every open subset of X is already open in the
subspace topology. We need to check that if U is open in X̂ then U

⋂
X is open in X. If

p /∈ U then this is clear. If p ∈ U , then as we have already seen, X
⋂
U = X \ Z, where

Z = X \ U is compact. Thus, X
⋂
U is open in X.

Suppose Y is another topological space which satisfies these three conditions. Let
y = Y \ X. Define a map Φ : X̂ → Y by defining it to be identity on X and Φ(p) = y.
If V ⊂ Y \ {y} then clearly Φ−1(V ) is open in X̂. Let V be an open subset of Y which
contains y. Then Y \ V is a compact subspace of X. Thus, Φ−1(Y \ V ) = X̂ \ Φ−1(V ) is
a compact subspace of X, since Φ is the identity on X. Since p ∈ Φ−1(V ), it follows that
Φ−1(V ) is open in X̂. Thus, Φ is continuous. It now follows from Proposition 8.2.8 that
Φ is a homeomorphism.

The one point compactification of a locally compact topological space has the following
universal (see section 10.1 for what we mean by “universal”) property.
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Proposition 9.2.2. Let X be a locally compact topological space which is not compact
and let T be a compact topological space containing X as an open subspace. Then there is
a unique continuous map Φ : T → X̂ which is the identity on X and sends T \X to p.

Proof. Let Φ be as in the statement of the proposition. If V ⊂ X̂ \{p} then clearly Φ−1(V )
is open in T . Let V be an open subset of X̂ which contains p. Then X̂ \ V is a compact
subspace of X. Thus, Φ−1(X̂ \ V ) = T \ Φ−1(V ) is a compact subspace of X. Thus, it is
closed in T . It follows that Φ−1(V ) is open in T . Thus, Φ is continuous.

9.3 Metric spaces which are not locally compact

There is an important class of spaces which are not locally compact. Let X be an infinite
dimensional Hilbert space. We claim that X is not locally compact. Since X is a metric
space, if it were locally compact, then there will be a neighborhood of 0 whose closure is
compact. Thus, there is an r > 0 such that

D(0, r) := {v ∈ H | ||v|| ⩽ r}

is compact. Clearly, the linear map H → H given by multiplication by 1/r is continuous,
thus, D(0, 1) is also compact. Let e1, e2, . . . be an orthonormal set in H. Since D(0, 1) is a
compact metric space, it follows from Theorem 8.3.1 that every sequence has a convergent
subsequence. However, the sequence {ei} has no Cauchy subsequence. This shows that H
is not locally compact.
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9.4 Exercises

9.4.1. Show that the rationals Q are not locally compact.

9.4.2. Let X1, . . . , Xn be locally compact topological spaces. Show that X1 × . . .×Xn is
locally compact.

9.4.3. Let {Xα} be an indexed family of nonempty locally compact spaces. What condition
should we put on X ′

αs so that the product
∏
αXα is locally compact?

9.4.4. Show that closed subspace of a locally compact space is locally compact.

9.4.5. Let X be a locally compact space. Show that if f : X → Y is continuous and open,
then f(X) is locally compact.

9.4.6. If f : X → Y is a homeomorphism of locally compact Hausdorff spaces, show that
f extends to a homeomorphism of their one-point compactifications.

9.4.7. Show that one point compactification of Z+ := {n ∈ Z | n > 0}, is homeomorphic
with the subspace {0} ∪ { 1n | n ∈ Z+} of R.
9.4.8. Show that the one point compactification of Rn is Sn.

9.4.9. Let X = {0} ∪ {n+ 1/n |n ⩾ 3}. Let f : R→ S1 denote the map x 7→ e2πix. Show
that the restriction f |X : X → f(X) is a bijective continuous map of locally compact
topological spaces, but f is not a homeomorphism.
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Chapter 10

Quotient topology

10.1 Example of a universal property

Let us recall the following from group theory. Let G be a group and let H be a subgroup.
Then we have the set G/H of left cosets of H in G. We also have a natural map G→ G/H,
given by g 7→ gH. One of the questions we address is when we can give a group structure
to the set G/H, so that the natural map π : G→ G/H becomes a group homomorphism.
We know that this is possible iff H is a normal subgroup.

Further, if H is normal, then the map π : G→ G/H has a certain “universal” property,
which is the following. If f : G → G′ is a group homomorphism such that H ⊂ Ker(f),
then this group homomorphism factors uniquely through π, that is, there is a unique group
homomorphism f̃ such that the following diagram commutes.

G
f //

π !!D
DD

DD
DD

D G′

G/H
f̃

<<zzzzzzzzz

We will describe a similar construction in topology.

10.2 Quotient topology

Let X be a set (without a topology for the time being) and let ∼ be an equivalence relation
on X. Let Y be the set of equivalence classes X/ ∼ and let π : X → Y denote the natural
map which sends x to its equivalence class. The map π has the property that if f : X → Z
is any map which is constant on each equivalence class, then f factors through π. This

63
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means that there exists f̃ : Y → Z which makes the following diagram commute

X
f //

π   A
AA

AA
AA

A Z

Y
f̃

??~~~~~~~~

Now let us assume that X also has a topology. Suppose we want to give Y a topology so
that π becomes a continuous map. This can be easily done, for example, give Y the trivial
topology. However, we ask a more difficult question. Give Y a topology such that for
every f : X → Z which is continuous and constant on equivalence classes, then induced
map f̃ is also continuous. Apriori, it is not clear if such a topology exists on Y . In fact,
such a topology exists and it is unique.

We define U to be open in Y if the set π−1(U) is open in X. With minimal effort one
should be able to check that this defines a topology on Y and we leave this to the reader.
Let us denote this topological space by Yq.

Proposition 10.2.1. π : X → Yq is continuous.

Proof. We need to check that if U is open in Yq, then π
−1(U) is open in X. But this is

true by the definition of being open in Yq.

Proposition 10.2.2. Let f : X → Z be a continuous map which is constant on equivalence
classes. Then there is a unique continuous map f̃ : Yq → Z such that f = f̃ ◦ π.

Proof. Let f : X → Z be a continuous map which is constant on equivalence classes. Let
U be an open subset of Z. We need to check that f̃−1(U) is open in Yq. By definition, this
is true iff π−1(f̃−1(U)) is open in X. Since π−1(f̃−1(U)) = f−1(U) and f is continuous,
it follows that f̃−1(U) is open in Y and that f̃ is continuous.

Proposition 10.2.3. Yq is the unique topology on Y which has this universal property.

Proof. Let Yt be another topology on Y such that the natural map π : X → Yt is continuous
and has the required universal property. To emphasize the topology, let us denote this
map by πt : X → Yt. Let us consider the diagram

X
πt //

π
��?

??
??

??
? Yt

Yq

π̃t

??�
�

�
�

Note that π̃t is forced to be the identity map at the level of points, this is because the
underlying set of both Yq and Yt is just the set of equivalence classes. Since π̃t is continuous,
it follows that every open subset of Yt is open in Yq.
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Next we consider the diagram

X
π //

πt ��?
??

??
??

? Yq

Yt

π̃

??�
�

�
�

Since πt has the universal property, it follows that π̃, which is just the identity map, is
continuous. This shows that every open subset in Yq is open in Yt, which proves that both
the topologies are the same.

10.3 Grassmannians

As an application of quotient topology, let us construct the space of Grassmannians. First
we need some preliminaries about topological groups.

Definition 10.3.1. Let G be a group along with a topology. Let G×G have the product
topology. We say that G is a topological group if the following two maps are continuous:

1. m : G×G→ G (x, y) 7→ xy

2. i : G→ G g 7→ g−1

We remark that since i2 = Id it follows that i is bijective and a homeomorphism.

The main example of a topological group we have in mind is the group GL(n,R). Let
us check that this is a topological group. Let us check that group multiplication is a
continuous map. Note that the two projections from GL(n,R)×GL(n,R) are continuous.
Further, the coordinate functions on GL(n,R) are continuous. Thus, we see that the
coordinate functions on GL(n,R) × GL(n,R) given by (A,B) 7→ Aij and (A,B) 7→ Bij
are continuous. To show that m is continuous, it suffices to show that the coordinate
functions of m are continuous. But these coordinate functions are polynomials in terms
of the Aij and Bij . Thus, it follows that m is continuous. Similarly, we can easily check
that i is continuous.

The same proof as above shows that GL(n,C) is a topological group.

Let G be a topological group. One easily checks that if H ⊂ G is a subgroup, then H
is a topological group with the subspace topology from G. Using this, it follows that the
subgroups of GL(n,R) and GL(n,C), for example, SL(n,R), SL(n,C), O(n,R), SO(n,R),
U(n), SU(n) are all topological groups.

Lemma 10.3.2. Let G be a topological group. Then the following hold:

(1) The translation maps La, Ra are homeomorphisms
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(2) If {U} is the collection of open sets containing the identity e ∈ G, then for any a ∈ G,
the collection {aU} = {La(U)} = {Ua} = {Ra(U)} is the collection of open subsets
containing a.

(3) Let V be an open subset such that e ∈ V . Then there is an open subset U such that
e ∈ U and U2 := m(U,U) is contained in V .

(4) Let V be an open subset containing x ∈ G. Then there is an open set U containing
e ∈ G such that UxU is contained in V .

Proof. Let a × G ⊂ G × G have the subspace topology. Consider the composition
a × G ↪→ G × G

m−→ G. This composite is La and is continuous as it is the compos-
ite of two continuous functions. Recall from Lemma 4.3.3 that the space a × G with the
subspace topology is homeomorphic to G. This shows that La is continuous. Similarly,
we see that La−1 is continuous. As La and La−1 are inverses of each other, it follows that
La is a homeomorphism. Similarly, it follows thatRa is a homeomorphism. This proves (1).

(2) follows easily using (1).

Using the continuity of m, and since (e, e) ∈ m−1(V ), it follows that there is a basic
open subset W1 ×W2 containing (e, e) and contained in m−1(V ). Letting U = W1 ∩W2

proves (3).

Consider the composite G × x × G ⊂ G × G × G → G given by (a, x, b) 7→ axb. This is
continuous. Again, the subspace topology on G×x×G is the product topology on G×G.
If we denote the above map by ϕ, then it follows that there are open sets W1 and W2

containing e such that W1 × x×W2 ⊂ ϕ−1(V ). Letting U =W1 ∩W2 proves (4).

Lemma 10.3.3. Let H ⊂ G be a closed subgroup. Let x /∈ H. There is an open set U
containing e such that UxU ∩H = ∅.

Proof. Since H is closed and x /∈ H, there is an open set V such that x ∈ V and V ∩H = ∅.
Point (4) of the previous Lemma shows that there is an open set U such that UxU ⊂ V .
Thus, UxU ∩H = ∅.

Proposition 10.3.4. Let H ⊂ G be a closed subgroup. Then G/H with the quotient
topology is a Hausdorff space.

Proof. Note that to talk about the quotient topology, we need an equivalence relation on
G. It is clear that H defines an equivalence relation on G, namely, x ∼ y iff x−1y ∈ H.

Suppose we are given two distinct elements of G/H, say, xH and yH. Since these
are not equal, it follows that x−1y /∈ H. From the previous lemma it follows that there
is an open set U containing e such that Ux−1yU ∩ H = ∅. Replacing U by U ∩ U−1 if



10.3. GRASSMANNIANS 67

necessary (U−1 = i(U) is open and contains e) we may assume that U = U−1. Thus,
U−1x−1yU ∩H = ∅. One checks easily that xUH ∩ yUH = ∅.

Let π : G → G/H denote the canonical map. We claim that π(xUH) is an open
subset. From the definition, we need to check that π−1(π(xUH)) is an open subset.
For any subset A ⊂ G we have that π−1(π(A)) = ∪h∈HAh = AH. In particular,
π−1(π(xUH)) = xUHH = xUH. Also note that xUH = ∪h∈HxUh. Since transla-
tions are homeomorphisms, it follows easily that xUh is an open set. Thus, their union
is also open. Thus, π(xUH) is open and contains xH. Similarly, π(yUH) is open and
contains yH.

Finally we claim that π(xUH) ∩ π(yUH) = ∅. Since π is surjective, for this it suffices
to show that π−1(π(xUH) ∩ π(yUH)) is empty. But

π−1(π(xUH) ∩ π(yUH)) = π−1(π(xUH)) ∩ π−1(π(yUH)) = xUH ∩ yUH = ∅ .

Thus, it follows that G/H is Hausdorff.

We apply the above discussion to the group G = GL(n,R) and the subgroup P (often
called the Parabolic subgroup)

P =

[
A B
0 C

]
A ∈ GL(r,R), C ∈ GL(n− r,R) .

Clearly, P is a closed subgroup. We get the Hausdorff topological space G/P , which is
often called the Grassmannian of r planes in Rn. The name is motivated by the fact that
the points in G/P are in bijection with the set of r-dimensional subspaces of Rn. Let S
denote the set of r-dimensional subspaces of Rn. Let us check this. Define a map

Φ : G→ S

as follows. Given A ∈ GL(n,R), let Φ(A) be the span of the first r column vectors of A.
Given an r-dimensional subspace V ⊂ Rn, choose a basis for V , say v1, . . . , vr. Extend
this to a basis for Rn, v1, . . . , vn. The matrix A := [v1|v2| . . . |vn] obtained by writing the
vi as column vectors is in GL(n,R) and clearly Φ(A) = V .

We claim that Φ(A) = Φ(B) iff there is T ∈ P such that A = BT . Let A =
[v1|v2| . . . |vn] and let B = [w1|w2| . . . |wn]. Then the vi and wi form a basis for Rn.
Thus, writing vi in terms of the wi we see that there is a matrix T such that A = BT .
Taking determinant it is clear that T ∈ GL(n,R). Let 1 ⩽ i ⩽ r. Since vi is in the span
of ⟨w1, . . . , wr⟩, it follows that T ∈ P . This shows that the map Φ factors as

G
Φ //

π !!C
CC

CC
CC

C S

G/P

Φ0

<<zzzzzzzz
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where Φ0 is a bijection. Thus, using Φ0 we can put a topology on S . The space G/P is
often denoted Gr(n, r).

Theorem 10.3.5. Gr(n, r) is a Hausdorff, compact and path connected topological space.

Proof. We have already seen that G/P is Hausdorff and so Gr(n, r) is Hausdorff. To see
compactness, consider the composite map O(n,R) ⊂ GL(n,R) π−→ Gr(n, r). We claim that
this composite map is surjective. Let V ⊂ Rn be an r-dimensional subspace. Then we can
find an orthonormal basis for V , v1, . . . , vr and extend it to an orthonormal basis for Rn,
v1, . . . , vn. The matrix A = [v1|v2| . . . |vn] is in O(n,R) and Φ(A) = V . Thus, it follows
that Gr(n, r) is compact. If det(A) = −1 then replacing vn by −vn we may further assume
that A ∈ SO(n,R). This shows that SO(n,R) surjects onto Gr(n, r). In the exercises it
is proved that SO(n,R) is connected. This proves that Gr(n,R) is connected.

It remains to show that Gr(n, r) is path connected. For that we first make a general
observation. Let X be a connected space such that every point x ∈ X has an open
neighbourhood U with U path connected. Then we claim that X is path connected. To
see this, fix a point x0 ∈ X and consider the set W containing those points which can be
connected to x0 using a path. Since x0 ∈W , it follows that W is nonempty. We claim W
is open. Let x ∈ W . There is an open set U containing x such that U is path connected.
Given any y ∈ U , we can find a path from y to x to x0. This shows that y can be joined
to x0 using a path. Thus, U ⊂ W . This shows that W is open. Next we claim that
W is closed. Suppose x /∈ W . There is an open set U containing x such that U is path
connected. We claim that U ∩W is empty. If not, there is y ∈ U ∩W . Then y can be
joined to x using a path, and y can be joined to x0 using a path. It follows that x can be
joined to x0 using a path. It follows that x ∈ W , a contradiction. Thus, U ∩W is empty
and so X \W is also open. If X \W is nonempty, then this shows that X can be written
as the disjoint union of two nonempty open subsets, contradicting the connectedness of
X. It follows that W is all of X. Thus, every point of X can be connected to x0, and so
X is path connected.

We will use the idea in the preceding para to show that Gr(n, r) is path connected.
Since Gr(n, r) is connected, it suffices to show that every point xP has a open neigh-
bourhood which is path connected. For A ∈ GL(n,R) consider left translation LA :
GL(n,R) → GL(n,R). It is clear that π ◦ LA is constant on equivalence classes, and so
the map descends to give a commutative square in which all maps are continuous.

G
LA //

π
��

G

π
��

G/P
LA // G/P

Further, the set theoretic inverse of LA is LA−1 . It follows that LA induces a homeomor-
phism of G/P . We will show that the coset eP ∈ G/P has a neighbourhood U which
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is path connected. Then for any coset AP , the open set LA(U) is path connected and
contains AP , which will prove the assertion.

Let V ⊂ G be the set of matrices of the type

V :=

[
Ir×r 0
∗ I(n−r)×(n−r)

]
.

Clearly, V is homeomorphic to Rr×(n−r). We claim that π(V ) is an open subset of Gr(n, r).
By definition we need to show that π−1(π(V )) = V P is open in G. We leave it to the
reader to check that V P is the set of matrices A ∈ G such that the r×r minor (aij)1⩽i,j⩽r
has nonzero determinant. Clearly, this is an open subset of G. Thus, it follows that π(V )
is open. As V is path connected, it follows that π(V ) is path connected. This completes
the proof that Gr(n, r) is path connected.

Remark 10.3.6. We continue with the notation in the above proof. Since V ∩P = Id, it
follows easily that π is bijective on V . We claim that π : V → π(V ) is a homeomorphism.
In this remark we will prove this claim. We have already observed that V P is an open
subset of G. We claim that the map V × P → V P is a homeomorphism. By looking at
the coordinates, it is clear that this map is continuous. Let us construct the inverse. Let

X =

[
A B
C D

]
∈ V P .

Then det(A) ̸= 0. We have an equality[
A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]
.

It is clear that the maps

X 7→
[

I 0
CA−1 I

]
X 7→

[
A B
0 D − CA−1B

]
are continuous. It follows that the inverse V P → V × P is continuous. This proves that
V × P → V P is a homeomorphism. In particular, if U is an open subset of V then UP is
open in V P and so in G. This shows that π−1(π(U)) is open in G, that is, π(U) is open in
G/P . Thus, the map π : V → π(V ) is an open map. This proves that the restriction of π
is a homeomorphism from V to π(V ). This remark provides open subsets homeomorphic
to Rn inside G/P which we can use to give it a manifold structure.
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10.4 Exercises

10.4.1. Show that if G is a locally compact topological group and H is a closed subgroup,
then G/H is locally compact (and Hausdorff).

10.4.2. Let G be a topological group. Let H ⊂ G be a subgroup which is connected.
Assume that G/H is connected in the quotient topology. Show that G is connected.
(HINT: Use an idea which we used while showing that if X and Y are connected then
X × Y is connected.)

10.4.3. SO(n+ 1) acts on Sn in a natural way, what is this action? Show that the map

SO(n+ 1)× Sn → Sn

which defines the action is continuous. Show that this action is transitive. Now show that
SO(n+ 1)/SO(n) with the quotient topology is homeomorphic to Sn.

10.4.4. Use the preceding exercise and induction to show that SO(n) is connected.

10.4.5. U(n) acts on S2n−1 in a natural way, what is this action? (HINT: Identify
S2n−1 = {(z1, . . . , zn) ∈ Cn |

∑
i |zi|2 = 1}) Modify the above exercise to show that U(n)

is connected. Similarly, show that SU(n) is connected.

10.4.6. Let X be the topological space Rn+1 \{0}. The multiplicative group R× = R\{0}
acts on X by λ · (a0, . . . , an) := (λa0, . . . , λan). Define an equivalence relation on X by
setting x ∼ y iff x and y are in the same orbit (check that this defines an equivalence
relation). The space X/ ∼ with the quotient topology is denoted PnR and often referred
to as the projective space of lines in Rn+1. Observe that the points of PnR are in bijection
with the set of lines in Rn+1. Show that PnR is compact and path connected.

10.4.7. Let X be the topological space Cn+1 \{0}. The multiplicative group C× = C\{0}
acts on X by λ · (a0, . . . , an) := (λa0, . . . , λan). Define an equivalence relation on X by
setting x ∼ y iff x and y are in the same orbit (check that this defines an equivalence
relation). The space X/ ∼ with the quotient topology is denoted PnC and often referred
to as the projective space of (complex) lines in Cn+1. Show that PnC is compact and path
connected.

10.4.8. In this exercise by k we will mean the field R or C. Consider the group G =
GL(n + 1, k) with the standard topology. Let H denote the “parabolic” subgroup of G
consisting of invertible matrices whose first column is (λ, 0 . . . , 0)t, where λ ∈ k×. Show
that G/H is homeomorphic to Pnk .
10.4.9 (Glueing open subsets). This extremely important construction is used to construct
all sorts of objects in mathematics: smooth manifolds, real analytics manifolds, complex
manifolds, algebraic varieties, schemes etc.

Let I be a set. Let Xi, for each i ∈ I, be a collection of topological spaces. Assume
that for each pair (i, j) we have the following:
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(1) Open sets Xij ⊂ Xi such that Xii = Xi

(2) Homeomorphisms φij : Xij → Xji such that

(a) φij(Xij ∩Xik) = Xji ∩Xjk,

(b) On Xij ∩Xik we have φjk ◦ φij = φik.

Using the above data put an equivalence relation ∼ on the set X :=
⊔
i∈I Xi as follows.

For x ∈ Xi and y ∈ Xj define x ∼ y iff x ∈ Xij and y = φij(x). Let Y be the set X/ ∼
equipped with the quotient topology. Recall that a subset V ⊂ X is open iff V ∩ Xi is
open in Xi for all i.

(i) Consider the canonical map ψi : Xi → Y which is the compositeXi → X → Y . Show
that the image of ψi is an open subset and ψi : Xi → ψi(Xi) is a homeomorphism.

(ii) Let V ⊂ Y be a subset such that V ⊂ ψi(Xi). Show that V is open in Y iff ψ−1
i (V )

is open in Xi.

(iii) Let V ⊂ Y be a subset such that V ⊂ ψi(Xi). Let V have the subspace topology
from Y and let g : V → Z be a map to a topological space Z. Show that g is
continuous iff g ◦ ψi : ψ−1

i (V )→ Z is continuous.
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Chapter 11

Urysohn’s Lemma and
Applications

Given a topological space, it is natural to study continuous maps from it to other topolog-
ical spaces, in particular, continuous functions on the given topological space. Urysohn’s
Lemma says that on a normal topological space there are plenty of continuous functions,
in fact, sufficiently many to separate disjoint closed subsets. Urysohn’s Metrization Theo-
rem gives a necessary condition for the topology to arise from a metric. Obviously, metric
spaces being more “natural” than an abstract topological space, such a theorem is very
desirable.

11.1 Normal spaces and Urysohn’s Lemma

Definition 11.1.1. A topological space X is called normal if for every two disjoint closed
subsets A and B, there are open subsets U and V such that A ⊂ U , B ⊂ V and U

⋂
V = ∅.

Lemma 11.1.2. Let X be a normal topological space. Let A ⊂ U be sets such that A is
closed and U is open. Then there is an open subset V such that A ⊂ V ⊂ V̄ ⊂ U .

Proof. Let B := X \ U . Since X is normal, there are open subsets V and W such that
A ⊂ V , B ⊂ W and V

⋂
W = ∅. This shows that A ⊂ V ⊂ X \W ⊂ U . Since X \W is

closed we have

A ⊂ V ⊂ V̄ ⊂ X \W ⊂ U .

This completes the proof of the Lemma.

Proposition 11.1.3. A metric space is normal.

73
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Proof. Let A and B be closed subsets. Recall the functions dA and dB. For each a ∈ A,
let ϵa := dB(a)/4 and for each b ∈ B, let ϵb := dA(b)/4. Define

U :=
⋃
a∈A

B(a, ϵa), V :=
⋃
b∈B

B(b, ϵb) .

Clearly A ⊂ U and B ⊂ V . We claim that U
⋂
V = ∅. If not, let x ∈ U

⋂
V . There are

a ∈ A and b ∈ B such that x ∈ B(a, ϵa)
⋂
B(b, ϵb). We may assume that ϵa ⩽ ϵb. Then

using triangle inequality we get

d(a, b) ⩽ d(a, x) + d(b, x) ⩽ ϵa + ϵb ⩽ 2ϵb = dA(b)/2,

which is a contradiction.

Proposition 11.1.4. Let X be a metric space and let A and B be disjoint closed subsets.
Then there is a continuous function f : X → [0, 1] such that f(A) = 0 and f(B) = 1.

Proof. Let

f(x) =
dA(x)

dA(x) + dB(x)
.

Now apply Exercise 6.4.2.

The next Theorem is what Munkres describes as a “deep” result !! Indeed, we agree
with the assessment of Munkres and the reader is encouraged to look up the description
of a “deep” result, as mentioned in Munkres, before Urysohn’s Lemma.

Theorem 11.1.5 (Urysohn’s Lemma). Let X be a normal topological space and let A and
B be disjoint closed subsets. Then there is a continuous function f : X → [0, 1] such that
f(A) = 0 and f(B) = 1.

Proof. Suppose we have a continuous function f : X → [0, 1] such that f(A) = 0 and
f(B) = 1. Then for each q ∈ [0, 1) ∩ Q we get the subset Uq = f−1([0, q)) which is open
in X and contained in X \B. Note that if q1, q2 ∈ [0, 1) ∩Q and q1 < q2 then Uq1 ⊂ Uq2 .
As f(Ūq1) ⊂ f(Uq1) ⊂ [0, q1] we get that

Uq1 ⊂ Ūq1 ⊂ Uq2 .

Motivated by this, to prove the Theorem, we shall try to find such a sequence of open
subsets of X and define f using these.

Define U1 = X \ B. Since X is normal and A, B are disjoint closed subsets, with
A ⊂ U1, by applying Lemma 11.1.2, we may find U0 such that

A ⊂ U0 ⊂ Ū0 ⊂ U1 .
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For every p ∈ Q we will define an open subset Up, such that this collection satisfies

(∗) p < t =⇒ Ūp ⊂ Ut .

Step 1 : Define open sets Up for p ∈ Q
⋂
[0, 1] which satisfy condition (∗).

Since Q
⋂
[0, 1] is countable, we can index its elements by N. Thus,

Q
⋂

[0, 1] = {qn}n⩾1 .

We may also choose q1 = 0 and q2 = 1. We have defined sets Uq1 and Uq2 which satisfy
condition (∗). Let us assume that we have defined sets Uqr which satisfy (∗) and then
define Uqr+1 . Consider the set of rational numbers

{q1, q2, . . . , qr, qr+1} .

We know that q1 < qr+1 < q2. There are unique 1 ⩽ i, j ⩽ r such that qi < qr+1 < qj .
The sets Uqi and Uqj have already been defined and satisfy

Ūqi ⊂ Uqj .

Using Lemma 11.1.2, we can find Uqr+1 such that

Ūqi ⊂ Uqr+1 ⊂ Ūqr+1 ⊂ Uqj .

It is clear that for all x, y ∈ {q1, q2, . . . , qr, qr+1} we have

(∗) x < y =⇒ Ūx ⊂ Uy .

Proceeding inductively we construct Up for every p ∈ Q
⋂
[0, 1].

Step 2 : Define Up for all p ∈ Q by setting Up = ∅ for p < 0, and Up = X for p > 1.

Step 3 : Define a function f : X → R as follows:

f(x) := inf{p ∈ Q | x ∈ Up} .

We need to check the following:

(1) f(X) ⊂ [0, 1],

(2) f(A) = 0,



76 CHAPTER 11. URYSOHN’S LEMMA AND APPLICATIONS

(3) f(B) = 1,

(4) f is continuous.

For (1) note that for every x ∈ X, the set {p ∈ Q | x ∈ Up} contains (1,∞), since
if p > 1 then Up = X. This shows that f(x) ⩽ 1 for all x ∈ X. Similarly, note that if
x ∈ Up, then Up ̸= ∅ and so p ⩾ 0. This shows that f(x) ⩾ 0 for all x ∈ X. This proves
(1).

If x ∈ A, then x ∈ U0 and so clearly f(x) ⩽ 0. But we also know that f(x) ⩾ 0, thus,
f(x) = 0. This proves (2).

Let x ∈ B. If f(x) < 1 then there is p ∈ Q such that f(x) < p < 1 and x ∈ Up.
However, x ∈ Up ⊂ Ūp ⊂ U1. This shows that x ∈ U1 = X \ B and x ∈ B, which is a
contradiction. Thus, f(x) ⩾ 1 and since f(x) ∈ [0, 1] it follows that f(B) = 1. This proves
(3).

Now let us show that f is continuous. It suffices to show that for any two rationals c, d
such that c < d, we have f−1(c, d) is open in X. Let x ∈ f−1(c, d). There are rationals
p, q such that

c < p < f(x) < q < d

We claim that

x ∈ Uq \ Ūp and Uq \ Ūp ⊂ f−1(c, d)

As Uq \ Ūp is open, it will follow that f−1(c, d) is open. Since f(x) < q, there is a t ∈ Q
such that f(x) < t < q and x ∈ Ut ⊂ Ūt ⊂ Uq. Since p < f(x) there is s ∈ Q such that
p < s < f(x) and x /∈ Us. As Ūp ⊂ Us and x /∈ Us, it follows that x /∈ Ūp. This shows that
x ∈ Uq \ Ūp.

Now we prove the second part of the claim, that Uq \ Ūp ⊂ f−1(c, d). Suppose y ∈ Uq,
then clearly f(y) ⩽ q < d. If y /∈ Ūp then y /∈ Up and so p ⩽ f(y). Thus, if y ∈ Uq \ Ūp
then we see that f(y) ∈ [p, q] ⊂ (c, d). This shows that Uq \ Ūp ⊂ f−1(c, d). This proves
that f is continuous.

Corollary 11.1.6 (Moral of Urysohn’s Lemma). In a normal topological space, continuous
functions can separate disjoint closed sets.

Theorem 11.1.7 (Tietze Extension Theorem). Let X be a normal topological space and
let A be a closed subset.

1. Let f : A→ [−r, r] be a continuous function. Then we can extend f to a continuous
function X → [−r, r].

2. Let f : A → R be a continuous function. Then we can extend f to a continuous
function X → R.
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Proof. Let Ir denote the interval [−r, r]. Divide Ir into three parts

Ir = Ir1
⋃
Ir2
⋃
Ir3 ,

where Ir1 = [−r,−r/3], Ir2 = [−r/3, r/3] and Ir3 = [r/3, r]. Define a function g1 : X →
[−r, r] as follows. The subsets f−1(Ir1) and f

−1(Ir3) are disjoint closed subsets of A and so
disjoint closed subsets of X. By Urysohn’s Lemma, there is a continuous function

g : X → [−r/3, r/3],

such that g(f−1(Ir1)) = −r/3 and g(f−1(Ir3)) = r/3. Let us denote this function g1(x).
Next let us check that the function g1(x) satisfies, for x ∈ A,

||f(x)− g1(x)||∞ ⩽ 2r/3 .

If x ∈ f−1(Ir1), then −r ⩽ f(x) ⩽ −r/3 and g1(x) = −r/3. Clearly

||f(x)− g1(x)||∞ ⩽ 2r/3 .

Similarly, if x ∈ f−1(Ir3). If x ∈ f−1(Ir2), then both f(x), g(x) ∈ [−r/3, r/3], so ||f(x) −
g1(x)||∞ ⩽ 2r/3 in this case too. Thus, in all cases we see that ||f(x) − g1(x)||∞ ⩽ 2r/3.
Thus, we have a function g1 : X → [−r/3, r/3], such that on the set A,

f(x)− g1(x) : X → [−2r/3, 2r/3].

Divide [−2r/3, 2r/3] into three equal parts as earlier and repeat the above construc-
tion with f(x) replaced by f(x) − g1(x) on A. Doing this we get a function g2 : X →
[−2r/32, 2r/32] such that on the set A,

f(x)− g1(x)− g2(x) : X →
[
− 22r

32
,
22r

32

]
.

In particular, this means that for x ∈ A

||f(x)− g1(x)− g2(x)||∞ ⩽
22r

32
.

In this way, we can construct a sequence of continuous functions

gn : X → [−2n−1r/3n, 2n−1r/3n] ,

such that on A we have,

||f(x)− g1(x)− g2(x)− · · · − gn(x)||∞ ⩽
2nr

3n
.
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If we define

Fn(x) :=
n∑
i=1

gi(x),

then clearly Fn converge uniformly to a function F . Applying Theorem 6.3.2 we see that
F is continuous. It is clear that F (x) agrees with f(x) on the set A. Also

||F (x)|| ⩽
∑
n⩾1

2n−1r

3n
= r ,

which implies that F : X → [−r, r]. This proves the first part of the theorem.
To prove the second part of the theorem, let f : A → R be continuous. Let ϕ : R →

(−1, 1) be a homeomorphism. Let f̃ := ϕ ◦ f . Then

f̃ : A→ (−1, 1) ⊂ [−1, 1]

and so using the previous part we may extend it to a continuous function F̃ : X → [−1, 1]
such that F̃ = f̃ on the set A. Let

D := F̃−1(−1)
⋃
F̃−1(1) .

This is a closed subset which is disjoint from A. Thus, there is a function h : X → [0, 1]
such that h(D) = 0 and h(A) = 1. The function F̃ (x)h(x) has image in (−1, 1) and on A
is equal to f̃ . Thus, the function ϕ−1 ◦ (F̃ h) is the required function.

11.2 Second countability

Definition 11.2.1. A topological space is called second countable if it has a basis of
countable cardinality.

Proposition 11.2.2. Let X be a metric space. Then X is second countable iff X has a
countable dense subset.

Proof. Suppose there is a countable basis B. For each U ∈ B choose an element xU ∈ U .
We claim that the collection {xU} is dense in X. Let V be any open subset, then there is
a basic open set U ⊂ V , and so xU ∈ V . Thus, {xU}∩V ̸= ∅, which proves {xU} is dense.
Clearly this set is countable since B is countable.

Conversely, suppose that there is a countable dense set S. Let

B := {B(s, 1/n) | s ∈ S, n ⩾ 1} .

Clearly B is a countable collection. We claim that B is a basis. Let U be any open subset
and let x ∈ U . Then there is n > 0 such that B(x, 1/n) ⊂ U . Let s ∈ B(x, 1/4n), then
one checks easily that B(s, 1/4n) ⊂ U and it is obvious that x ∈ B(x, 1/4n). This shows
that B is a basis.
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Corollary 11.2.3. The Hilbert space

l2 := {(a1, a2, . . .) | aj ∈ C,
∑
|aj |2 <∞}

is second countable.

Proof. By the preceding proposition, it suffices to prove that there is a countable dense
set. Consider the collection S of those sequences such that only finitely many aj ’s are
nonzero and all the aj ∈ Q + iQ. Suppose b = (b1, b2, . . .) ∈ l2. Then there is k ≫ 0

such that
∑

j⩾k |bj |2 < ϵ2/4. Find aj ∈ Q + iQ so that
∑k−1

j=1 |aj − bj |2 < ϵ2/4. Letting
a = (a1, a2, . . . , ak−1, 0, 0 . . .), we see that

||a− b||22 < ϵ2/2 < ϵ2 .

This shows that S
⋂
B(b, ϵ) ̸= ∅.

Corollary 11.2.4. A compact metric space is second countable.

Proof. For each n ⩾ 1 consider the open cover X =
⋃
x∈X B(x, 1/n). This has a finite

subcover. Let Sn be the set containing the centers of these finitely many balls. Let
S =

⋃
n⩾1 Sn. Let B(x, r) be any open subset. We claim that B(x, r)

⋂
S ̸= ∅. Choose

n ≫ 0 such that 1/n < r/4. Since
⋃
s∈Sn

B(s, 1/n) is a cover of X (by the definition of
Sn), it follows that there is s ∈ Sn such that B(x, r/4)

⋂
B(s, 1/n) ̸= ∅. From this one

checks that s ∈ B(x, r).

11.3 Regular spaces

Definition 11.3.1. A topological space X is called regular if for a point x and a closed
subset A with x /∈ A, there are open sets U and V such that x ∈ U , A ⊂ V and U

⋂
V = ∅.

Theorem 11.3.2. A regular and second countable space is normal.

Proof. Let B denote a countable basis for X. Let C and D be two closed subsets of
X. For x ∈ D, by regularity, we can find a basic open set Vx such that x ∈ Vx and
V̄x
⋂
C = ∅. Since the basis is countable, we may index the collection of basic open sets

{Vx} by positive integers. Thus, we have found Vn such that D ⊂
⋃
n Vn and V̄n

⋂
C = ∅.

Define Wk =
⋃k
n=1 Vn. Then

(1) W1 ⊂W2 ⊂ · · · ,

(2) D ⊂
⋃
nWn,

(3) W̄n
⋂
C = ∅.

Similarly, we can find open sets Un such that
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(1) U1 ⊂ U2 ⊂ · · · ,

(2) C ⊂
⋃
n Un,

(3) Ūn
⋂
D = ∅.

Since D does not meet any of the Ūk, it follows that

D ⊂
⋃
n⩾1

(Wn \ Ūn) .

Similarly,

C ⊂
⋃
n⩾1

(Un \ W̄n) .

We claim that ( ⋃
n⩾1

(Un \ W̄n)
)⋂( ⋃

n⩾1

(Wn \ Ūn)
)
= ∅ .

If not, then there are x, j, k such that

x ∈ (Uj \ W̄j)
⋂

(Wk \ Ūk) .

If j ⩽ k, then we get a contradiction since Uj ⊂ Uk ⊂ Ūk. If j ⩾ k, then we get a
contradiction since Wk ⊂Wj ⊂ W̄k.

11.4 Metrizable spaces

Lemma 11.4.1. Let (X, d) be a metric space. Define d′ on X ×X as follows

d′(x, y) = min{d(x, y), 1} .

Then d′ is a metric on X.

Proof. It is clear that d′(x, x) = min{d(x, x), 1} = 0. If d′(x, y) = 0 then clearly d(x, y) = 0
and so x = y. Similarly, it is clear that d′(x, y) = d′(y, x). Suppose x, y, z ∈ X and
d(x, y) ⩾ 1 or d(y, z) ⩾ 1. Then clearly

d′(x, z) ⩽ 1 ⩽ d′(x, y) + d′(y, z) .

If d(x, y) < 1 and d(y, z) < 1 then d′(x, y) = d(x, y) and d′(y, z) = d(y, z).

(1) If d(x, y) + d(y, z) < 1 then d(x, z) ⩽ d(x, y) + d(y, z) < 1. Thus,

d′(x, z) = d(x, z) ⩽ d(x, y) + d(y, z) = d′(x, y) + d′(y, z).
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(2) Finally, if d(x, y) + d(y, z) ⩾ 1 then

d′(x, z) ⩽ 1 ⩽ d(x, y) + d(y, z) = d′(x, y) + d′(y, z) .

This shows that d′ is a metric on X.

Since the ϵ balls are the same when ϵ < 1, the metric d′ induces the same topology on X
as the metric d.

Let us now take X = R with the standard metric. Let

d′(x, y) := min{|x− y|, 1} .

This modified metric induces the standard topology on R, as remarked above. Let RN :=∏
n⩾1R. Define the following metric on RN

D(x,y) := supi∈N

{
d′(xi, yi)

i

}
.

Lemma 11.4.2. The function D is a metric.

Proof. It is clear that D(x,y) = 0 iff x = y. It is also clear that D(x,y) = D(y,x). For
x,y, z ∈ RN it is clear that for every i ∈ N

d′(xi, zi)

i
⩽
d′(xi, yi)

i
+
d′(yi, zi)

i
.

From this the triangle inequality for D follows by taking supremum. Here we use sup{ai+
bi} ⩽ sup{ai}+ sup{bi}.

Theorem 11.4.3. The metric D induces the product topology on RN.

Proof. Let us first show that every open subset in the product topology is open in the
topology induced by the metric. A basis for the product topology on RN is given by sets

U(x, k, ϵ) = {y ∈ RN | d′(xj , yj) < ϵ ∀ 1 ⩽ j ⩽ k}.

It suffices to show that there is a δ > 0 such that

{y | D(x,y) < δ} ⊂ U(x, k, ϵ).

Now D(x,y) < ϵ/k implies that

d′(xj , yj)

j
⩽ supj∈N

{
d′(xj , yj)

j

}
< ϵ/k .
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If j ⩽ k then this implies that d′(xj , yj) < ϵj/k < ϵ. Thus,

{y | D(x,y) < ϵ/k} ⊂ U(x, k, ϵ).

This shows that every open subset in the product topology is open in the topology induced
by the metric D.

Next let us show that every open subset in the topology induced by the metric is open in
the product topology. Fix an open subset {z | D(x, z) < ϵ}. Choose k so that 1/k < ϵ/2
and let y ∈ U(x, k, ϵ/2). Then

d′(xj , yj)

j
< d′(xj , yj) < ϵ/2 1 ⩽ j ⩽ k,

and for j > k
d′(xj , yj)

j
⩽

1

j
<

1

k
< ϵ/2 .

From this it is clear that

D(x,y) := supi∈N

{
d′(xi, yi)

i

}
⩽ ϵ/2 < ϵ .

Thus, U(x, k, ϵ/2) ⊂ {z | D(x, z) < ϵ < 1}. This shows that every open subset in
the topology induced by the metric is open in the product topology. This proves the
theorem.

Theorem 11.4.4 (Urysohn’s Metrization Theorem). A regular topological space with a
countable basis is metrizable.

Proof. In view of the fact that RN with the product topology is metrizable, it suffices to give
a continuous map f : X → RN which is a bijection onto its image and a homeomorphism
between X and f(X) (f(X) being given the subspace topology from RN).

Let B be a countable basis for the topology on X. For every pair of basic open sets
V and U such that V̄ ⊂ U , by Urysohn’s lemma (since regular and second countable
implies normal), there is a continuous function fV,U : X → [0, 1] such that fV,U (V̄ ) = 1
and fV,U (X \ U) = 0. This gives a countable collection of continuous functions and we
can use these to define a continuous function

F : X →
∏
(V,U)

R , x 7→
∏
(V,U)

fV,U (x) .

Let x, y ∈ X. Since X is Hausdorff there is a basic open set V such that x ∈ V and
y /∈ V̄ . Since X is normal, there is a basic open set W such that x ∈ W ⊂ W̄ ⊂ V .
By Urysohn’s lemma there is a function fW,V : X → [0, 1] such that fW,V (W̄ ) = 1 and
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fW,V (X \ V ) = 0. This implies that fW,V (x) = 1 and fW,V (y) = 0. This shows that the
function F : X → RN is an inclusion.

It only remains to show that if U ⊂ X is open, then F (U) is open in F (X) in the
subspace topology. To do this it suffice to show that if x ∈ U , then there is an open set
Y ⊂ RN such that F (x) ∈ Y

⋂
F (X) ⊂ F (U). For this find basic open sets W,W ′ such

that x ∈W ⊂ W̄ ⊂W ′ ⊂ U . Now consider the projection map πW,W ′ ,

πW,W ′ :
∏
(V,U)

R→ R

and define
Y := π−1

W,W ′(0,∞).

Since πW,W ′ ◦F (x) = fW,W ′(x) = 1, this shows that F (x) ∈ Y
⋂
F (X). Suppose F (y) ∈ Y ,

then this means that fW,W ′(y) > 0, which shows that y ∈ W ′ ⊂ U . This shows that
Y
⋂
F (X) ⊂ F (U), which completes the proof of the theorem.
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11.5 Exercises

11.5.1. Show that a closed subspace of a normal space is normal.

11.5.2. Show that if
∏
Xα is normal then so is Xα.

11.5.3. Show that if
∏
Xα is regular then so is Xα.

11.5.4. Show that every locally compact Hausdorff space is regular.

11.5.5. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X
has a countable basis.

11.5.6. Let X be a locally compact hausdorff space. Is it true that if X has a countable
basis, then X is metrizable? Is it true that if X is metrizable, then X has a countable
basis?

11.5.7. Let X be a compact Hausdorff space that is union of the closed subspaces X1 and
X2. If X1 and X2 are metrizable, show that X is metrizable.

11.5.8. Show that the Tietze extension theorem implies the Urysohn lemma.

11.5.9. Let X and Y be normal and second countable spaces. Show that the same is true
for X × Y .



Chapter 12

Covering maps and Lifting
Theorems

12.1 Covering maps

Definition 12.1.1 (Evenly covered neighborhood). Let f : X → Y be a continuous map.
We say V is evenly covered by f if f−1(V ) =

⊔
i Ui, where each Ui ⊂ X is open and

f |Ui : Ui → V is a homeomorphism for every i.

Let us understand the above definition by means of some examples.

1. Consider the map f : R→ S1 given by f(x) = e2πix. Inside S1 consider open subsets
(for a, b ∈ R)

Va,b := {(cos 2πθ, sin 2πθ) | a < θ < b}

If b − a < 1 then the subsets Va,b are evenly covered by the map f . In fact, in this
case

f−1(Va,b) =
⊔
n∈Z

(a+ n, b+ n)

and the restriction of f from (a+ n, b+ n)→ Va,b is clearly a homeomorphism.

2. If b−a > 1 then the subset Va,b is not evenly covered. In fact, in this case f−1(Va,b) =
R. Since R is connected, if we write R =

⊔
i Ui, with each Ui open and nonempty,

then this forces that the indexing set contains only one element and R = U1. Clearly
f : R→ V(a,b) is not bijective.

3. Consider the restriction of f to R>0. Clearly this map is still surjective. However,
the point 1 ∈ S1 does not have a neighborhood which is evenly covered, which we
now show. It is clear that an open subset of an evenly covered open set is also evenly
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covered. Thus, if 1 had a neighborhood which is evenly covered, then there would
be an 0 < ϵ < 1/4 such that V−ϵ,ϵ is evenly covered. Note that

f−1(V−ϵ,ϵ) = (0, ϵ) ⊔
⊔

n∈Z>0

(−ϵ+ n, ϵ+ n)

If we can write f−1(V−ϵ,ϵ) as a disjoint union of open subsets Ui such that each Ui is
homeomorphic to V−ϵ,ϵ, then it is forced that each Ui is connected. Thus, one of the
Ui has to be (0, ϵ) and f restricted to this is not even surjective. This shows that 1
does not have a neighborhood which is evenly covered.

Definition 12.1.2 (Covering maps). A continuous map f : X → Y is called a covering
map if every y ∈ Y has an open neighborhood which is evenly covered by f .

(1) The map f : R→ S1 given by f(x) = e2πix is a covering map.

(2) The map C→ C× given by z 7→ ez is a covering map.

(3) The restriction of the above map f : R>0 → S1 is not a covering map, as 1 does not
have a neighborhood which is evenly covered.

(4) The map z 7→ zn from C× → C× is a covering map.

(5) If fi : Xi → Yi are covering maps then so is f1 × f2 : X1 ×X2 → Y1 × Y2.

(6) Let f : X → Y be a covering map. Let Z ⊂ Y . Then f : f−1(Z) → Z is a covering
map.

Proposition 12.1.3. Let f : X → Y be a covering. Then f is open.

Proof. Let x ∈ X and letW be an open set containing x. Let V ⊂ Y be an evenly covered
neighborhood of f(x). Then f−1(V ) =

⊔
i Ui and f |Ui : Ui → V is a homeomorphism.

Suppose x ∈ Uj , then x ∈ Uj ∩W . Now

f(Uj ∩W ) = f |Uj (Uj ∩W ) ⊂ V .

This shows that f(Uj∩W ) is an open subset of V which is contained in f(W ) and contains
f(x). Since V is open in Y , this shows that every point in f(W ) has an open neighborhood
contained inside f(W ), that is, f(W ) is open.

12.2 Lifting Theorems

Theorem 12.2.1 (Lifting paths to covers). Let f : X → Y be a covering map. Let
g : [0, 1] → Y be a continuous map. Let g(0) = y0 and let x0 ∈ f−1(y0). Then there is a
unique map g̃ : [0, 1]→ X such that g̃(0) = x0 and f ◦ g̃ = g.



12.2. LIFTING THEOREMS 87

Proof. Let Y =
⋃
y∈Y Vy be an open cover, where Vy is an evenly covered neighborhood

of y. Then [0, 1] =
⋃
y∈Y g

−1(Vy). By Lemma 8.3.2 there is a δ > 0 such that for every
t ∈ [0, 1] we have g([t − δ, t + δ]

⋂
[0, 1]) ⊂ Vy, for some y ∈ Y . Choose n ≫ 0 such that

1/n < δ and write

[0, 1] =
n−1⋃
k=0

[
k

n
,
k + 1

n
] .

Note g([0, 1/n]) ⊂ V for an evenly covered neighborhood V0. Since y0 = g(0) it follows
that y0 ∈ V0. Write

f−1(V0) =
⊔
i

U0i .

Since x0 ∈ f−1(V0), there is a j such that x0 ∈ U0j . We also know that f : U0j → V0 is a
homeomorphism. Let s0 : V0 → U0j denote the inverse of this map. Clearly, s0(y0) = x0.
Define g̃ : [0, 1/n]→ U0j by

g̃(t) = s0(g(t)).

Clearly, g̃ satisfies g̃(0) = x0 and f ◦ g̃ = g on [0, 1/n].

Let x1 := g̃(1/n) and y1 = g(1/n) = f(g̃(1/n)). There is an open set V1 which is
evenly covered and such that g([1/n, 2/n]) ⊂ V1. Proceeding in the same way as above,
write

f−1(V1) =
⊔
i

U1i .

Since x1 ∈ f−1(V1), there is a j such that x1 ∈ U1j . We also know that f : U1j → V1 is a
homeomorphism. Let s1 : V1 → U1j denote the inverse of this map. Clearly, s1(y1) = x1.
Define g̃1 : [1/n, 2/n]→ U1j by

g̃1(t) = s1(g(t)) .

Clearly, g̃1 satisfies g̃1(1/n) = x1 and f ◦ g̃ = g on [1/n, 2/n]. The maps g̃ and g̃1 agree on
1/n, and so by Theorem 5.3.1 we get a continuous map g̃ : [0, 2/n]→ X which lifts g and
g̃(0) = x0. Proceeding in this fashion we can find a lift g̃ on the whole of [0, 1].

Next let us prove that the lift is unique. Suppose there are two lifts of g which satisfy
g̃(0) = x0 = h̃(0). Let

t0 := sup {x ∈ [0, 1] | g̃(t) = h̃(t), 0 ⩽ t ⩽ x} .

If t0 = 1 then there is nothing to prove. Assume t0 < 1. By continuity, since X is
Hausdorff, we have g̃(t0) = h̃(t0). Let V be an evenly covered open set containing g(t0).
There is a δ > 0 such that g([t0, t0 + δ]) ⊂ V . Then

f−1(V ) =
⊔
i

Ui .
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There is a j such that t̃0 := g̃(t0) = h̃(t0) ∈ Uj . Let T denote the connected component
of t0 in f−1(V ). It is clear that T is completely contained in Uj . It follows that

g̃([t0, t0 + δ]) ⊂ Uj , h̃([t0, t0 + δ]) ⊂ Uj .

Let us view g̃, h̃ : [t0, t0 + δ]→ Uj . We know that f : Uj → V is a homeomorphism. Let s
denote the inverse. Then on [t0, t0 + δ],

f ◦ g̃ = f ◦ h̃ .

Applying s to both sides we get,

g̃ = s ◦ f ◦ g̃ = s ◦ f ◦ h̃ = h̃

on [t0, t0 + δ]. This shows that g̃ and h̃ agree on [0, t0 + δ], which is a contradiction. This
completes the proof of the theorem.

Theorem 12.2.2 (Lifting homotopies to covers). Let I := [0, 1]. Let f : X → Y be
a covering map. Let F : I × I → Y be a continuous map. Let y0 := F (0, 0) and let
x0 ∈ f−1(y0). Then there is unique a map F̃ : I × I → X such that F̃ (0, 0) = x0 and
f ◦ F̃ = F .

Proof. The proof is very similar to that of the previous theorem. Cover Y by evenly
covered open sets and pull this back using F to get an open cover of I × I. Denote by
Sδ(a, b) the set

{(x, y) ∈ I × I | |x− a| ⩽ δ, |y − b| ⩽ δ} .

Now using Theorem 8.3.2 find a δ > 0 such that for any (a, b) ∈ I×I the image F (Sδ(a, b))
is contained in an evenly covered neighborhood. Finally choose n≫ 0 such that 1/n < δ.

(0, 0)

B1 B2 ... Bn

Bn+1 Bn+2 ... B2n

...

Divide I × I into squares of side length 1/n and number them as shown in the diagram.
By construction F (Bi) is contained in an open set which is evenly covered. Let us first
lift F on B1. There is an open subset V1 which is evenly covered such that

F (B1) ⊂ V1.
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Write

f−1(V1) =
⊔
i

U1i .

Since y0 ∈ V1 it follows that x0 ∈ U1j for some j. Let s1 : V1 → U1j denote the inverse of
f |U1j . Then clearly

F̃ := s1 ◦ F

lifts F on B1 and satisfies F̃ (0, 0) = x0.

Let Zl :=
⋃l
i=1Bl and assume that we have lifted F |Zl

to F̃ : Zl → X. It is clear
that for every l the subspace T := Bl+1

⋂
Zl is connected. There is an evenly covered

neighborhood Vl+1 such that

F (Bl+1) ⊂ Vl+1.

Let t0 ∈ T be a point. Write

f−1(Vl+1) =
⊔
i

Ul+1,i .

Then F̃ (t0) ∈ Ul+1,j for some j. Let sl+1 : Vl+1 → Ul+1,j denote the inverse of the
restriction of f to Ul+1,j . Since T is connected, it follows that F̃ (T ) ⊂ Ul+1,j . There is a
commutative diagram

Ul+1,j
� � //

f

��

X

f

��
T

F
//

F̃
==zzzzzzzz
Vl+1

� � //

sl+1

ZZ

Y

Since the left vertical arrow is a homeomorphism, it follows that F̃ |T = sl+1◦F |T . Consider
the function h : Bl+1 → X given by h = sl+1 ◦ F . It is clear that h and F̃ agree on T .
Thus, by Theorem 5.3.1, it follows that we have defined a continuous map F̃ on Zl+1.
Proceeding in this fashion, F̃ can be defined on all of I × I.

If possible, let G̃ be another lift of F such that G̃(0, 0) = x0. By unique lifting of
paths, it follows that they agree on the sets I × 0 and 0 × I. But now applying unique
path lifting to the path x× I, it follows that they agree on all of I × I.

The most important application of the above theorem will be the following corollary.

Lemma 12.2.3. Let f : X → Y be a covering map. Let F : I × I → Y be a continuous
map. Let y0 := F (0, 0) and let x0 ∈ f−1(y0). Let F̃ be the unique lift such that F̃ (0, 0) =
x0. If F (0× I) = y0 then F̃ (0× I) = x0. Similarly, if F (1× I) = y1 then F̃ (1× I) = x1.

Proof. Since F̃ is a lift of F , it follows that F̃ (0× I) ⊂ f−1(y0). Clearly, f
−1(y0) has the

discrete topology. Since 0 × I is connected, it follows that F̃ (0 × I) = x0. The proof for
1× I is the same.
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Remark 12.2.4. The meaning of this Lemma is the following. Suppose we have a family
of paths Fs(t) := F (t, s) inside Y such that each Fs starts at y0 and ends at y1. Then the
unique lift F̃ is a family of paths F̃s(t) = F̃ (t, s) which has the same property, that is,
each F̃s starts at x0 and ends at x1.



Chapter 13

The Fundamental Group

13.1 Fundamental group

Let X be a topological space and let x0 ∈ X.

Definition 13.1.1. The space of loops in X based at x0 is the set

L(X,x0) := {γ : S1 → X | γ continuous and γ(1) = x0} .

Since S1 is homeomorphic to [0, 1]/{0 ∼ 1} giving a map γ : S1 → X is equivalent to
giving a map [0, 1] → X which takes the same value at 0 and 1. We will often use this
fact. In view of this we may write,

L(X,x0) = {γ : [0, 1]→ X | γ continuous and γ(0) = γ(1) = x0} .

Definition 13.1.2. Let f, g ∈ L(X,x0). A homotopy F between f and g is a continuous
map F : S1 × I → X such that Ft := F |S1×t ∈ L(X,x0) for all t ∈ I, F0 = f and F1 = g.

Define a relation ∼ on L(X,x0) by f ∼ g if f and g are homotopic.

Proposition 13.1.3. ∼ is an equivalence relation on L(X,x0).

Proof. f ∼ f by taking F (z, t) = f(z).

f ∼ g implies g ∼ f by taking G(z, t) = F (z, 1− t).

Suppose f ∼ g and g ∼ h. Let F be a homotopy between f and g and let G be a
homotopy between g and h. Define a homotopy H between f and h by setting

H(z, t) :=

{
F (z, 2t) 0 ⩽ t ⩽ 1/2

G(z, 2t− 1) 1/2 ⩽ t ⩽ 1

At t = 1/2 since F (z, 1) = g = G(z, 0) it follows that H is a continuous function from
S1 × I to X.

91
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Definition 13.1.4. Let π1(X,x0) denote the set of equivalence classes in L(X,x0) under
the relation ∼. The equivalence class of f will be denoted by [f ].

Define a binary operation ∗ on the space of loops as follows. For f, g ∈ L(X,x0) define
f ∗ g by

(f ∗ g)(t) =

{
f(2t) 0 ⩽ t ⩽ 1/2

g(2t− 1) 1/2 ⩽ t ⩽ 1

Since f(1) = g(0) = x0 it follows that f ∗ g ∈ L(X,x0).

Proposition 13.1.5. The binary operation ∗ descends to a binary operation

∗ : π1(X,x0)× π1(X,x0)→ π1(X,x0) .

Proof. Suppose f1 ∼ f2. Let F be a homotopy between f1 and f2. We leave it as an
exercise to show that there is a homotopy H between f1∗g and f2∗g such that Ht = Ft∗g.

Similarly, if g1 ∼ g2 then f ∗ g1 ∼ f ∗ g2. Thus,

[f1 ∗ g1] = [f2 ∗ g1] = [f2 ∗ g2],

which proves the proposition.

Proposition 13.1.6. The binary operation ∗ on π1(X,x0) is associative.

Proof. Let f, g, h ∈ L(X,x0). We need to show that (f ∗ g)∗h ∼ f ∗ (g ∗h). Let G : I → I
be the following map.

G(t) :=


2t 0 ⩽ t ⩽ 1/4

t+ 1/4 1/4 ⩽ t ⩽ 1/2

t/2 + 1/2 1/2 ⩽ t ⩽ 1

Define H(t, s) = (f ∗ (g ∗ h))(sG(t) + (1 − s)t). Then H(t, 0) = f ∗ (g ∗ h) and H(t, 1) =
(f ∗ g) ∗ h. Further, for every s we have,

H(0, s) = f ∗ (g ∗ h)(0) = x0 = f ∗ (g ∗ h)(1) = H(1, s) .

Thus, we get Hs ∈ L(X,x0) for every s. This shows that H is a homotopy between
f ∗ (g ∗ h) and (f ∗ g) ∗ h.

Let cx0 : I → X denote the constant map x0.

Proposition 13.1.7. In π1(X,x0) we have [f ∗ cx0 ] = [cx0 ∗ f ] = [f ].
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Proof. Let us show that f ∗ cx0 ∼ f . Let G : I → I be the following map.

G(t) :=

{
2t 0 ⩽ t ⩽ 1/2

1 1/2 ⩽ t ⩽ 1

Define H(t, s) = f(sG(t) + (1 − s)t). Then H(t, 0) = f and H(t, 1) = f ∗ cx0 . We leave
the remaining check that H is a homotopy between f and f ∗ cx0 to the reader.

Similarly, we can show that cx0 ∗ f ∼ f . Let G : I → I be the following map.

G(t) :=

{
1 0 ⩽ t ⩽ 1/2

2t− 1 1/2 ⩽ t ⩽ 1

Define H(t, s) = f(sG(t) + (1 − s)t). Then H(t, 0) = f and H(t, 1) = cx0 ∗ f . We leave
the remaining check that H is a homotopy between f and cx0 ∗ f to the reader.

Proposition 13.1.8. For f ∈ L(X,x0), there is g ∈ L(X,x0) such that f ∗g ∼ cx0 ∼ g∗f .

Proof. Define I(f)(t) = f(1−t). It suffices to show that f ∗I(f) ∼ cx0 , since by symmetry
f = I(I(f)) and it will follow that I(f) ∗ f ∼ cx0 . Define

H(t, s) :=

{
f(2st) 0 ⩽ t ⩽ 1/2

f(2s− 2st) 1/2 ⩽ t ⩽ 1

Then H(t, 0) = cx0 , H(t, 1) = f ∗ I(f) and H(0, s) = x0 = H(1, s). This completes the
proof of the proposition.

The above propositions put together give the following theorem.

Theorem 13.1.9. The set π1(X,x0) is a group under the operation ∗ with identity element
cx0.

Having defined the fundamental group, we try to explore what continuous maps do to
these. Let f : X → Y be a continuous map. Define a map f∗ : L(X,x0)→ L(Y, f(x0)) by
f∗(γ) := f ◦ γ. If F is a homotopy between γ1 and γ2, then f ◦ F is a homotopy between
f∗(γ1) and f∗(γ2). Thus, we get a map f∗ : π1(X,x0)→ π1(Y, f(x0)).

Proposition 13.1.10. f∗ is a group homomorphism.

Proof. f∗(a ∗ b) = f ◦ (a ∗ b) = (f ◦ a) ∗ (f ◦ b) = f∗(a) ∗ f∗(b) .

Proposition 13.1.11. Let f : X → Y and g : Y → Z be continuous maps. Then
g∗ ◦ f∗ = (g ◦ f)∗.

Proof. Obvious.
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13.2 Fundamental groups of some spaces

13.2.1 π1(R,0). Let us compute the fundamental group of the real line. Consider the map
F : R× I → R given by

F (x, t) = (1− t)x .

This map has the following properties

1. F (x, 0) = x,

2. F (x, 1) = 0,

3. F (0, t) = 0.

This map “contracts” R to the point 0, leaving the point 0 intact at all times.

Proposition 13.2.2. π1(R, 0) = {1}.

Proof. Let γ : (S1, 1)→ (R, 0) be a continuous map. Consider the composite

S1 × I γ×Id−→ R× I F−→ R .

It is easily checked the F ◦ (γ × Id) is a homotopy between γ and the constant map 0.
This proves the proposition.

13.2.3 π1(D,1). Similarly, we can compute the fundamental group of the closed disk

D := {z ∈ C | |z| ⩽ 1}.

Consider the map F : D × I → D given by

F (z, t) = (1− t)z + t .

This map has the following properties

1. F (z, 0) = z,

2. F (z, 1) = 1,

3. F (1, t) = 1.

This map “contracts” D to the point 1, leaving the point 1 intact at all times.

Proposition 13.2.4. π1(D, 1) = {1}.
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Proof. Let γ : (S1, 1)→ (D, 1) be a continuous map. Consider the composite

S1 × I γ×Id−→ D × I F−→ D .

It is easily checked the F ◦ (γ × Id) is a homotopy between γ and the constant map 1.
This proves the proposition.

In the previous two examples the map F : X × I → X had the special property that
F (x0 × I) = x0. The same proof shows that for a topological space X which admits such
an F , the fundamental group is trivial. We leave this as an exercise to the reader.

13.2.5 π1(S
1,1). This example is more interesting and more difficult. Here we will use

the lifting theorems.

Theorem 13.2.6. π1(S
1, 1) = Z and a generator is given by the map γ : [0, 1]→ (S1, 1),

γ(t) = e2πit.

Proof. We will consider a loop at 1 as a continuous map γ : [0, 1]→ S1 such that γ(0) =
γ(1) = 1. Consider the covering map

R

e2πix

��
[0, 1]

γ //

γ̃
==z

z
z

z
S1

By the lifting theorem 12.2.1, there is a unique lift of γ which makes the above diagram
commute and such that γ̃(0) = 0. Obviously, γ̃(1) is in the fiber over 1, which is exactly
the set of integers. Thus, γ̃(1) ∈ Z.

We claim that if γ1 and γ2 are homotopic, then γ̃1(1) = γ̃2(1). Let F be a homotopy
between γ1 and γ2.

F

γ1

γ2

1 1

It follows from Lemma 12.2.3 that γ̃1(1) = γ̃2(1). This shows that there is a well defined
map

π1(S
1, 1)→ Z γ 7→ γ̃(1)

Next let us check that this map is a group homomorphism. Let γ ∈ π1(S1, 1) and let
γ̃ be the unique lift starting at 0. For m ∈ Z the map

Tmγ̃(t) := γ̃(t) +m
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is clearly a lift of γ starting at m. By the uniqueness of the lift, this is the unique lift of γ
starting at m. Now consider two elements a, b ∈ π1(S1, 1). Let ã and b̃ denote lifts of a, b
starting at 0. Let m denote ã(1). Then

ã ∗ (Tmb̃)

is a path starting at 0 and lifts a ∗ b. Obviously, the end point of this path is m+ b̃(1) =
ã(1) + b̃(1). This proves that the map π1(S

1, 1)→ Z is a group homomorphism.
Next let us prove that the kernel of this group homomorphism is trivial. Suppose

γ̃(1) = 0, then this means that γ̃ is a loop at 0. Let F : S1 × I → R be a homotopy
between γ̃ and the constant map 0. Then e2πix ◦ F : S1 × I → R→ S1 gives a homotopy
between γ and the constant loop at 1. This shows that γ is trivial in π1(S

1, 1).
Finally, it is clear that the identity map γ : [0, 1]→ (S1, 1),

γ(t) = e2πit

lifts to the map γ̃(x) = x. This shows that 1 is in the image of π1(S
1, 1), which proves

surjectivity. This completes the proof of the theorem.

As an application of computing the fundamental group of S1 we prove the fundamental
theorem of algebra.

Theorem 13.2.7 (Fundamental theorem of algebra). Let p(z) = zn+a1z
n−1+ . . .+an ∈

C[z] be a polynomial with n > 1 and an ̸= 0. Then p(z) has a root.

Proof. Making the change of variable z = Mu, we see that this polynomial has a root iff
the polynomial

p(u) = un +
a1
M
un−1 + . . .+

an
Mn

has a root. Choosing M ≫ 0 we may assume that p(z) is such that

|a1|+ |a2|+ . . .+ |an| < 1 .

Assume that p(z) does not have a root. Consider the map

F : S1 × I → S1 F (z, t) =
p(tz)

|p(tz)|
|p(t)|
p(t)

.

It is easily checked that this is a homotopy between the constant loop at 1 and the loop
given by z 7→ F (z, 1). Next note that

|zn + t(a1z
n−1 + . . .+ an)| > 1− t(|a1|+ |a2|+ . . .+ |an|) > 1− t ⩾ 0 .

Thus, the following map is well defined.

G : S1 × I → S1
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given by

G(z, t) =
zn + t(a1z

n−1 + . . .+ an)

|zn + t(a1zn−1 + . . .+ an)|
|1 + t(a1 + . . .+ an)|
1 + t(a1 + . . .+ an)

.

It is easily checked that this gives a homotopy between the loops z 7→ G(z, 1) and the loop
z 7→ zn. Since G(z, 1) = F (z, 1), we get a contradiction since this shows that the constant
loop is homotopic to the loop z 7→ zn.

13.3 Dependence on base point

Let X be a path connected topological space. It is natural to ask how the fundamental
group depends on the base point. For example, is it possible that π1(X,x1) is abelian
and π1(X,x2) is not abelian? The next theorem tells us that different base points give us
isomorphic groups.

Theorem 13.3.1. Let X be a path connected topological space. Then the groups π1(X,x1)
and π1(X,x2) are isomorphic.

Proof. Let δ : [0, 1] → X be a path from x1 to x2. Recall that I(δ) is the reverse path
from x2 to x1. Define

Φ1(δ) : π1(X,x1)→ π1(X,x2), Φ2(δ) : π1(X,x2)→ π1(X,x1)

by
γ 7→ I(δ) ∗ γ ∗ δ, γ 7→ δ ∗ γ ∗ I(δ).

We leave it to the reader to show that both these are group homomorphisms and Φ1(δ) ◦
Φ2(δ) = Idπ1(X,x2), Φ2(δ) ◦ Φ1(δ) = Idπ1(X,x1).

13.4 A lifting theorem for maps

Definition 13.4.1 (Locally path connected spaces). A topological space Y is said to be
locally path connected if for every point y ∈ Y and every open set U containing y, there is
a path connected neighborhood V such that x ∈ V ⊂ U .

Theorem 13.4.2 (Lifting maps to covers). Let X,Y, Z be path connected spaces and let
Z be locally path connected. Let f : X → Y be a covering map and let g : Z → Y be a
continuous map. Let z0 ∈ Z, let y0 := g(z0) and x0 ∈ f−1(y0). Then the map g can be
lifted to g̃ : Z → X such that g̃(z0) = x0 iff g∗(π1(Z, z0)) ⊂ f∗(π1(X,x0)). If a lift exists,
then it is unique.

Proof. If g can be lifted to g̃ then since f ◦ g̃ = g, it follows that f∗g̃∗ = g∗, which shows
that g∗(π1(Z, z0)) ⊂ f∗(π1(X,x0)). The main assertion is the converse, which we now
prove.
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The idea of defining the lift pointwise is simple. Since Z is path connected, for every
z ∈ Z there is a path γ : [0, 1] → Z such that γ(0) = z0 and γ(1) = z. Consider the
path g ◦ γ : [0, 1] → Y . Let us denote by g̃ ◦ γ the unique lift of g ◦ γ starting at x0. If a
lift g̃ existed such that g̃(z0) = x0, then clearly, because of unique path lifting (Theorem
12.2.1), we will have

g̃ ◦ γ = g̃ ◦ γ .

Evaluating at 1 this will force that g̃(z) = g̃ ◦ γ(1). Thus, it is clear that we should define

g̃(z) := g̃ ◦ γ(1) .

First we need to check that if γ1 and γ2 are two paths from z0 to z, then g̃ ◦ γ1(1) =
g̃ ◦ γ2(1). Recall that for a path γ we defined I(γ) to be the path in the reverse direction
given by I(γ)(t) = γ(1− t). Clearly the path (γ1) ∗ I(γ2) is a loop at z0. From this we get
that

g∗((γ1) ∗ I(γ2)) = (g ◦ γ1) ∗ (g ◦ I(γ2))

is a loop at y0. Since
g∗(π1(Z, z0)) ⊂ f∗(π1(X,x0)),

there is a loop h at x0 such that f∗(h) is homotopic to (g ◦ γ1) ∗ (g ◦ I(γ2)). Let F be a
homotopy between them such that

F (t, 0) = f∗(h) and F (t, 1) = (g ◦ γ1) ∗ (g ◦ I(γ2)) .

By Theorem 12.2.2 there is a unique lift such that F̃ (0, 0) = x0. Now note that F̃ (t, 0) is
a lift of f∗(h) and so it is simply h, that is,

F̃ (t, 0) = h(t) .

By Lemma 12.2.3, since h is a loop at x0, it follows that F̃ (t, 1) is a loop at x0. Clearly,
F̃ (t, 1) is a lift of (g ◦ γ1) ∗ (g ◦ I(γ2)). This forces that

� the path t 7→ F̃ (t/2, 1) is the unique lift of g ◦ γ1 starting at x0. In other words,
F̃ (t/2, 1) = g̃ ◦ γ1(t) =: x1.

� the path t 7→ F̃ (1/2 + t/2, 1) is the unique lift of g ◦ I(γ2) starting at g̃ ◦ γ1(1). In

other words, F̃ (1/2 + t/2, 1) = ˜g ◦ I(γ2)(t). Note that ˜g ◦ I(γ2)(1) = x0.

Now let us make the following easy observation. Let δ be a path in Y from a to b. Let ã
be a point lying over a. Let δ̃ denote the unique lift of δ at ã. Suppose δ̃ ends at b̃. Then
the unique lift of I(δ) starting at b̃ is the path I(δ̃). We apply this observation to

δ = g ◦ I(γ2), a = y1, ã = x1, b = y0 .
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Then b̃ = x0. Thus, the unique lift of I(g ◦ I(γ2)) = g ◦ γ2 starting at x0 will end at x1.
This shows that g̃ ◦ γ2(1) = g̃ ◦ γ1(1). This proves that the map g̃ is well defined.

Finally we need to show that the map g̃ is continuous. Let z ∈ Z and let U ⊂ X be an
open subset containing g̃(z). Let y := g(z) and let V be an evenly covered neighborhood
of y. Then f−1(V ) =

⊔
i Ui and suppose that g̃(z) ∈ Uj . Replacing V by f(Uj

⋂
U) we

may assume that y has an evenly covered neighborhood V such that

� f−1(V ) =
⊔
i Ui,

� g̃(z) ∈ Uj ,

� Uj ⊂ U .

Let W be a path connected open neighborhood of z such that g(W ) ⊂ V . We claim that

g̃(W ) ⊂ Uj ⊂ U.

Fix a path γ from z0 to z. Let t ∈ W , then there is a path γ1 from z to t contained in

W . Thus, γ ∗ γ1 is a path from z0 to t. Now g̃(t) is defined to be ˜g ◦ (γ ∗ γ1)(1). Let h
denote the lift of g ◦ γ1 starting at g(z). Note that the image of g ◦ γ1 is contained in V .
It is clear that the end of the path h is contained in the same path component of f−1(V )
as g(z), and so in Uj . Since

˜g ◦ (γ ∗ γ1) = g̃ ◦ γ ∗ h,

it follows that the end of ˜g ◦ (γ ∗ γ1) is contained in Uj . This proves that g̃(t) ∈ Uj ⊂ U .
This proves that g̃ is continuous.

To prove uniqueness of the lift we will use that Z is path connected and the unique
path lifting theorem (Theorem 12.2.1). Let h̃ be another lift such that h̃(z0) = x0. Let
γ : [0, 1] → Z be a path joining z0 and z. Then both h̃ ◦ γ and g̃ ◦ γ are lifts of γ
which start at x0. Now by unique path lifting it follows that both are equal, in particular,
h̃(z) = g̃(z).

As an application of the lifting theorem, let us see when we can define a logarithm map.

13.4.3 Branch of the logarithm. Let i : Ω ⊂ C× denote an open subset. The question
we want to address is when there is a map log which makes the following diagram commute

C

ez=:f(z)
��

Ω ⊂

log
>>|

|
|

|
C×

Let z0 ∈ Ω be a point and let z̃0 be a point lying over z0. Then Theorem 13.4.2 tells us that
the necessary and sufficient condition for a lift to exist is that i∗(π1(Ω, z0)) ⊂ f∗(π1(C, z̃0)).
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Since C can be “contracted” to z̃0 it follows that π1(C, z̃0) = {1}. It follows that the
necessary and sufficient condition for a lift to exist is that i∗(π1(Ω, z0)) = {1}. This is
same as saying that every loop at z0 in Ω is homotopic to the constant loop at z0 in
C×; we emphasize that we only this homotopy to be in C× and not necessarily in Ω. If
this happens, then for any point z̃0 lying over z0 ∈ C×, there is a unique lift log such
that log(z0) = z̃0. Each such lift is called a branch of the logarithm. In particular, if
π1(Ω, z0) = {1} then there exists a branch of the logarithm.

13.5 Applications

Proposition 13.5.1. There is no continuous map f : D → S1 whose restriction to S1 is
the identity.

Proof. Let us assume that such a map exists. Then f(1) = 1 and so we get f∗ : π1(D, 1)→
π1(S

1, 1). Let i : S1 → D denote the inclusion. Then since f ◦ i = Id, it follows that
(f ◦ i)∗ = Id∗ = Id. However, this is not possible as (f ◦ i)∗ = f∗ ◦ i∗ : Z → {1} → Z
cannot be the identity.

Theorem 13.5.2. Every continuous map f : D2 → D2 has a fixed point.

Proof. Assume that f does not have a fixed point. Define a continuous function g : D2 →
S1 as follows. Consider the line starting at x and in the direction x − f(x). This line is
parameterized by x+t(x−f(x)). Let t0 ⩾ 0 be the unique number such that x+t0(x−f(x))
is on S1. It is easily checked that g(x) = x+ t0(x− f(x)) defines a continuous function. It
is also clear that g is the identity on S1. This contradicts the previous proposition. This
shows that f has a fixed point.

Theorem 13.5.3 (Borsuk-Ulam). Let f : S2 → R2 be a continuous map. Then there is
a point x such that f(x) = f(−x).

Proof. If there is no such point x, then consider the continuous map g : S2 → S1 defined
by

g(x) =
f(x)− f(−x)
|f(x)− f(−x)|

Notice that g satisfies g(−x) = −g(x). Since the fundamental group π1(S
2, p) is trivial, see

exercise 13.8.7, by Theorem 13.4.2, there is a map g̃ which makes the following diagram
commute

R

x 7→e2πix

��
S2 g //

g̃
>>||||||||
S1
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Since g(−x) = −g(x), it follows that for every x,

g̃(x)− g̃(−x) ∈ Z
2
\ Z .

Since S2 is connected, there is an odd integer q such that g̃(x) − g̃(−x) = q/2. We also
have g̃(−x)− g̃(x) = q/2. Adding these we get that q = 0, which contradicts the fact that
q is odd.

13.6 Free groups and Amalgamated Product

The aim of this section is to explain the results related to group theory that we shall
need while proving the Seifert-van Kampen Theorem. The main results in the next few
subsections can be described very compactly using the language of categories, in terms of
final or initial objects. However, we will avoid a digression into category theory. We refer
the interested reader to [Lan02, Chapter 1, Section 11,12] for this discussion.

13.6.1 Free groups. Let S be a set. In this section we define a pair (F (S), f), where
F (S) is a group, f : S → F (S) is a map of sets such that the group F (S) is generated by
the image of f , and this pair has the following property:

(P) If G is any other group and we have a map of sets g : S → G, then there is a
unique group homomorphism g̃ : F (S)→ G such that g̃(f(s)) = g(s).

We only sketch the construction and leave the details to the reader. For a detailed proof
see [Lan02, Proposition 12.1].

Sketch of construction of (F (S), f). For each s ∈ S let xs be a symbol. Consider
“words” formed out of these symbols, that is,

xa1s1x
a2
s2 . . . x

an
sn ,

where n > 0 is an integer and ai are integers such that ai ̸= 0. We call the above word
reduced if si ̸= si+1 for all 1 ⩽ i ⩽ n−1. For a reduced word as above, we define its length
to be n. Let F (S) be the set of reduced words along with a symbol e. The length of e is
defined to be 0. For n ⩾ 0, let F (S)n denote the set of reduced words of length ⩽ n.

Next we define a map m : F (S)× F (S)→ F (S). In simple terms, the construction of
m is as follows. Given two reduced words

xa1s1x
a2
s2 . . . x

an
sn , xb1t1x

b2
t2
. . . xbltl

we can concatenate them to get the (not necessarily reduced) word

xa1s1x
a2
s2 . . . x

an
snx

b1
t1
xb2t2 . . . x

bl
tl
.
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However, this word may not be reduced as it may happen that sn = t1. If this happens
then we may reduce this to get a reduced word. For example, let s, t ∈ S and consider
reduced words xsx

2
t and x−3

t x5s. When we concatenate these and reduce we get xsx
−1
t x5s.

Similarly, if we consider words xsx
2
t and x

−2
t x−1

s , if we concatenate them and reduce then
we get e. We proceed to do this formally.

We will define m inductively on subsets F (S)n × F (S)n → F (S).

1. Define m(e, e) := e. This defines m on F (S)0 × F (S)0.

2. Define m(e, xas) = m(xas , e) = xas .

3. Define m(xas , x
b
s) = xa+bs when a+ b ̸= 0.

4. Define m(xas , x
−a
s ) = e when a+ b = 0.

5. If s ̸= t then define m(xas , x
b
t) = xasx

b
t . This defines m on F (S)1×F (S)1. Now let us

assume that we have defined m on F (S)n×F (S)n and we shall extend this definition
to F (S)n+1 × F (S)n+1.

6. Let w := xa1s1x
a2
s2 . . . x

an+1
sn+1 ∈ F (S)n+1. Define m(w, e) = m(e, w) = w. Let l ⩾ 1 and

let xb1t1x
b2
t2
. . . xbltl ∈ F (S)l, where l ⩽ n+ 1. If sn+1 ̸= t1 then define

m(xa1s1x
a2
s2 . . . x

an+1
sn+1

, xb1t1x
b2
t2
. . . xbltl ) = xa1s1x

a2
s2 . . . x

an
snx

b1
t1
xb2t2 . . . x

bl
tl
.

7. If sn+1 = t1 and an + b1 ̸= 0 then define

m(xa1s1x
a2
s2 . . . x

an+1
sn+1

, xb1t1x
b2
t2
. . . xbltl ) = xa1s1x

a2
s2 . . . x

an+b1
sn+1

xb2t2 . . . x
bl
tl
.

8. If sn+1 = t1 and an + b1 = 0 then define

m(xa1s1x
a2
s2 . . . x

an+1
sn+1

, xb1t1x
b2
t2
. . . xbltl ) = m(xa1s1x

a2
s2 . . . x

an
sn , x

b2
t2
. . . xbltl ) .

If l = 1 then the RHS is m(xa1s1x
a2
s2 . . . x

an
sn , e) = xa1s1x

a2
s2 . . . x

an
sn .

9. Similarly, we define m(xb1t1x
b2
t2
. . . xbltl , x

a1
s1x

a2
s2 . . . x

an+1
sn+1 ). This completes the definition

of m.

It is easily checked that the above map makes F (S) into a group with e as the identity
element. The map f : S → F (S) is simply s 7→ xs.

Next let us check that the pair (F (S), f) satisfies the property (P). Suppose we are
given another pair (G, g) where g : S → G is a map of sets. Notice that the map g̃, if it
exists, is unique as every element of F (S) is a word in the xs and the image g̃(xs) is fixed.
To prove existence, we simply define g̃(xa1s1x

a2
s2 . . . x

an
sn ) = g̃(xs1)

a1 g̃(xs2)
a2 . . . g̃(xsn)

an . It
is easily checked that this is a group homomorphism.
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Remark 13.6.2. We may rephrase (P) by saying that group homomorphisms F (S)→ G
are in bijective correspondence with set maps S → G.

Universality. Given a group G and a group homomorphism ψ : F (S)→ G, we get a pair
(G,ψ ◦ f). On the other hand, the above discussion shows that every pair (G, g) arises
uniquely in this fashion, that is, there is a unique g̃ : F (S) → G such that g = g̃ ◦ f . In
other words, every pair “arises uniquely” from the pair (F (S), f).

Suppose there is another pair (F ′, f ′) which satisfies property (P). That is, if G is any
other group and we have a map of sets g : S → G, then there is a unique group homo-
morphism g̃′ : F ′ → G such that g̃′(f ′(s)) = g(s). Then there is a unique isomorphism
ψ : F (S) → F ′ such that ψ ◦ f = f ′. This is a standard argument which proceeds in the
following steps:

1. Apply (P) to (F (S), f) by taking (G, g) = (F ′, f ′). Then we get a unique map
ψ : F (S)→ F ′ such that ψ ◦ f = f ′. We need to show that ψ is an isomorphism.

2. Apply (P) to (F ′, f ′) by taking (G, g) = (F (S), f). Then we get a unique map
ψ′ : F ′ → F (S) such that f = ψ′ ◦ f ′.

3. Apply (P) to (F (S), f) by taking (G, g) = (F (S), f). The map ψ′◦ψ : F (S)→ F (S)
satisfies ψ′ ◦ ψ ◦ f = f . However, the identity map 1F (S) also satisfies 1F (S) ◦ f = f .
By uniqueness of g̃ in (P) it follows that ψ′ ◦ ψ = 1F (S).

4. Similarly, show that ψ ◦ ψ′ = 1F ′ .

This proves that ψ is an isomorphism. Thus, if we have a pair (F ′, f ′) and if we can show
that this pair has (P), then it will follow that the group F ′ is isomorphic to F (S). We
will use a similar strategy while proving the Seifert-van Kampen Theorem. The group
F (S) is called the free group on the set S.

Definition 13.6.3. Let G be a group. Let I be a set and assume that for each i ∈ I we are
given an element gi ∈ G. We say that gi generate G if the following happens. Given any
g ∈ G there is an n > 0, elements gi1 , . . . , gin and integers ai such that g = ga1i1 g

a2
i2
. . . ganin .

Remark 13.6.4. Given a group G it is immediate that we can always find a set of
generators for G. For example, take I = G and let gi be the element i. Of course, G may
have a much smaller generating set. For example, the group Z is generated by the element
1.

Lemma 13.6.5. Let G be a group. Then there is a free group F (S) and a surjective group
homomorphism F (S)→ G.

Proof. Let gs, for s ∈ S, be a set of generators for the group G. Consider the pair
(G, g) where g : S → G is the map s 7→ gs. Applying (P) to (F (S), f) we get a map
g̃ : F (S)→ G. As the gs generate G, it follows that this map is surjective.
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13.6.6Amalgamated product of groups. Fix a tuple (G1, G2, H, i1, i2), whereG1, G2, H
are groups and ij : H → Gj are group homomorphisms. Consider the collection of triples
(G,ϕ1, ϕ2) where G is a group and ϕi : Gi → G are group homomorphisms such that
ϕ1 ◦ i1 = ϕ2 ◦ i2. In other words, the following diagram commutes:

G1

ϕ1

  A
AA

AA
AA

A

H

i1
>>|||||||

i2   B
BB

BB
BB

B G

G2

ϕ2

>>}}}}}}}}

Denote the collection of such triples by C . Given a triple (G,ϕ1, ϕ2), another group G′

and a group homomorphism f : G → G′, we can construct another triple in C , namely
(G′, f ◦ ϕ1, f ◦ ϕ2).

Theorem 13.6.7. There is a triple (G , ψ1, ψ2) ∈ C such that for every triple (G,ϕ1, ϕ2) ∈
C there is a unique homomorphism

f(G,ϕ1,ϕ2) : G → G

such that (G,ϕ1, ϕ2) = (G, f(G,ϕ1,ϕ2) ◦ ψ1, f(G,ϕ1,ϕ2) ◦ ψ2).

Proof. We only give a sketch of how to proceed and leave the details to the reader. Choose
sets Si and maps gi : Si → Gi such that the images gi(Si) generate Gi. Similarly, choose
a set T and a map h : T → H such that h(T ) generates H. Then we have group
homomorphisms πi : F (Si)→ Gi and π : F (T )→ H, all of which are surjective.

F (S1)
π1 // G1

F (T )
π // H

i1

??~~~~~~~~

i2 ��@
@@

@@
@@

@

F (S2)
π2 // G2

We claim that we can find a group homomorphism F (T )→ F (S1) which creates a commu-
tative parallelogram in the above diagram. We will repeatedly use Remark 13.6.2. To give
a group homomorphism F (T )→ F (S1) it suffices to give a map of sets T → F (S1). As π1
is surjective, for t ∈ T , choose an arbitrary lift of i1 ◦ h(t) in F (S1). This defines a map
T → F (S1) and so a group homomorphism F (T )→ F (S1). Use Remark 13.6.2 it is easily
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checked that the resulting parallelogram commutes. Similarly, we define a homomorphism
F (T )→ F (S2) so that we have a commutative diagram

F (S1)
π1 // G1

F (T )

j1
;;vvvvvvvvv

j2 ##H
HH

HH
HH

HH
π // H

i1

??~~~~~~~~

i2 ��@
@@

@@
@@

@

F (S2)
π2 // G2

Let S = S1
⊔
S2 and consider the free group F (S). The inclusions Si → S give rise to

group homomorphisms θi : F (Si) → F (S). Similarly, the maps T −→ Si → S gives rise to
homomorphisms ηi : F (T )→ F (S). Let J be the subset of F (S) defined as

J := θ1(Ker(π1)) ∪ θ2(Ker(π2)) ∪ {θ1j1(α)θ2j2(α−1) |α ∈ F (T )} .

Let N be the smallest normal subgroup containing J . Define

G := F (S)/N .

Define θ̄i to be the composite F (Si)
θi−→ F (S) → G . It is easily checked that θ̄i factors

through πi to give a map Gi
ψi−→ G . We leave it to the reader to check that there is a

commutative diagram

F (S1)
π1 // G1

ψ1

��?
??

??
??

?

F (T )

j1
;;vvvvvvvvv

j2 ##H
HH

HH
HH

HH
π // H

i1

??~~~~~~~~

i2 ��@
@@

@@
@@

@ G

F (S2)
π2 // G2

ψ2

??��������

We leave it to the reader to check that the triple (G , ψ1, ψ2) is in C and has the required
properties.

Definition 13.6.8. The triple (G , ψ1, ψ2) is called the amalgamated product of G1 and
G2 along i1 and i2. It is denoted G1 ∗H,i1,i2 G2. When there is no confusion about the
maps i1 and i2, they are suppressed and this is simply denoted G1 ∗H G2.

In the same way as in the case of free groups, we can prove the following Proposition.
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Proposition 13.6.9. Suppose (G ′, ψ′
1, ψ

′
2) such that for every triple (G,ϕ1, ϕ2) ∈ C there

is a unique homomorphism
f ′(G,ϕ1,ϕ2) : G ′ → G

such that (G,ϕ1, ϕ2) = (G, f ′(G,ϕ1,ϕ2) ◦ ψ
′
1, f

′
(G,ϕ1,ϕ2)

◦ ψ′
2). Then there is a unique isomor-

phism of groups ψ : G → G ′ such that ψ ◦ ψi = ψ′
i.

Proof. Left as an exercise.

13.7 Seifert-van Kampen Theorem

In this section we shall prove the Seifert-van Kampen Theorem. This is an extremely
useful result which enables us to compute fundamental groups of a space in terms of the
fundamental groups of some subspaces. The results in this section were presented in class
and written up by Kartik Patekar. The presentation and the write up closely follows
[Mun00, Chapter 11], with some very minor modifications.

Theorem 13.7.1 (Seifert-van Kampen Theorem). Let X be a path connected topological
space. Let U, V and U ∩ V be path connected subspaces of X such that X = U ∪ V . Let
x0 ∈ U ∩ V . Then the natural map

π1(U, x0) ∗π1(U∩V,x0) π1(V, x0) −→ π1(X,x0)

is an isomorphism.

Proof. Let H be a group such that

ϕ1 : π1(U, x0)→ H

ϕ2 : π1(V, x0)→ H

are homomorphisms. Let i1, i2, j1, j2 be homomorphisms induced by inclusion map as
shown in the diagram

π1(U, x0)
ϕ1

$$H
HH

HH
HH

HH
H

j1
��

π1(U ∩ V, x0) //

i1
77oooooooooooo

i2 ''OO
OOO

OOO
OOO

O
π1(X,x0)

Φ //___ H

π1(V, x0)

j2

OO

ϕ2

::vvvvvvvvvv

We will show that if the maps ϕ1 and ϕ2 are compatible, that is,

ϕ1 ◦ i1 = ϕ2 ◦ i2,
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then there is a unique homomorphism

Φ : π1(X,x0)→ H ,

such that the above diagram commutes. This will prove that the group π1(X,x0) satisfies
the universal property of the amalgamated product (Proposition 13.6.9), which will prove
the theorem.

The group π1(X,x0) is generated by j1(π1(U, x0)) and j2(π1(V, x0)). Also Φ is uniquely
determined on the generators j1(g) and j1(g) by the requirement that the diagram com-
mutes. Since Φ is a homomorphism, if it exist, it is uniquely determined by the images of
these generators. Thus, if Φ exists then it is unique.

To prove that Φ exist, we proceed step-wise and construct Φ. The path homotopy class
of a path f in X, U , V and U ∩ V is denoted by [f ], [f ]U , [f ]V and [f ]U∩V , respectively.

Step 1: Let L(U, x0) denote the set of loops lying entirely in U and based at x0. Similarly,
define L(V, x0). Define ρ : L(U, x0) ∪ L(V, x0)→ H as

ρ(f) =

{
ϕ1([f ]U ) if f is in U
ϕ2([f ]V ) if f is in V

When f is in U ∩ V , the compatibility condition ϕ1 ◦ i1 = ϕ2 ◦ i2 says that ϕ1([f ]U ) =
ϕ2([f ]V ). Thus, ρ is well defined. Note that ρ satisfies the following conditions

1. If [f ]U = [g]U or if [f ]V = [g]V , then ρ(f) = ρ(g),

2. If both f and g are in U then ρ(f ∗ g) = ρ(f) · ρ(g),

3. If both f and g are in V then ρ(f) · ρ(g) = ρ(f ∗ g).

All the above statements are obvious from the definition of ρ.

Step 2: We now extend the definition of ρ from loops to paths which are completely
contained in U or V . Denote the set of all paths in U by P(U) and the set of all paths in
V by P(V ). We want to define a function

σ : P(U) ∪ P(V )→ H

which extends ρ. For this fix once and for all paths αx from x0 to x ∈ X, such that if x
lies in U, V or U ∩ V , then αx lies in U, V or U ∩ V , respectively. Choose αx0 to be the
constant path at x0. We will define the function σ using the paths {αx}.

For a path γ, which lies completely in U or V , from x1 to x2, define

σ(γ) = ρ(αx1 ∗ γ ∗ α−1
x2 )

It is easy to see that σ is well defined and is an extension of ρ. It also satisfies the following
two properties similar to that of ρ, namely, if both f and g are paths in U .
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1. If f ∼U g, then σ(f) = σ(g). To see this, let f, g be paths from x1 to x2. Then
f ∼U g implies [αx1 ∗ f ∗ α−1

x2 ]U = [αx1 ∗ g ∗ α−1
x2 ]U and the rest follows by definition.

2. If f is a path from x1 to x2 and g is a path from x2 to x3, then σ(f ∗g) = σ(f) ·σ(g).
This again follows from the definition and the fact that αx1 ∗f ∗α−1

x2 ∗αx2 ∗g∗α
−1
x3 ∼U

αx1 ∗ f ∗ g ∗ α−1
x3 .

Similar results hold if both f and g are paths in V .

Step 3: Extend σ to τ : P(X) → H. Let f be a path in X. By Lebesgue’s number
lemma, there exist a partition 0 = s0 < s1 < ... < sn = 1 such that f([si, si+1]) ⊂ U or
f([si, si+1]) ⊂ V . Define path fi to be the part of f lying between si and si+1. Then we
have f ∼ f0 ∗ f1 ∗ ... ∗ fn−1, where each fi ∈ P(U) ∪ P(V ).

f0 f1 fn−1

Define τ(f) as

τ(f) = σ(f0) · σ(f1) · ... · σ(fn−1)

We wish to show that τ is well defined. It is sufficient to show that if a partition is refined
by adding point c ∈ (0, 1) to the partition, the image of f obtained by the above definition,
and the new partition which includes c, does not change. This will prove that refinement
of a partition does not change the image, and hence for any 2 given partitions P1 and P2,
the image obtained using either partition is same as that of P1∪P2. This shows that τ(f)
does not depend on the partition chosen.

c

g h

Let c ∈ (si, si+1), and g, h be path obtained by restriction of fi on sets [si, c] and [c, si+1],
respectively. Since both g and h lie in either U or V , we have σ(fi) = σ(g∗h) = σ(g) ·σ(h),
which shows that τ is well defined.

Step 4: Show that if f ∼ g, then τ(f) = τ(g). Let F be the path homotopy between
f and g. We will consider a special case first.

Special Case: There exist a partition 0 = s0 < s1 < ... < sn = 1 such that F ([si, si+1]×I)
lie in either U or V , say in U . Let βi be the path given by βi(t) = F (si, t).
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βi βi+1

gi

fi
(si, 0) (si+1, 0)

(si, 1) (si+1, 1)

It is clear that fi ∗ βi+1 ∼U βi ∗ gi. From this we get that

σ(fi) = σ(βi) · σ(gi) · σ(βi+1)
−1 .

Using this result and the definition of τ , we obtain

τ(f) = σ(f0) · σ(f1) · ... · σ(fn−1)

=
n−1∏
i=0

σ(βi) · σ(gi) · σ(βi+1)
−1

= σ(β0) · σ(g0) · σ(g1)... · σ(gn−1) · σ(βn)−1

= τ(g)

where the last equality follows from the fact that β0 and βn are constant paths.

General Case: By Lebesgue’s number lemma, it is always possible to find partitions
0 = s0 < s1 < ... < sn = 1 and 0 = t0 < t1 < ... < tm = 1 such that F ([si, si+1]× [tj , tj+1])
lies in either U or V . Define paths hj in X using hj(s) = F (s, tj), which gives h0 = f and
hm = g. By restricting the homotopy F we obtain that h0 ∼ h1 ∼ ... ∼ hm. From the
special case considered above, τ(hj) = τ(hj+1), which results in τ(f) = τ(g).

Step 5: If f, g ∈ P(X) such that f ∗ g is defined, then τ(f) · τ(g) = τ(f ∗ g). The
proof of this is obvious from definition of τ and taking a partition containing the point
1/2.

Step 6: Restrict the above map τ : P(X) → H to L(X,x0) → H. From Step 4 it
follows that this restricted map descends to a map Φ : π1(X,x0) → H. From Step 5 it
follows that Φ is a group homomorphism.

Thus, the theorem is proved.
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13.8 Exercises

13.8.1. Let Y be a locally path connected topological space. Let f : X → Y be a covering
map. Show that X is locally path connected.

13.8.2. Let X be connected and locally path connected. Let p : Y → X be a connected
cover. Let f : Y → Y be continuous such that p ◦ f = p. Show that f(Y ) is both open
and closed. Thus, f is surjective.

13.8.3. Let p : Y → X be a covering space such that p(y0) = x0. Show that p∗ :
π1(Y, y0)→ π1(X,x0) is an inclusion.

13.8.4. Let X := C \ R<0. Compute π1(X, 1).

13.8.5. Let X and Y be topological spaces. Let x0 ∈ X and y0 ∈ Y . Let pX and pY
denote the projections from X×Y to X and Y . Show that the map π1(X×Y, (x0, y0))→
π1(X,x0)× π1(Y, y0) given by α 7→ (pX∗(α), pY ∗(α)) is an isomorphism.

13.8.6. Let G be a path connected and locally path connected topological group. Let
f : X → G be a covering map. Let x0 ∈ f−1(e). Assume that X is path connected
and that π1(X,x0) = {1}. Use the lifting theorem for maps to show that there is a group
structure onX which makesX into a topological group and f into a group homomorphism.

13.8.7. Let G be a group and let H and K be subgroups. We say that G is generated by
H and K if every element of G can be written as h1k1h2k2 . . . hrkr for some r > 0, and
hi ∈ H, ki ∈ K.

Let X be a topological space and let U and V be path connected open subsets such
that X = U

⋃
V . Let i : U ⊂ X and j : V ⊂ X denote the inclusions. Assume that

x0 ∈ U ∩ V and that U ∩ V is path connected. Show that π1(X,x0) is generated by the
subgroups i∗π1(U, x0) and j∗π1(V, x0).

13.8.8. Use the previous problem to compute π1(S
n, p), where n > 1 and p ∈ Sn is a

point on the equator.

13.8.9. Let f : S1 → S1 be the map f(z) = zk. Compute f∗ : π1(S
1, (1, 0)) →

π1(S
1, (1, 0)).

13.8.10. Let G be a topological group. Show that the group operation of G defines a
group operation · on π1(G, e) as follows. Let α, β ∈ L(G, e). Define (α · β)(t) := α(t)β(t).
Show that this descends to give · on the fundamental group. Show that

α ∗ β ∼ α · β ∼ β · α ∼ β ∗ α.

Conclude that π1(G, e) is abelian.

13.8.11. We shall give a more formal proof of the previous exercise. Let m : G × G →
G denote the group multiplication. Show that there are group homomorphisms i, j :
π1(G, e)→ π1(G×G, (e, e)) such that
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1. The map π1(G, e) × π1(G, e) → π1(G × G, (e, e)) given by (α, β) 7→ i(α)j(β) is an
isomorphism of groups.

2. m∗ ◦ i = m∗ ◦ j = Id

Use the above to show that π1(G, e) is abelian.

13.8.12. Complete the proofs of Theorem 13.6.7 and Proposition 13.6.9.

13.8.13. Let Xn be a wedge of n circles. Use the van-Kampen theorem to compute its
fundamental group.

13.8.14. Compute the fundamental group of P2
R using van-Kampen theorem.

13.8.15. Compute the fundamental group of PnC using van-Kampen theorem. Here PnC :=(
Cn+1 \(0, . . . , 0)

)
/C×. (HINT: Show that PnC can be covered by open sets homeomorphic

to Cn.)
13.8.16. Compute the fundamental group of T 2 ∨ T 2.

13.8.17. Compute the fundamental group of the following in which the edges have been
identified as given and all the vertices are identified.

13.8.18. Compute the fundamental group of R3 with the non-negative x, y, z axes deleted.

13.8.19. Let X1 = S1× S1×{1} and let X2 = S1× S1×{2}. Compute the fundamental
group of X which is obtained by identifying S1 × 1× 1 with S1 × 1× 2.

13.8.20. Use the fundamental group to show that the Mobius strip does not retract onto
its boundary circle.

13.8.21. Compute the fundamental group of the union of S2 and the straight line joining
(0, 0, 1) with (0, 0,−1) in R3.

13.8.22. Let G be a group which is generated by k elements. Then there is a surjection
Fk → G. Let K denote the kernel. Assume that there are finitely many elements such
that K is the normal subgroup generated by these. Show that there is a topological space
X such that π1(X,x0) ∼= G.

13.8.23. Let D1 and D2 be two disjoint discs in S2. Cut out the interior of D1 and
D2. Take a compact cylinder with boundary components B1 and B2. Identify B1 with
δD1 and B2 with δD2 in such a way that the cylinder gets attached “outside” the sphere.
Repeat this process with k pairs of discs and denote the resulting topological space by
Mk. See the image here. Convince yourself that when k = 1 we get the torus. Compute
the fundamental group of Mk. (HINT: Recall the computation of the fundamental group
of the torus using Seifert-van Kampen Theorem.)

https://en.wikipedia.org/wiki/Handle_decomposition#/media/File:Sphere_with_three_handles.png
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13.8.24. Let n > 1. Show that every continuous map from PnR → S1 is homotopic to the
constant map. Show that every continuous map from PnR → S1 × S1 is homotopic to the
constant map.



Chapter 14

Galois correspondence for covering
maps

In this chapter we will describe a Galois correspondence for covering maps. Recall the
following correspondence from field theory. Let k be a field and let k̄ be an algebraic
closure of k. Now consider the two sets

{k ⊂ E ⊂ k̄ | E/k is finite} ←→ {H ⊂ Gal(k̄/k) | Gal(k̄/k)/H is finite}

The map E 7→ Gal(k̄/E) sets up a bijective correspondence between these two sets. The
inverse of this map is given by H 7→ k̄H . We will see a similar correspondence for covering
maps.

14.1 Universal covers

Definition 14.1.1 (Simply connected). A path connected topological space is called simply
connected if π1(X,x) = 1.

Throughout this chapter X will denote a connected and locally path con-
nected topological space.

By a pointed topological space we shall mean a topological space X along with a
point x0 ∈ X, and we will denote a pointed topological space by (X,x0). By a morphism
of pointed topological spaces f : (X,x0) → (Y, y0) we shall mean a continuous map
f : X → Y such that f(x0) = y0. A simply connected covering space has the following
universal property.

Theorem 14.1.2. Let (X,x0) be a pointed topological space. Let p : (X̃, x̃0) → (X,x0)
denote a connected and simply connected cover of X. If f : (Y, y0)→ (X,x0) is a connected

113



114 CHAPTER 14. GALOIS CORRESPONDENCE FOR COVERING MAPS

cover, then there is unique map F̃ : (X̃, x̃0) → (Y, y0) such that p = f ◦ F̃ . That is, the
following diagram commutes

(Y, y0)

f

��
(X̃, x̃0)

p //

F̃
99sssss

(X,x0) .

Proof. Apply the lifting theorem, Theorem 13.4.2.

Corollary 14.1.3. Any two connected and simply connected covers of a pointed, con-
nected and locally path connected topological space are homeomorphic by a unique homeo-
morphism.

Proof. Let

(X̃2, x̃2)

p2

��
(X̃1, x̃1)

p1 //

F
99s

s
s

s
s

(X,x0)

be connected and simply connected covers of (X,x0). Then by the previous theorem there
is a unique map F : (X̃1, x̃1) → (X̃2, x̃2) such that p2 ◦ F = p1. We need to show that
F is a homeomorphism. Again applying the previous theorem, there is a unique map
G : (X̃2, x̃2) → (X̃1, x̃1) such that p1 ◦ G = p2. It follows that p2 ◦ F ◦ G = p2. But the
identity morphism from (X̃2, x̃2) to itself also satisfies the condition p2 ◦ IdX̃2

= p2, and
by uniqueness we get that F ◦G = IdX̃2

. Similarly, we see that G ◦ F = IdX̃1
.

Definition 14.1.4. Let X be a connected and locally path connected topological space such
that it has a connected and simply connected cover X̃. Then this cover is unique up to a
unique homeomorphism. Any such cover is called the universal cover of X.

Remark 14.1.5. The term universal is because of the above universal property that this
cover has.

14.2 Deck Transformations

Definition 14.2.1 (Automorphism group of a cover). Let p : Y → X be a connected cover
of X. Define

Aut(Y/X) := {f : Y → Y | f is a homeomorphism and p ◦ f = p}.

Remark 14.2.2. Clearly Aut(Y/X) is a group under composition of maps.
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Before proceeding let us recall some basic definitions related to group actions. If G
acts on a set X then the action is said to be transitive if there is only one G-orbit. The
action is said to be free if for every x ∈ X, the stabilizer Stab(x) is trivial.

Proposition 14.2.3. Let p : X̃ → X be a universal cover. For any point x ∈ X,
Aut(X̃/X) acts on p−1(x) and this action is free and transitive.

Proof. If f ∈ Aut(X̃/X) then by definition p◦f = p. From this it follows that Aut(X̃/X)
acts on p−1(x). Let x̃1, x̃2 ∈ p−1(x). Applying Corollary 14.1.3 to the diagram

(X̃, x̃2)

p

��
(X̃, x̃1)

p //

f
::t

t
t

t
t

(X,x)

we see that the action is transitive. If x̃1 = x̃2, then by uniqueness in Corollary 14.1.3 we
see that the action is free.

Let p : X̃ → X be a universal cover. Let V ⊂ X be a path connected open set which
is evenly covered. Let x ∈ V be a point, then we may write

p−1(V ) =
⊔

t∈p−1(x)

Ut.

Clearly, each Ut being homeomorphic to V is path connected and so is a path component
of p−1(V ).

Proposition 14.2.4. Let V ⊂ X be a path connected open set which is evenly covered.
The group Aut(X̃/X) acts freely transitive on the path components of p−1(V ).

Proof. Let f ∈ Aut(X̃/X). Then f :
⊔
t∈p−1(x) Ut →

⊔
t∈p−1(x) Ut is a homeomorphism

since it is an automorphism of X̃. It follows that f takes path components to path
components, and so for each t ∈ p−1(x), we see that f : Ut → Uf(t). As Aut(X̃/X) acts
freely on p−1(x) it follows that if f : Ut → Ut, then f(t) = t and so f is the identity. Also
since the action is transitive, it follows that for every t1 and t2 in p−1(x) there is f such
that f(t1) = t2. Thus, f(Ut1) = Ut2 .

Corollary 14.2.5. Let p : X̃ → X be a universal cover. Let Aut(X̃/X) have the discrete
topology. There is a continuous map a : Aut(X̃/X)× X̃ → X̃ which makes the following
diagram commute.

Aut(X̃/X)× X̃ a //

p2
��

X̃

p

��
X̃

p // X,

where p2 : Aut(X̃/X)× X̃ → X̃ denotes the projection to X̃.
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Proof. There is a natural map of sets a : Aut(X̃/X)× X̃ → X̃ given by

(f, t) 7→ f(t).

It is a trivial check that the diagram

Aut(X̃/X)× X̃ a //

p2
��

X̃

p

��
X̃

p // X

commutes. From the commutativity of the above diagram it is clear that Aut(X̃/X) maps
the fiber p−1(x) to itself. We have already seen, in Proposition 14.2.4, that the action on
p−1(x) is free and transitive.

Let us check that the map a is continuous when Aut(X̃/X) is given the discrete
topology. Let B be the collection of open subset U ⊂ X̃ such that U is path connected
and p(U) is evenly covered. Then it is an easy check that B forms a basis for the topology
on X̃. Let x ∈ V ⊂ X be an evenly covered path connected open set. Then

p−1(V ) =
⊔

t∈p−1(x)

Ut.

It suffices to show that a−1(Ut) is open in Aut(X̃/X) × X̃. Suppose a(f, y) ∈ Ut, then
f(y) ∈ Ut. Let t′ = f−1(t), then as shown in Proposition 14.2.4 we see that f : Ut′ → Ut.
Thus, y ∈ Ut′ and clearly a({f} × Ut′) ⊂ Ut, that is, {f} × Ut′ ⊂ a−1(Ut). This proves
that a is continuous.

For simplicity of notation let G denote the group Aut(X̃/X). Since G acts on X̃, we
can form equivalence classes of G-orbits for this action. Let X̃/G denote the space of
G-orbits with the quotient topology. From Proposition 14.2.3 it follows that the G-orbits
are exactly of the form p−1(x) for x ∈ X. It follows that there is a commutative diagram

(14.2.6) X̃
p //

π !!C
CC

CC
CC

C X

X̃/G

q

=={{{{{{{{

Since the G-orbits are exactly the fibers of p, we see that q is a bijection. By the universal
property of the quotient topology, Proposition 10.2.2, q is continuous. We now show that
q is open, which will prove that it is a homeomorphism.

Theorem 14.2.7. The map q in equation (14.2.6) is a homeomorphism.
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Proof. We have already see that q is continuous, because of the universal property of the
quotient map, and it is a bijection. Let U ⊂ X̃/G be an open subset. Then π−1(U) is
open by the definition,2 of quotient topology and U = π(π−1(U)), as π is surjective. Thus,

q(U) = q ◦ π(π−1(U)) = p(π−1(U)).

Since p is a covering map, it is open by Proposition 12.1.3. It follows that q(U) is open.

Corollary 14.2.8. π is a covering map.

Proof. This is obvious since q identifies the maps p and π.

14.3 Covering space action

The results of the previous section are a special case of a more general situation which we
now describe.

Definition 14.3.1 (Covering space action). Let G be a group acting on X such that the
action satisfies the following conditions:

(1) The action is free, that is, for all x ∈ X, the stabilizer Stab(x) = {e}.

(2) For every x ∈ X, there is an open set x ∈ U ⊂ X such that if g ̸= e then g ·U ∩U = ∅.

Then we say that the action of G on X is a covering space action.

Proposition 14.3.2. Let G act on X and assume that the action is a covering space
action. Let X/G denote the space of G-orbits with the quotient topology and let π : X →
X/G denote the quotient map. Then π is a covering map.

Proof. For any subset V ⊂ X it is clear that

π−1(π(V )) =
⋃
g∈G

g · V.

Assume that V is open. As each g ∈ G is a homeomorphism of X we see that g · V is
open. By the definition of quotient topology we see that π(V ) is open, that is, π is an
open map. Let x ∈ X and let U be an open set such that x ∈ U and for every g ̸= e we
have g · U ∩ U = ∅. We get

π−1(π(U)) =
⊔
g∈G

g · U .

To show that π(U) is an evenly covered open set it suffices to show that the restriction

π|g·U : g · U → π(U)
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is a bijection. We know π|g·U is open and continuous, if it is a bijection then it will be
a homeomorphism. If this is not a bijection then there are two distinct points x, y ∈ U
which are in the same G orbit, that is, there is g ∈ G such that g · x = y. Since x ̸= y
it is not possible that g = e. If g ̸= e then we know that g · U ∩ U = ∅, which gives a
contradiction. Thus, π|g·U is a bijection and this proves that the open set π(U) is evenly
covered.

Theorem 14.3.3. Let X̃ be a connected, simply connected and locally path connected
topological space. Let G act on X̃ and assume that the action is a covering space action.
Let π : X̃ → X̃/G =: X denote the quotient map. Then there is an isomorphism G

∼−→
Aut(X̃/X).

Proof. It is obvious that there is a map G→ Aut(X̃/X) since the diagram

X̃
π

��@
@@

@@
@@

@
g // X̃

π

��~~
~~
~~
~~

X

commutes and g is a homeomorphism.

If g ∈ G is in the kernel of this map then we will have that g ∈ Stab(x̃) for every
x̃ ∈ X̃. However, since the action of G is a covering space action, each such stabilizer is
trivial. This shows that G ⊂ Aut(X̃/X).

Notice that X̃ is a universal cover for X. By Proposition 14.2.3 we know that
Aut(X̃/X) acts freely transitively on the fiber π−1(x0), where x0 := π(x̃). This means
that the map

Aut(X̃/X)→ π−1(x0), f 7→ f(x̃)

defines a bijection. Thus, to show that G is all of Aut(X̃/X) it suffices to show that the
composition

G→ Aut(X̃/X)→ π−1(x0)

is surjective. But it is obvious that this composite is surjective since the fiber π−1(x0) is
precisely the G orbit of x̃.

Next we come to the main result of this chapter. Fix x0 ∈ X and define

C (X) := {connected covers (Y, y0)→ (X,x0)}

and

S (Aut(X̃/X)) := {subgroups of Aut(X̃/X)}
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Theorem 14.3.4 (Galois correspondence for covering maps). Let (X̃, x̃0)→ (X,x0) be a
universal cover. There are bijective maps

Φ : C (X)→ S (Aut(X̃/X)) and Ψ : S (Aut(X̃/X))→ C (X)

which are inverses of each other. These maps are given by

Φ((Y, y0)→ (X,x0)) := Aut(X̃/Y ) Ψ(H) := ((X̃/H, x̃0/H)→ (X,x0)).

Proof. Before beginning with the proof we make some remarks. In the definition of Φ, in
order to talk about Aut(X̃/Y ) we need a covering map X̃ → Y . What the map should be
is clear, using the lifting theorem there is a unique map of pointed spaces (X̃, x̃0)→ (Y, y0).
We need to show that X̃ → Y is a covering map. Similarly, in the definition of Ψ, we need
to show that X̃/H → X is a covering map. Once we prove these, then at least the maps
Φ and Ψ will be defined. Let us begin by proving these.

Defining Φ : By Theorem 13.4.2, there is a unique p̃ which makes the following diagram
commute.

(Y, y0)

f

��
(X̃, x̃0)

p //

p̃
99ttttt

(X,x0) X̃/Aut(X̃/X)

We need to show that p̃ is a covering map. Choose y ∈ Y . Since f and p are covering
maps, there is a path connected open set V ⊂ X containing x := f(y) and evenly covered
by both f and p. Then

f−1(V ) =
⊔

y′∈f−1(x)

Uy′ , p−1(V ) =
⊔

x′∈p−1(x)

Wx′ .

Here Uy′ is the unique “sheet” over V which contains y′, similarly, Wx′ . Since Wx′ is
connected, it follows that p̃(Wx′) ⊂ Up̃(x′). We may factor p̃ restricted to Wx′ as the
composite

Wx′ V Up̃(x′)
p

(f |Up̃(x′)
)−1

This proves that every sheet Wx′ maps homeomorphically onto the sheet Up̃(x′). From this
it is clear that

p̃−1(Uy) =
⊔

x′∈p̃−1(y)

Wx′ ,

and the restriction of p̃ toWx′ is a homeomorphism onto Uy. It follows that p̃ is a covering
map. Define Φ(f) := Aut(X̃/Y ). It is easily checked that this is a subgroup of Aut(X̃/X).
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Defining Ψ : Let H ⊂ Aut(X̃/X). Then we have a commutative diagram

(X̃/H, x̃0/H)

f

��
(X̃, x̃0)

p //

p̃
88ppppppppppp
(X,x0) X̃/Aut(X̃/X)

By Proposition 14.3.2, we see that the map p̃ is a covering map. We need to show that
f is a covering map. Let x ∈ V be a path connected open subset of X which is evenly
covered. We write

p−1(V ) =
⊔

t∈p−1(x)

Ut .

We can decompose the set p−1(x) into disjoint H-orbits, let us write

p−1(x) =
⊔
i∈I

H · ti .

In fact, the indexing set I can be taken to be f−1(x). It is easy to see that (since path
components are in 1-1 correspondence with elements of p−1(x) with compatible action of
Aut(X̃/X))

p−1(V ) =
⊔
i∈I

H · Uti

=
⊔
i∈I

⊔
h∈H

h · Uti

If Z1 and Z2 are two H-invariant subsets of X which are disjoint, then Z1/H is disjoint
from Z2/H. Since H · Uti are H-invariant and disjoint for different i ∈ I, it follows that

p̃(p−1(V )) =
⊔
i∈I

(
H · Uti

)
/H .

Since p̃ is a covering map and so is open, it follows that
(
H ·Uti

)
/H is an open subset of

X̃/H. Since p̃ : Uti →
(
H · Uti

)
/H is continuous, bijective and open, we see that it is a

homeomorphism. Let us also observe that since p̃ is surjective,

f−1(V ) = p̃(p̃−1(f−1(V ))) = p̃(p−1(V )) =
⊔
i∈I

(
H · Uti

)
/H .

Thus, to prove that f is a covering map it only remains to show that the restriction of f

from
(
H ·Uti

)
/H to V is a homeomorphism. But this is clear since we have a commutative
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diagram

Uti

(
H · Uti

)
/H

V

p̃

p

f

in which p̃ and p are homeomorphisms. This proves that f is a covering map and so defines
Ψ.

Let us first check that Φ ◦Ψ = Id. We need to show that

H = Aut(X̃/(X̃/H)).

But this is the content of Theorem 14.3.3.
Next let us check that Ψ ◦ Φ = Id. This is equivalent to showing that there is a

commutative diagram

X̃/Aut(X̃/Y )
∼ //

&&LL
LLL

LLL
LLL

Y

f����
��
��
��

X

It is clear that Aut(X̃/Y ) ⊂ Aut(X̃/X). Applying Theorem 14.2.7 to the map p̃ we get
that there is a commutative diagram

Y

f

��
X̃/Aut(X̃/Y )

p //

∼
88rrrrrr

X X̃/Aut(X̃/X)

This proves that Ψ ◦ Φ = Id and completes the proof of the theorem.

Theorem 14.3.5. Let p : X̃ → X be a universal cover for X. Then Aut(X̃/X) is
isomorphic to π1(X,x0).

Proof. Let us first define a map

Φ : Aut(X̃/X)→ π1(X,x0).

Fix a point x̃0 ∈ X̃ such that p(x̃0) = x0. Let f ∈ Aut(X̃/X), then obviously p ◦ f(x̃0) =
x0. Since X̃ is path connected, there is path γ from x̃0 to f(x̃0). It is clear that p ◦ γ is a
loop at x0, and so define

Φ(f) := [p ◦ γ] ∈ π1(X,x0).

We need to show that Φ does not depend on the choice of the path γ. Suppose γ1 is
another path from x̃0 to f(x̃0). Recall that I(γ1) denote the reverse path from f(x̃0) to
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x̃0. Then γ ∗ I(γ1) is a path in X̃ at the point x̃0. Since X̃ is simply connected, there
is a homotopy F between the constant path cx̃0 and the path γ ∗ I(γ1). Thus, p ◦ F is a
homotopy between the constant path cx0 and the path (p ◦ γ) ∗ (p ◦ I(γ1)). Thus, we get
that in π1(X,x0)

e = [(p ◦ γ) ∗ (p ◦ I(γ1))]
= [p ◦ γ] ∗ [p ◦ I(γ1)]
= [p ◦ γ] ∗ [I(p ◦ γ1)]
= [p ◦ γ] ∗ [p ◦ γ1]−1 .

This proves that [p ◦ γ1] = [p ◦ γ], proving that the map Φ is well defined.
Next we show that Φ is a group homomorphism. Let f1, f2 ∈ Aut(X̃/X). Let γ1 be a

path from x̃0 to f1(x̃0) and let γ2 be a path from x̃0 to f2(x̃0). Then f2 ◦γ1 is a path from
f2(x̃0) to f2(f1(x̃0)). Thus, γ2 ∗ (f2 ◦ γ1) is a path from x̃0 to f2 ◦ f1(x̃0). Thus, using the
definition of Φ we get

Φ(f2 ◦ f1) = [p ◦ (γ2 ∗ (f2 ◦ γ1))]
= [p ◦ γ2] ∗ [p ◦ f2 ◦ γ1]
= [p ◦ γ2] ∗ [p ◦ γ1]
= Φ(f2) ∗ Φ(f1) .

This proves that Φ is a group homomorphism.
Next we show that Φ is an inclusion. Suppose Φ(f) = e. Let x̃1 := f(x̃0) and let γ

be a path from x̃0 to x̃1. By assumption, p ◦ γ is homotopic to the constant loop cx0 . By
Lemma 12.2.3 it follows that γ, which is the unique lift of p ◦ γ starting at x̃0, is a loop at
x̃0. This shows that x̃1 = x̃0. Thus, f(x̃0) = x̃0. But by uniqueness in Theorem 14.1.2 it
follows that f = IdX̃ . This proves that Φ is an inclusion.

Next we show that Φ is a surjection. Let γ be a loop at x0. Lift γ to a path γ̃ in X̃
starting at x̃0 and let the end point of the path be x̃1. Then obviously x̃1 ∈ p−1(x0). Now
apply Corollary 14.1.3 to get an f ∈ Aut(X̃/X) such that f(x̃0) = x̃1. Clearly, γ̃ is a path
from x̃0 to f(x̃0), and so Φ(f) = [p ◦ γ̃] = [γ]. This proves that Φ is surjective, and so the
Theorem is proved.

Remark 14.3.6. In view of the above theorem, the Galois correspondence for covering
maps becomes a correspondence between the connected covers of X and subgroups of
the fundamental group of X. This statement is slightly better than the one involving
Aut(X̃/X) since the fundamental group seems more intrinsic to the spaceX in comparison
to the group Aut(X̃/X). Let H ⊂ Aut(X̃/X) be a subgroup and consider the cover

p : (X̃/H, x̃0/H)→ (X,x0).

Show that Φ(H) = p∗(π1(X̃/H, x̃0/H)).
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14.4 Existence of universal cover

This section was written up by Sagnik Das. In the entire chapter we very strongly used
the hypothesis that X has a simply connected cover. When is this hypothesis satisfied?

Definition 14.4.1 (Semilocally simply connected). A topological space is called semilo-
cally simply connected if every point x ∈ X has a neighborhood i : U ↪→ X such that
i∗π1(U, x) ⊂ π1(X,x) is trivial.

Lemma 14.4.2. Let U be a path-connected subset of X. Let x ∈ U and assume i∗π1(U, x) ⊂
π1(X,x) is trivial. Then for all y ∈ U , i∗π1(U, y) ⊂ π1(X, y) is trivial. Further, if W is
any path-connected subspace of U , then for all y ∈W , i∗π1(W, y) ⊂ π1(X, y) is trivial.

Proof. Left as an exercise.

It is easily checked that the set of all open subsets U which satisfy the hypothesis of
Lemma 14.4.2 forms a basis for the topology on X. We denote this collection by U .

In the following Theorem we shall use the following notation. Suppose we have two
paths from x0 to x1. We say that they are homotopic if there is a homotopy F between
them such that each Ft is a path from x0 to x1.

Theorem 14.4.3. Let X be a connected, locally path connected and semilocally simply
connected topological space. Then X has a simply connected cover.

Proof. Let X be connected, locally path connected and a semilocally simply connected
space. Let P be the set of paths of X that begin at x0. For α, β ∈ P define α ∼ β if
α(1) = β(1) and α is homotopic to β. Clearly ∼ is an equivalence relation. For α ∈ P
denote by [α] the equivalence class of α. Define X̃ to be P/∼.

Let α ∈ P. Let U ∈ U be such that α(1) ∈ U . Define

[U,α] = {[α ∗ γ] | γ : I 7−→ U, γ(0) = α(1)} ⊂ X̃ .

(14.4.4) It is easily checked that if [α] = [β] then [U,α] = [U, β].

We will now show that the above collection of sets {[U,α]} satisfies the hypothesis for
being basis of X̃, that is, satisfies the condition in Proposition 2.1.3. Let [α] ∈ X̃. Let U
be an open set as above such that α(1) ∈ U . Then [U,α] contains [α] since

[α] = [α ∗ cα(1)] ∈ [U,α]

where cα(1) : I 7−→ U is the constant path at α(1). This shows that this collection satisfies
Proposition 2.1.3 (1).

First we show that if [γ] ∈ [U,α] then [U,α] = [U, γ]. If [γ] ∈ [U,α] then [γ] = [α ∗ β].
Clearly, we have [U,α ∗ β] ⊂ [U,α]. Combining this with observation (14.4.4) we see that
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[U, γ] ⊂ [U,α]. We also have that [γ ∗ β−1] = [α]. Thus, by the same reasoning we get
[U,α] ⊂ [U, γ]. This shows that [U,α] = [U, γ].

Now let [γ] ∈ [U,α] ∩ [V, β]. Then by the preceding discussion we have [U,α] = [U, γ]
and [V, γ] = [V, β]. Let W be a path-connected open subset of U ∩ V containing γ(1).
Note that W ∈ U by Lemma 14.4.2. Then we have [W,γ] ⊂ [U, γ]∩ [V, γ] = [U,α]∩ [V, β].
This shows that this collection satisfies Proposition 2.1.3 (2). Hence {[U,α]} constitutes
a basis for a topology on X̃.

Now we show that p : X̃ 7−→ X defined by p(α) = α(1) is continuous. Let U ∈ U
and consider p−1(U) = {[γ] ∈ X̃|γ(0) = x0, γ(1) ∈ U}. Let [γ] ∈ p−1(U), we claim
[U, γ] ⊂ p−1(U). Let [δ] ∈ [U, γ]. Then we have

[δ] = [γ ∗ β] =⇒ δ(1) = β(1) ∈ U

and hence [U, γ] ⊂ p−1(U). This proves that p−1(U) is open. As U forms a basis for X,
and p−1(U) is open, hence p is continuous and we have

p−1(U) = ∪γ∈p−1(U)[U, γ] .

Next we show that if [U,α] ∩ [U,α′] ̸= ϕ then [U,α] = [U,α′]. Assume that the
intersection is nonempty. Then we will have [α ∗ β1] = [α′ ∗ β2] for some β1, β2 : I 7−→ U
such that β1(0) = α(1) and β2(0) = α′(1). First note that β1(1) = β2(1).

Let [α ∗β] ∈ [U,α], β : I 7−→ U is a path and β(0) = α(1). Define β3 := β−1 ∗β1 ∗β−1
2 .

Now we see

[α ∗ β1 ∗ β−1
2 ∗ α

′−1
] = [α ∗ β1 ∗ β−1

2 ∗ (β
−1
3 ∗ β

−1 ∗ β ∗ β3) ∗ α′−1
]

Now by associativity we have

[α ∗ β1 ∗ β−1
2 ∗ α

′−1
] = [α ∗ (β1 ∗ β−1

2 ∗ β
−1
3 ∗ β

−1) ∗ β ∗ β3 ∗ α′−1
]

Now we observe that (β1 ∗ β−1
2 ∗ β−1

3 ∗ β−1) is a loop in U ∈ U . Hence, in X, the loop
(β1 ∗ β−1

2 ∗ β
−1
3 ∗ β−1) is homotopic to constant loop at α(1). Thus, we have

[α ∗ β1 ∗ β−1
2 ∗ α

′−1
] = [α ∗ β ∗ β3 ∗ α′−1

] .

Since [α ∗ β1] = [α′ ∗ β2] we have that [α ∗ β1 ∗ β−1
2 ∗ α′−1] is homotopic to the constant

loop. This implies [α ∗ β] = [α′ ∗ β−1
3 ] ∈ [U,α′]. Thus, [U,α] ⊂ [U,α′]. Reversing the role

of α and α′ we will have [U,α′] ⊂ [U,α] which implies [U,α′] = [U,α]. This discussion
shows that

p−1(U) =
∐
γi

[U, γi] .
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Next we show p : [U,α] 7−→ U is a homeomorphism. First let us show that p is
bijective on [U,α]. Clearly p is surjective as U is path connected. To check the injectivity
let p(α ∗ β) = p(α ∗ β′). Then we have β(1) = β′(1). Then α ∗ β ∗ β′−1 ∗ α−1 makes sense.
But we see β ∗ β′−1 is a loop in U which will be homotopic to the constant loop at α(1).
Then we have

[α ∗ β ∗ β′−1 ∗ α−1] = [cx0 ]

Hence we have [α ∗ β] = [α ∗ β′] and p : [U,α] 7−→ U is injective. This proves bijectivity of
p on [U,α].

Let A be a topological space and suppose A is a basis for the topology on A. Let
f : A → B be a map of topological spaces such that for every U ∈ A the image f(U) is
open in B. Then f is an open map. If we apply this observation to the map p : X̃ → X,
then using the above observation that for U ∈ U we have p([U,α]) = U , which is open in
X, then we see that p is an open map. Thus, the restriction of p to [U,α] is also an open
map.

Finally we will prove that π1(X̃, cx0) = {e}. Let us begin by making the following
observation. Suppose γ : I → X is a path, then the unique lift of this path γ̃ : I → X̃ is
given by γ̃(s) = γs, where γs : I 7−→ X is the path defined by γs(t) = γ(st). Clearly, this
is a lift of γ since p ◦ γ̃ = γ. We only need to check that γ̃ is continuous. Let U be an
open set which contains γ(s) and assume that γ(s − ϵ, s + ϵ) ⊂ U . The path γs ∈ [U, γs]
and we will show that γ̃−1([U, γs]) contains (s− ϵ, s+ ϵ). Let s′ ∈ (s− ϵ, s+ ϵ). Consider
the path β(t) = γ(s+ t(s′ − s)). Then one checks easily that [γs′ ] = [γs ∗ β]. This proves
that (s− ϵ, s+ ϵ) ⊂ γ̃−1([U, γs]) and hence proves continuity.

Let γ̃ be a loop in X̃ based at cx0 . Let γ := p ◦ γ̃. Then γ is a loop at x0. From the
discussion in the preceding paragraph, it follows that γ̃(s) is the path γs. In particular,
γ̃(1) = γ. But since γ̃ is a loop at cx0 it follows that γ̃(1) = cx0 . Thus, it follows that γ
and cx0 are the same points in X̃, that is, as paths in X we have [γ] = [cx0 ]. This shows
that p∗(γ̃) = [p◦ γ̃] = [γ] is the identity in π1(X,x0). Since p∗ is an inclusion for a covering
map, see Exercise 13.8.3, it follows that π1(X̃, cx0) is trivial.
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14.5 Exercises

14.5.1. Prove that the set of points z ∈ D2 for which D2 − {z} is simply connected is
precisely S1. Hence prove that if f : D2 → D2 is a homeomorphism then f(S1) = S1.

14.5.2. Find the fundamental groups of the following spaces.

1. C− {0}.

2. C∗/G where G is the group of homeomorphisms {ϕn : n ∈ Z} where ϕ(z) = 2z.

3. C∗/H where H is the group of homeomorphisms {ϕn : n ∈ Z} where ϕ(z) = 2z.

14.5.3. Let S3 = {(z0, z1) ∈ C2 | ∥z20∥ + ∥z1∥2 = 1} be considered as a subspace of C3.
Let q be prime to p and define h : S3 → S3 by

h(z0, z1) = (exp(2πi/p)z0, exp(2πiq/p)z1).

Show that h is a homeomorphism of S3 with hp = 1. Define G := Z/pZ action on S3 by

n.(z0, z1) = hn(z0, z1), n ∈ G.

Show that this action is a covering space action and hence S3 → S3/G is a covering map.
The base space is a called the lens space L(p, q).

14.5.4. We defined a map Φ : Aut(X̃/X)
∼−→ π1(X,x0). Let H ⊂ Aut(X̃/X) be a

subgroup and consider the cover

p : (X̃/H, x̃0/H)→ (X,x0).

Show that Φ(H) = p∗(π1(X̃/H, x̃0/H)).

14.5.5. Explain how to use the Galois correspondence for covering maps to show that
subgroup of a free group is free.

14.5.6. Let Fn denote the free group on n symbols. Show that Fn ⊂ F2. (HINT: Use the
map R→ S1 to construct a cover Y → S1∨S1 such that Y/Z ∼= S1∨S1. What is Y/nZ?)
14.5.7. Let p : Y → X be a cover. Say Y is normal if Aut(Y/X) acts transitively on
the fiber p−1(x). Assume that X has a universal cover. Show that under the Galois
correspondence, normal subgroups correspond to normal covers.

14.5.8. State true or false with proof. There is no space Y such that S1 × Y is homeo-

morphic to P2
R. Here P2

R :=
(
R3 \ (0, 0, 0)

)
/R× = space of lines in R3. (HINT: First show

that P2
R = S2/{±1})

14.5.9. Let PnR :=
(
Rn+1\(0, 0, 0)

)
/R× = space of lines in Rn+1. Compute its fundamental

group.
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14.5.10. Let p : Y → X be a covering map. Suppose the fundamental group of X is
isomorphic to Z and p−1(x0) is finite, find the fundamental group of Y .

14.5.11. Prove that any two n-sheeted covers of S1 are equivalent.

14.5.12. Prove that if the universal cover of X is compact then the fundamental group of
X is finite.
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Chapter 15

Homotopy

15.1 Retracts and Deformation retracts

In section 13.2 we saw examples where the topological space could be continuously de-
formed to a subspace. In those simple examples the subspace was a point. It turned
out that the fundamental group of the space was equal to the fundamental group of the
subspace. In this section we will explore this idea further, of comparing the fundamental
groups of spaces which can be continuously deformed into one another.

Definition 15.1.1 (Retract). Let X be a topological space and let i : A ⊂ X be a subspace.
We say that A is a retract of X if there is a continuous map f : X → A such that
f ◦ i = IdA.

Proposition 15.1.2. Let x0 ∈ A ⊂ X. Then i∗ : π1(A, x0)→ π1(X,x0) is an inclusion.

Proof. Since (f ◦ i)∗ = f∗ ◦ i∗ and f ◦ i = IdA, this shows that

f∗ ◦ i∗ = Id .

This proves that i∗ is an inclusion.

Definition 15.1.3 (Deformation retract). Let A ⊂ X and assume that there is a map
F : X × I → X such that

1. F |X×0 = IdX ,

2. F (a, t) = a for all a ∈ A and t ∈ I,

3. F (x, 1) ∈ A for all x ∈ X.

Then we say that A is a deformation retract of X.

129
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In section 13.2 we saw that a point is a deformation retract of the disk D and R. It
can be shown easily that a point is a deformation retract of Rn. Next let us see that S1

is a deformation retract of X := R2 \ (0, 0). Define F : X × I → X by

F (x, t) = (1− t)x+ t
x

||x||
.

Proposition 15.1.4. Let A be a deformation retract of X. Let x0 ∈ A. Then the inclusion
i : A ⊂ X induces an isomorphism i∗ : π1(A, x0)→ π1(X,x0).

Proof. Obviously a deformation retract is a retract. The map x 7→ F (x, 1) is a retract from
X → A. In view of Proposition 15.1.2 we see that i∗ is an inclusion. Let γ ∈ π1(X,x0) be
the class of a loop. As before, consider the composite

G := F ◦ (γ, Id) : S1 × I → X × I → X

Then G|S1×0 = γ and G|S1×1 is a loop at x0 contained in A. Thus, there is a map
δ : S1 → A such that i ◦ δ = G|S1×1, and G is a homotopy between i∗δ and γ. This shows
that i∗ is surjective.

Corollary 15.1.5. The fundamental group π1(R2 \ (0, 0), 1) ∼= Z.

15.2 Homotopy and homotopy equivalence

The above discussion once again shows that utility of the idea of studying maps which can
be continuously deformed into one another. In the above, the identity map of X was being
continuously deformed to a retract of X to A. We now formally introduce the notion of
two maps being homotopic.

Definition 15.2.1 (Homotopy). Let f, g : X → Y be two maps. If there is a map
F : X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x) then we say that f and g are
homotopic.

Proposition 15.2.2. Consider the relation f ∼ g if f and g are homotopic to each other.
This is an equivalence relation.

Proof. Proof is similar to the proof of Proposition 13.1.3 and is left as an exercise.

Definition 15.2.3 (Homotopy equivalence). Two spaces X and Y are said to be homotopy
equivalent if there are maps f : X → Y and g : Y → X such that f ◦ g ∼ IdY and
g ◦ f ∼ IdX .

Proposition 15.2.4. If i : A ⊂ X is a deformation retract then A and X are homotopy
equivalent.
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Proof. Let F : X × I → X denote the homotopy deforming X to A. Let g := F |X×1.
Then g ◦ i = IdA and i ◦ g ∼ IdX .

Next we want to show that if X and Y are homotopy equivalent then they have
isomorphic fundamental groups. Suppose there is a point x0 in X such that g(f(x0)) = x0,
the homotopy g ◦ f ∼ IdX keeps x0 fixed at all time and the homotopy f ◦ g ∼ IdY keeps
the point f(x0) fixed at all time, then it is easy to check that f∗ and g∗ are inverses of
each other. However, there may not exist any such point. For the next lemma, recall the
notation and isomorphism Φ2(h) from Theorem 13.3.1.

Lemma 15.2.5. Let F : X × I → Y be a homotopy. Denote by Ft the restriction of F
to X × t. Let x0 ∈ X and define a path δ(t) := Ft(x0). Then F0∗ = Φ2(δ) ◦ F1∗ as maps
from π1(X,x0)→ π1(Y, F0(x0)).

Proof. The claim in the lemma is that there is a commutative diagram

π1(X,x0)
F1∗ //

F0∗ ''OO
OOO

OOO
OOO

π1(Y, F1(x0))

Φ2(δ)
��

π1(Y, F0(x0))

Let γ : [0, 1]→ X be a loop based at x0. Consider the following three maps from I×I → Y .

F (x0, st)

t

F ◦ (γ × Id)

t

F (x0, (1− s)t)

t

First consider the middle box. On the horizontal line I × t this defines the map s 7→
F (γ(s), t). This path defines a loop at F (x0, t) = Ft(x0), that is, its image at the end
points is Ft(x0). Next consider the left box. Again, on the line I × t the path starts at
F (x0, 0) = F0(x0) and ends at F (x0, t) = Ft(x0). Similarly, in the right box the path
starts at F (x0, t) = Ft(x0) and ends at F (x0, 0) = F0(x0). It is clear that we can join
these continuous maps and re-parameterize to give a map G : I × I → Y . Then

� G(0, t) = F0(x0) = G(1, t) for all t.

� G(s, 0) ∼ cF0(x0) ∗ (F0 ◦ γ) ∗ cF0(x0) ∼ F0∗(γ).

� G(s, 1) ∼ δ ∗ (F1 ◦ γ) ∗ I(δ) ∼ Φ2(δ)(F1∗(γ))

This proves the lemma.

Theorem 15.2.6. Let X and Y be path connected spaces which are homotopy equivalent.
Then π1(X,x0) is isomorphic to π1(Y, y0).
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Proof. Before we proceed with the proof let us remark that, since X and Y are path
connected, the isomorphism class of the fundamental group is independent of the base
point. This theorem, therefore, states that fundamental groups of homotopy equivalent
spaces are isomorphic.

Let f : X → Y and g : Y → X be maps such that g ◦ f ∼ IdX and f ◦ g ∼ IdY . By
Lemma 15.2.5 we get that there is an isomorphism Φ2(δ) such that (g ◦ f)∗ = Φ2(δ) ◦ Id.
This shows that (g ◦ f)∗ = g∗ ◦ f∗ is an isomorphism, which shows that f∗ is an inclusion
and g∗ is a surjection. Applying the same reasoning to f ◦ g ∼ IdY we see that f∗ is a
surjection. Thus,

f∗ : π1(X,x0)→ π1(Y, f(x0))

is an isomorphism.

15.3 Mapping cylinder and homotopy equivalence

As subspace A being a deformation retract of X captures the idea, that X can be con-
tinuously deformed into A, in a very strong sense. Homotopy equivalence, seems to be a
weaker notion of being able to deform one space into another. In this section we will see
that if X and Y are homotopy equivalent, then there is a space Z such that both X and
Y are deformation retracts of Z.

Definition 15.3.1 (Mapping cylinder). Let f : X → Y be a continuous map. The
mapping cylinder of f , denoted Mf is the space

X × I
⊔
Y
/
(x, 1) ∼ f(x).

When we talk of the inclusion X ↪→ Mf , unless otherwise mentioned, we will mean x 7→
(x, 0)/∼.

We will need the following result, due to Whitehead.

Lemma 15.3.2. Let X be a topological space and let ∼ be an equivalence relation on X.
Let Y be a locally compact topological space. Consider the obvious equivalence relation
on X × Y given by (x, y) ∼1 (x′, y′) iff x ∼ x′ and y = y′. Then the natural map
X × Y

/
∼1→ X/∼ ×Y is a homeomorphism.

Proof. It is clear that the map X × Y → X/∼ ×Y factors to give a bijective continuous
map q : X × Y

/
∼1→ X/∼ ×Y . Let V ⊂ X × Y

/
∼1 be an open subset. Let p : X × Y →

X ×Y
/
∼1 denote the quotient map. To show that q(V ) is open, we need to show that for

any point (x, y) ∈ p−1(V ) there are open sets U ⊂ X and W ⊂ Y such that U is a union
of equivalence classes, (x, y) ∈ U ×W and U ×W ⊂ p−1(V ).

Let W ⊂ Y be an open set containing y such that W̄ is compact and x×W̄ ⊂ p−1(V ).
There is such a W since Y is locally compact and p−1(V ) is open. Now we make the
following two observations
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1. Let C(x) denote the equivalence class of x in X. One checks that if (x, t) ∈ p−1(V )
then C(x)×t ⊂ p−1(V ). It follows that if x×W̄ ⊂ p−1(V ) then C(x)×W̄ ⊂ p−1(V ).

2. Applying tube lemma to x × W̄ ⊂ (X × W̄ ) ∩ p−1(V ) we see that there is an open
U ⊂ X such that x ∈ U and U × W̄ ⊂ p−1(V ).

Let

U ′ := {a ∈ X | a× W̄ ⊂ p−1(V )}

The first observation above says that U ′ is a union of equivalence classes and the second
says that U ′ is open. Thus, (x, y) ∈ U ′ ×W , which proves the lemma.

Proposition 15.3.3. The inclusion i : Y ↪→Mf is a deformation retract.

Proof. Using the previous lemma, define a homotopy F :Mf × I →Mf as follows.

� On X × I × I define F by F (x, t, s) = (x, s+ t(1− s))
/
∼.

� On Y × I define F (y, t) = y/∼.

We need to check that F (x, 1, t) = F (f(x), t). This is equivalent to (x, 1) ∼ f(x), which
is true. Since F (y, t) is the identity on Y for every t, and F (Mf , 1) ⊂ Y , the proposition
is proved.

Definition 15.3.4 (Homotopy Extension Property(HEP)). Let A ⊂ X. The pair (X,A)
is said to have the homotopy extension property if every continuous map f : (X×0)

⋃
(A×

I)→ Y can be lifted to a continuous map F : X × I → Y .

Remark 15.3.5. The space X × 0
⋃
A× I is homeomorphic to the mapping cylinder of

i : A ↪→ X.

Proposition 15.3.6. (X,A) has HEP iff X × 0
⋃
A× I is a retract of X × I.

Proof. Assume X × 0
⋃
A× I is a retract of X × I. Let r : X × I → X × 0

⋃
A× I denote

the retract. Given f : X × 0
⋃
A× I → Y , the map f ◦ r is the required lift of f to X × I.

Now assume that (X,A) has the HEP. Let Y = X × 0
⋃
A × I and let f = IdY .

Applying HEP we get that X × 0
⋃
A× I is a retract of X × I.

Corollary 15.3.7. If (X,A) has HEP then A is a closed subspace of X.

Proof. Using the previous proposition, X × 0
⋃
A × I is a retract of X × I. If r denotes

the retract, then X× 0
⋃
A× I is precisely the set of points such that r(z) = z, and hence

it is closed. Intersecting with X × 1 we see that A is closed in X.

Corollary 15.3.8. If (X,A) has HEP then so does (X × Y,A× Y ).
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Proof. Let r : X × I → X × 0
⋃
A× I denote a retract. Then

r × IdY : X × I × Y → X × 0× Y
⋃
A× I × Y

is a retract, which shows that (X × Y,A× Y ) has HEP.

Proposition 15.3.9. Let f : X → Y be a map. Let X ↪→Mf be the inclusion x 7→ (x, 0).
Then the pair (Mf , X ⊔ Y ) has HEP.

Proof. We will show that Mf × 0
⋃
(X ⊔ Y ) × I is a retract of Mf × I. It is easy to see

that there is a retract r : I × I → I × 0
⋃
(0× I ⊔ 1× I). Taking product with X we see

that there is a retract r̃ := IdX × r

r̃ : X × I × I → X × I × 0
⋃

(X × 0× I ⊔X × 1× I) .

By Lemma 15.3.2 we have

Mf × I = X × I × I
⊔
Y × I

/
(x, 1, t) ∼ (f(x), t) .

The space Mf × 0
⋃
(X ⊔ Y )× I is precisely

T :=X × I × 0
⋃

(X × 0× I ⊔ Y × I)
/
(x, 1, t) ∼ (f(x), t) =

= X × I × 0
⋃

(X × 0× I ⊔X × 1× I ∪ Y × I)
/
(x, 1, t) ∼ (f(x), t)

It suffices to define a map R from X × I × I ⊔ Y × I to T and check that R(x, 1, t) =
R(f(x), t). Define R(x, s, t) := r̃(x, s, t)/∼ and define R(y, t) = (y, t)/∼. Since r̃ is a
retract, we see that R(x, 1, t) = r̃(x, 1, t)/∼= (x, 1, t)/∼= (f(x), t)/∼= R(f(x), t). Since
r̃ is a retract, it follows that R is a retract. This proves the proposition.

Corollary 15.3.10. The pairs (Mf , X) and (Mf , Y ) have HEP.

Proof. Consider the retract Mf × 0
⋃
(X ⊔Y )× I →Mf × 0

⋃
Y × I given by the identity

on Mf × 0 and Y × I, and which sends (x, t) to (x, 0). Combining this with the previous
proposition shows that Mf × 0

⋃
Y × I is a retract of Mf × I and so (Mf , Y ) has HEP.

Similarly, one shows that (Mf , X) has HEP.

Definition 15.3.11 (Mapping cylinder neighborhood). Let A ⊂ X. We say that A has a
mapping cylinder neighborhood if there is a map f : Z → A and a map h :Mf → X such
that

1. h|A = IdA,

2. h(Mf ) is a closed subspace,
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3. h(Mf \ Z) is an open subspace,

4. h is a homeomorphism onto its image.

Proposition 15.3.12. If A has a mapping cylinder neighborhood then (X,A) has HEP.

Proof. Since h is a homeomorphism onto its image, we may identify Mf with h(Mf ) and
view Mf as a subspace of X which contains A.

Let T denote the set X \ (Mf \ Z). Then T is a closed subset of X since Mf \ Z is
open. The intersection T ∩Mf is equal to Z, which is closed since both subsets are closed.

Let f : X × 0
⋃
A × I → Y be given. Define f(α, t) := f(α, 0) for α ∈ T and t ∈ I.

Thus, the definition of f has been extended to X × 0
⋃
T × I ∪A× I. The intersection of

this space with Mf × I is equal to Mf ×0
⋃
Z× I ∪A× I. Since (Mf , Z ⊔A) has HEP, we

can extend this to a function F :Mf × I → Y . On Z × I the functions F and f agree by
construction. Since X× I = T × I ∪Mf × I, both these functions join to give a continuous
function F : X × I → Y , which lifts f .

Definition 15.3.13 (Contractible). A space is called contractible if it is homotopy equiv-
alent to a point. This is equivalent to saying that there is a0 ∈ A and a map F : A×I → A
such that F (a, 0) = a and F (a, 1) = a0.

Proposition 15.3.14. If a pair (X,A) satisfies HEP and A is contractible, then the
quotient map q : X → X/A is a homotopy equivalence.

Proof. Let F : A × I → A be a homotopy such that F (a, 0) = a and F (a, 1) is constant.
Extend this to X×0

⋃
A×I by defining F (x, 0) = x. Now use HEP for (X,A) and extend

this to a homotopy F : X × I → X. Since F (A× I) ⊂ A we get a commutative diagram

X × I F //

q×Id
��

X

q

��
X/A× I F̄ // X/A

Further, since F1 maps A to a point we get commutative diagram

X
F1 //

q

��

X

q

��
X/A

F̄1

//

g
;;wwwwwwwww
X/A

This proves that IdX/A = F̄0 ∼ F̄1 = q ◦ g. We also have g ◦ q = F1 ∼ F0 = IdX .

Definition 15.3.15. Let A ⊂ X and let F : X × I → Y be a homotopy. We say F is a
homotopy relative to A if the restriction to A× I is independent of I.
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Proposition 15.3.16. Let (X,A) and (Y,A) satisfy HEP. Assume that f : X → Y
is a homotopy equivalence such that f |A = IdA. Then there is g : Y → X such that
g ◦ f ∼ IdX relA and f ◦ g ∼ IdY relA.

Proof. Let g : Y → X be a homotopy inverse for f . This means that there is a homotopy
F between g ◦ f and IdX . Restricting F to A × I and using f |A = IdA, we see that
F : A× I → X is a homotopy between g|A and IdA. Define a map H : Y ×0

⋃
A× I → X

by defining it to be g on Y × 0 and F on A× I. Clearly this is well defined since F and g
agree on A× 0. Using HEP for (Y,A), this extends to give a homotopy H̃ : Y × I → X.
Note that

� H̃(y, 0) = H(y, 0) = g(y),

� H̃(a, 1) = F (a, 1) = a.

Define g1(y) = H̃(y, 1). Then g1|A = IdA.
Let F ′(x, t) = F (x, 1− t). Then F ′ is a homotopy between IdX and g ◦f . Since H̃ is a

homotopy between g and g1, it follows that H̃ ◦ f is a homotopy between g ◦ f and g1 ◦ f .
Denote by F ′ ∗ (H̃ ◦ f) the combined homotopy between IdX and g1 ◦ f . This means the
obvious, for 0 ⩽ t ⩽ 1/2 we cover F ′ and for 1/2 ⩽ t ⩽ 1 we cover H̃ ◦ f .

Let K : A× I → X denote the restriction of F ′ ∗ (H̃ ◦ F ) to A× I. Let us check that

� K(a, 0) = a. This is true since K(a, 0) = F ′(a, 0) = a.

� K(a, t) = K(a, 1 − t). To check this it suffices to assume that 0 ⩽ t ⩽ 1/2. Then
K(a, t) = F ′(a, 2t) = F (a, 1−2t). On the other hand K(a, 1− t) = H̃ ◦f(a, 1−2t) =
H̃(a, 1−2t). Since by definition H̃ extends F , we get that H̃(a, 1−2t) = F (a, 1−2t).

Now we shall define a homotopy of homotopies, that is, a map K̃ : A× I × I → X.

u

u0

t0 1− t0 t

Kt Kt0 Kt

Precisely, this is given by

K̃(a, t, u) =


K(a, t) 0 ⩽ t ⩽ 1−u0

2

K(a, 1−u02 ) 0 ⩽ t ⩽ 1+u0
2

K(a, t) 1+u0
2 ⩽ t ⩽ 1
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For K̃ to be continuous, the only condition needed is that K(a, 1−u02 ) = K(a, 1+u02 ), which

we know is true. Extend K̃ to X×I×0 by F ′ ∗ (H̃ ◦f). This is possible since on A×I×0
these two maps agree and in fact both are equal to K. By Corollary 15.3.8 the pair
(X× I, A× I) has HEP. Thus, K̃ extends to a homotopy X× I× I → X. Next we restrict
this homotopy to the dark edges on the square, as in the following diagram.

X ×
K̃

X

Now we note the following.

� K̃ restricted to the point X × (0, 0) is equal to F ′ restricted to X × 0, which is IdX .

� K̃ restricted to the point X × (1, 0) is equal to H̃ ◦ f restricted to X × 1, which is
g1 ◦ f .

� K̃ restricted to the path A× 0× I is equal to K restricted to A× 0, which is IdA.

� K̃ restricted to the path A× I × 1 is equal to K restricted to A× 0, which is IdA.

� K̃ restricted to the path A× 1× I is equal to K restricted to A× 1, which is IdA.

The above shows that we have found a homotopy from IdX to g1 ◦ f which is always IdA
on A. That is, IdX ∼ g1 ◦ f rel A.

From the preceding sentence, or as already observed above that g1|A = IdA, we may
apply the same argument, replacing f by g1, to g1 : Y → X. Thus, we will get f1 : X → Y
such that IdY ∼ f1 ◦ g1 rel A. Since f1, g1, f are all IdA on A, we get

f1 ∼ f1 ◦ (g1 ◦ f) rel A
= (f1 ◦ g1) ◦ f
∼ f rel A

This proves that IdY ∼ f ◦ g1 rel A. Thus, the proposition is proved.

Corollary 15.3.17. If (X,A) satisfies HEP and i : A ↪→ X is a homotopy equivalence,
then A is a deformation retract of X.

Proof. Apply the previous proposition with f = i.

Theorem 15.3.18. A map f : X → Y is a homotopy equivalence iff X is a deformation
retract of Mf .
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Proof. If X is a deformation retract of Mf , then since Y is also a deformation retract of
Mf (Proposition 15.3.3), we see that X and Y are homotopy equivalent.

Assume that f : X → Y is a homotopy equivalence. In order to apply the previous
corollary we need to show that i : X ↪→ Mf is a homotopy equivalence. Let j : Y ↪→ Mf

denote the inclusion, which is a homotopy equivalence. The inclusion i is homotopy
equivalent to j ◦ f . The map F (x, t) = (x, t)/∼ gives a homotopy between i and j ◦ f .
Since both f and j are homotopy equivalences, it follows that i is a homotopy equivalence.
It follows from the previous corollary that X is a deformation retract of Mf .

Corollary 15.3.19. Since Y is a deformation retract of Mf , this proves that X and Y
are homotopy equivalent iff there is a space Z such that both X and Y are deformation
retracts of Z.

Proof. Let Z =Mf .



15.4. EXERCISES 139

15.4 Exercises

15.4.1. Let X be a topological space . Show that f : S1 → X is homotopic to constant
map if and only the map from f can be extended to a map g : D2 → X such that g|S1 = f .

15.4.2. Show that there is a circle in the Mobius strip which is a deformation retract of
the Mobius strip. Deduce that the Mobius strip and the cylinder are homotopy equivalent.

15.4.3. Let X be path connected and let Y be homotopy equivalent to X. Show that Y
is path connected.

15.4.4. Prove that r : Dn → Sn−1 is a retract if and only if Sn−1 is contractible.

15.4.5. Let α, β : I → X be paths in X such that α(1) = β(0). Then given α′ ∼ α relative
to {0, 1} and β′ ∼ β relative to {0, 1}, show that

α ⋆ β ∼ α′ ⋆ β′.

15.4.6. Show that any path in X is homotopic to the constant path. (This uses the fact
that I is contractible.) Use this to show that in X if there are two paths α, β such that
α(0) = β(0) then they are homotopic.

15.4.7. Let α : I → X be a path and define τ(s) = α(1 − s) to be a path from in X.
Let ex denote the constant path at x ∈ X. Show that α ⋆ τ ∼ eα(0) relative to {0, 1} and
τ ⋆ α ∼ eα(1) relative to {0, 1}.

15.4.8. Recall we showed that any path from x0 to x1 gives an isomorphism from
π1(X,x0) → π1(X,x1). Prove that two paths α, β from x0 to x1 give rise to the same
isomorphism between π1(X,x0)→ π1(X,x1) if and only if [β ⋆ α−1] is in the center of the
group π1(X,x0).

15.4.9. Let Y be a subspace of Rn and let f, g : X → Y be continuous maps. Prove that
if for each x ∈ X, f(x) and g(x) can be joined by a straight line in Y then f ≃ g. Show
that any two maps f, g : X → Rn are homotopic.

15.4.10. Let X be any space and let f, g : X → Sn be continuous maps such that
f(x) ̸= −g(x) for all x ∈ X. Prove that f ≃ g.

15.4.11. SupposeX and Y are homotopy equivalent and Y and Z are homotopy equivalent,
show that X and Z are homotopy equivalent.

15.4.12. Let f : X → Y be a homotopy equivalence. Let h : X → Y be such that h is
homotopic to f . Show that h is also a homotopy equivalence.

15.4.13. Show that the composite of two homotopy equivalences is a homotopy equiva-
lence.

15.4.14. Consider the map f : S1 × S1 → S1 × S1 which switches the factors. Show that
f is not homotopic to the identity map.
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15.4.15 (Higher homotopy groups). Let X be a topological space and let x0 ∈ X. Recall
that a map f : (X,A) → (Y,B) is a map f : X → Y such that f(A) ⊂ B. We want to
define higher dimensional analogues of the fundamental group. In this exercise sheet we
will prove all the statements in the section on the fundamental group in the notes. Fix an
integer n > 1.

1. The space of n-spheres in X based at x0 is the set

S(X,x0) := {γ : (In, ∂In)→ (X,x0)} .

Define a binary operation ∗ on S(X,x0).

2. Let f, g ∈ S(X,x0). A homotopy F between f and g is a continuous map F :
In × I → X such that Ft := F |In×t ∈ S(X,x0) for all t ∈ I, F0 = f and F1 = g.
Define a relation ∼ on S(X,x0) by f ∼ g if f and g are homotopic. Show that ∼ is
an equivalence relation on S(X,x0).

3. Let πn(X,x0) denote the set of equivalence classes in S(X,x0) under the relation ∼.
The equivalence class of f will be denoted by [f ]. Show that the binary operation ∗
descends to a binary operation

∗ : πn(X,x0)× πn(X,x0)→ πn(X,x0) .

4. Show that the binary operation ∗ on πn(X,x0) is associative.

5. Let cx0 : I → X denote the constant map x0. Show that in πn(X,x0) we have
[f ∗ cx0 ] = [cx0 ∗ f ] = [f ].

6. For f ∈ S(X,x0), show that there is g ∈ S(X,x0) such that f ∗ g ∼ cx0 ∼ g ∗ f .

7. The above exercises prove that the set πn(X,x0) is a group under the operation ∗
with identity element cx0 . Show that this group is abelian.

8. Let f : X → Y be a continuous map. Define a map f∗ : πn(X,x0) → πn(Y, f(x0)).
Show that f∗ is a group homomorphism. Let f : X → Y and g : Y → Z be
continuous maps. Show that g∗ ◦ f∗ = (g ◦ f)∗.

9. Let f : Y → X be a covering map. Show that πn(Y, y0) → πn(X, f(y0)) is an
isomorphism. Show that πn(S

1, 1) = 0.



Chapter 16

Homology

In this chapter we will attach to each topological space certain algebraic objects (chain
complexes). This will allow us to define algebraic invariants for topological spaces (homol-
ogy groups). The advantage is that we may use algebraic methods (long exact sequences
associated to short exact sequences of complexes) to compute homology groups.

The ideas and methods we shall encounter in this chapter have been extended enor-
mously to various contexts, and the various objects have close interactions with each other.
In this chapter we shall see the simplest, yet substantial, instance of homological algebra
methods in the study of (topological/geometric) spaces. In the first section we collect
together the material from homological algebra that we will need.

16.1 Complexes

Definition 16.1.1 (Complex). A complex is a sequence {Ai, di}, indexed by Z ∩ (a, b),
where a, b ∈ Z∪{±∞}, each Ai is an abelian group and di : Ai → Ai−1 is a homomorphism
of abelian groups such that di ◦ di+1 = 0 (whenever this makes sense, see the examples
below). Complexes will also be denoted by {A•, d•}.

Usually complexes for us will be indexed by Z, and so will be of the type

· · · → Ai+1
di+1−−−→ Ai

di−→ Ai−1
di−1−−−→ Ai−2 · · ·

where for all i we have di ◦ di+1 = 0. However, in our definition we also allow finite
complexes. For example, we could have

A−9
d−9−−→ A−8

d−8−−→ · · ·A2
d2−→ A1 .

The above will be a complex if di ◦ di+1 = 0 for all −9 ⩽ i ⩽ 1.

Given a complex {Ai, di} we have Im di+1 ⊂ Ker di.

141
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Definition 16.1.2. We say that the complex is exact if Im di+1 = Ker di for all i for
which these terms make sense.

For example, given abelian groups H ⊂ G, the following complex is exact

· · · → 0→ 0→ H −→ G→ G/H → 0→ 0→ · · ·

Lemma 16.1.3 (Snake lemma). Suppose we are given a commutative diagram as follows,
such that the rows are exact.

A
α //

f
��

B
β //

g

��

C //

h
��

0

0 // D
α′
// E

β′
// F

Then

(1) There is an exact complex

(16.1.4) Ker(f)
α−→ Ker(g)

β−→ Ker(h)
δ−→ Coker(f)

α′
−→ Coker(g)

β′
−→ Coker(h) .

(2) If α is an inclusion then Ker(f)
α−→ Ker(g) is an inclusion.

(3) If β′ is a surjection then Coker(g)
β′
−→ Coker(h) is a surjection.

Proof. From the commutativity of the diagram it is easily checked that α maps Ker(f) to
Ker(g). The induced map is denoted α. Similarly, one checks easily that

� β induces a map β : Ker(g)→ Ker(h) given by b 7→ β(b),

� α′ induces a map α′ : Coker(f)→ Coker(g) given by d 7→ α′(d),

� β′ induces a map β′ : Coker(g)→ Coker(h) given by e 7→ β′(e).

The map δ is defined as follows. For c ∈ Ker(h) choose a lift b ∈ B (by a lift we mean an
element which maps to c). Note that

β′(g(b)) = h(β(b))

= h(c) = 0.

From the exactness of the lower row, it follows that there is a unique d ∈ D such that
g(b) = α′(d). Define

δ(c) := d ∈ Coker(f) .
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We need to check that δ is independent of the choice of the lift b. If b1 is another lift of
c, then b − b1 ∈ Ker(β). From the exactness of the top rown, there is a ∈ A such that
α(a) = b− b1. As earlier, there is a unique d1 such that g(b1) = α′(d1). Note that

α′(f(a)) = g(α(a)) = g(b)− g(b1)
= α′(d)− α′(d1)

= α′(d− d′) .

Since α′ is an inclusion, it follows that f(a) = d − d1. Thus, d = d′ ∈ Coker(f). This
proves that δ is well defined. One easily checks that δ is a group homomorphism.

Next let us check that

β ◦ α = δ ◦ β = α′ ◦ δ = β′ ◦ α′ = 0.

That β ◦α = β′ ◦α′ = 0 follows easily from β ◦α = β′ ◦α′ = 0. Let us check that δ ◦β = 0.
Let b ∈ Ker(g). Then by definition δ(β(b)) = δ(β(b)). Obviously, b is a lift of β(b). Since
g(b) = 0, it follows from the definition of δ that δ ◦β = 0. Next let us check that α′ ◦δ = 0.
Let c ∈ Ker(h) and choose a lift b ∈ B that maps to c. Then there is d ∈ D such that
α′(d) = g(b) and δ(c) = d. By definition α′(d) = α′(d). Since α′(d) = g(b) = 0 we see that
α′ ◦ δ = 0. This proves that the sequence of maps in (16.1.4) forms a complex. It remains
to show that this complex is exact.

Suppose b ∈ Ker(g) and β(b) = 0 then by exactness of the top row we see that there
is a ∈ A such that b = α(a). Then 0 = g(b) = g(α(a)) = α′(f(a)). Since α′ is an
inclusion, by the exactness of the bottom row, it follows that f(a) = 0. This proves that
Ker(β) = Im(α).

Suppose c ∈ Ker(h) and δ(c) = 0. Let b ∈ B be a lift of c. Then there is d ∈ D such
that α′(d) = g(b). Since δ(c) = d = 0, it follows that d = f(a) for some a ∈ A. Thus, we
get α′(d) = α′(f(a)) = g(α(a)) = g(b). This shows that b− α(a) ∈ Ker(g). We also have
β(b− α(a)) = β(b) = c. This proves that Ker(δ) = Im(β).

Suppose α′(d) = α′(d) = 0. This means that there is b ∈ B such that α′(d) = g(b).
Define c := β(b). Then h(c) = h(β(b)) = β′(g(b)) = β′(α′(d)) = 0. Clearly, δ(c) = d and
so this shows that Ker(α′) = Im(δ).

Suppose β′(e) = β′(e) = 0. This means that there is c ∈ C such that β′(e) = h(c).
Since β is surjective, choose a lift b ∈ B which maps to c. Then we get β′(e) = h(β(b)) =
β′(g(b)), which shows that β′(e− g(b)) = 0. Thus, by exactness of the bottom row we get
that there is d ∈ D such that α′(d) = e− g(b), which shows that α′(d) = α′(d) = e. This
shows that Ker(β′) = Im(α′). This completes the proof of the exactness of (16.1.4).

Assertions (2) and (3) are trivial and are left as an exercise.

Definition 16.1.5 (Homology groups). Homology groups of a complex are defined to be
Hi({A•, d•}) := Ker di/Im di+1.
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The reader will recall the definition of a complex being exact from 16.1.2. A complex
is exact iff all its homology groups vanish.

Definition 16.1.6 (Short exact sequence). An exact complex of the type

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence.

It is clear that for a short exact sequence as above, g induces an isomorphism ḡ : B/f(A)→
C.

From now on we shall denote complexes by A•. A map of complexes, denoted
f• : A• → B•, is a collection of maps fi : Ai → Bi such that the diagrams

Ai
fi //

di
��

Bi

di
��

Ai−1
fi−1 // Bi−1

commute. One easily checks that a map of complexes gives rise to a map between the
homology groups f i : Hi(A•)→ Hi(B•), which is given by

fi(a) := fi(a) .

Suppose we are given two maps of complexes

A•
f•−→ B•

g•−→ C• ,

then from the definition of the induced map on homology, it is clear that

(g ◦ f)i = gi ◦ fi .

Suppose we are given two maps of complexes f•, g• : A• → B•. We say that they are
homotopic if there are maps Fi : Ai → Bi+1 such that

fi − gi = di+1 ◦ Fi + Fi−1 ◦ di .

Lemma 16.1.7. If f• and g• are homotopic maps of complexes A• → B•, then the induced
maps on homology are the same.

Proof. If a ∈ Ai is such that di(a) = 0, then the induced map f i is defined as f i(a) = fi(a).
Thus,

f i(a)− gi(a) = fi(a)− gi(a)
= di+1(Fi(a)) + Fi(di(a)) = 0.

Thus, f i(a) = gi(a).
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A short exact sequence of complexes is two maps of complexes f• : A• → B• and
g• : B• → C•, such that for each i, the following is a short exact sequence

0→ Ai
fi−→ Bi

gi−→ Ci → 0 .

Proposition 16.1.8 (Homology long exact sequence). Let

0→ A•
f•−→ B•

g•−→ C• → 0

denote a short exact sequence of complexes indexed by integers. Then there is a long exact
homology sequence

· · · → Hi(A•)→ Hi(B•)→ Hi(C•)→ Hi−1(A•)→ · · ·

Proof. One easily checks that there is a complex

· · · → Hi(A•)
fi−→ Hi(B•)

gi−→ Hi(C•)
δi−→ Hi−1(A•)→ · · ·

where fi, gi are induced maps and δi is defined as in Lemma 16.1.4. It only remains to
prove that this complex is exact.

Observe that if Ai+1
αi+1−−−→ Ai

αi−→ Ai−1
αi−1−−−→ Ai−2 is a complex, then we get an induced

map

Coker(αi+1)
αi−→ Ker(αi−1) .

The kernel of αi is precisely Hi(A•), while the cokernel of αi is precisely Hi−1(A•). Ap-
plying Lemma 16.1.4 to

0 // Aj
fj //

αj

��

Bj
gj //

βj
��

Cj //

γj

��

0

0 // Aj−1
fj−1 // Bj−1

gj−1 // Cj−1
// 0

for j = i+ 1, i− 1 and using the above observation we get a commutative diagram

Coker(αi+1)
fi+1 //

αi

��

Coker(βi+1)
gi+1 //

βi
��

Coker(αi+1) //

γi
��

0

0 // Ker(αi−1)
fi−1 // Ker(βi−1)

gi−1 // Ker(γi−1)

Again using Lemma 16.1.4 and the above observation we get the exact sequence

Hi(A•)→ Hi(B•)→ Hi(C•)→ Hi−1(A•)→ Hi−1(B•) .

The proposition now follows.
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16.2 Singular homology - Definition

In this section we will define a complex C•(X) for a topological space X. Define the
standard n-simplex to be the topological space

∆n := {(t0, t1, . . . , tn) ∈ Rn+1 | ti ⩾ 0,

n∑
i=0

ti = 1} .

More generally by an n-simplex we shall mean any subset of Rl which is the convex hull
of points p0, p1, . . . , pn such that p1 − p0, p2 − p0, . . . , pn − p0 are linearly independent.
Denote the vertices of ∆n by vn0 , v

n
1 , . . . , v

n
n, where v

n
i has 1 in the ith coordinate and 0

elsewhere. Define the ith face map fni : ∆n → ∆n+1 on the vertices of ∆n by

(16.2.1) fni (v
n
j ) =

{
vn+1
j j < i

vn+1
j+1 j ⩾ i

and extend linearly to all of ∆n. Clearly the image of fni is the unique face which does not
contain the vertex vn+1

i .
Define Cn(X) to be the free abelian group on all continuous maps σ : ∆n → X. For

n < 0 define Cn(X) to be 0. Define a map

dn : Cn(X)→ Cn−1(X)

as 0 for n ⩽ 0, and for n > 0, on the generator of this group by,

dn(σ) :=
n∑
i=0

(−1)iσ ◦ fn−1
i .

Define dn on all of Cn(X) by extending it linearly.

Lemma 16.2.2. dn ◦ dn+1 = 0.

Proof. It suffices to check this on the generators of the abelian group.

dn ◦ dn+1(σ) =

n+1∑
i=0

(−1)idn(σ ◦ fni )

=
n+1∑
i=0

(−1)i
n∑
j=0

(−1)jσ ◦ fni ◦ fn−1
j

=
n+1∑
i=0

∑
j<i

(−1)i+jσ ◦ fni ◦ fn−1
j +

n+1∑
i=0

∑
j⩾i

(−1)i+jσ ◦ fni ◦ fn−1
j
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Now one checks easily that if j ⩾ i then fni ◦ f
n−1
j = fnj+1 ◦ f

n−1
i .

=

n+1∑
i=0

∑
j<i

(−1)i+jσ ◦ fni ◦ fn−1
j +

n+1∑
i=0

∑
j⩾i

(−1)i+jσ ◦ fnj+1 ◦ fn−1
i

Note in both the sums, each term is of the type σ ◦ fnl ◦ fn−1
m with l > m. Every such term

appears exactly once in the first sum, with sign (−1)l+m and exactly once in the second
sum, with sign (−1)l−1+m. Thus, all terms cancel each other and the lemma is proved.

Definition 16.2.3. The complex C•(X) is called the singular chain complex of X. The
homology groups of this complex are the homology groups of X and are denoted Hn(X,Z),
or simply, Hn(X).

Proposition 16.2.4. Let X be path connected. Then H0(X) = Z.

Proof. Note that C0(X) is just the free abelian group on the points ofX. Since C−1(X) = 0,
it follows that the kernel of d0 is all of C0(X). As X is path connected, for any two points
p and q, there is a path γ : ∆1 → X with γ(0) = p and γ(1) = q. Thus, d1(γ) = [q]− [p].
Thus, it is clear that

H0(X) =

⊕
x∈X Z · [x]

⟨[p]− [q] | p, q ∈ X⟩
∼= Z

Thus, the proposition is proved.

Proposition 16.2.5. Let X =
⊔
αXα denote the path components of X. Then Hi(X) =⊕

αHi(Xα).

Proof. Since each ∆n is path connected, it follows that for every σ : ∆n → X, there
is a unique α such that σ factors through Xα. From this it is clear that the complex
C•(X) =

⊕
α C•(Xα). The proposition follows.

Proposition 16.2.6. Let X = {p}. Then H0(X) = Z and Hi(X) = 0 for i > 0.

Proof. Since X is a point, for each n ⩾ 0, there is only one map ∆n → X. Thus, for each
n ⩾ 0, Cn(X) = Z. Now it is easily checked that if n > 0 is odd then dn = 0 and if n > 0
is even then dn = Id. Thus, the complex C•(X) looks like

· · · → Z d3=0−−−→ Z d2=Id−−−−→ Z d1=0−−−→ Z d0=0−−−→ 0→ 0 · · ·

The proposition now follows.
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16.3 Singular homology and continuous maps

It is easy to see that a continuous map induces a map at the level of homology groups. It
is much more difficult to show that homotopic maps induce homotopic maps at the level
of complexes, and thus, induce the same map at the level of homology groups. We will
prove this in this section. The main result of this section, if two topological spaces are ho-
motopy equivalent then their singular homology groups are isomorphic, then follows easily.

Abuse of Notation. We will often be careless about the notation for induced maps on
homology. When f• is a map between two complexes, we will denote the induced map by
f∗, f•, fi, fi, . . .. However, the reader should easily be able to figure out from the context
what we mean.

Lemma 16.3.1. Let h : X → Y be a continuous map. Then

(1) there is an induced map h• : C•(X)→ C•(Y ), given on the generators by hi(σ) = h◦σ,

(2) there is an induced map h∗ : Hi(X)→ Hi(Y ).

(3) if g : Y → Z is continuous, then g∗h∗ = (g ◦ h)∗.

Proof. It is easy to check that hi defined as above is a map of complexes. From this the
second assertion follows. It is clear that g• ◦ h• = (g ◦ h)•, and the third assertion follows
from this.

Remark 16.3.2. In what follows we will use the following notation. Let σ : ∆n → X and
let p0, . . . , pk be points in ∆n. By σ|[p0,...,pk] we shall mean the composite map

∆k → ∆n σ−→ X,

where the map ∆k → ∆n is the unique map which sends vki 7→ pi. For example, let n = 2
and let σ = Id : ∆2 → ∆2, then σ|[v20 ,v21 ] ̸= σ|[v21 ,v20 ] as maps, although they have the same
image.

Proposition 16.3.3. Let h, g : X → Y be homotopic maps. Then they induce the same
maps on homology.

Proof. The idea is to show that the maps h• and g• are homotopic and then use Lemma
16.1.7. Suppose that we are given a homotopy F : X × I → Y . We will define prism
operators Pn : Cn(X)→ Cn+1(Y ) such that

(16.3.4) dn+1 ◦ Pn + Pn−1 ◦ dn = (F1)n − (F0)n ,

which will prove that the two maps F0 and F1 induce homotopic maps on complexes. It
is enough to define the Pn’s on the generators and check this relation on the generators.
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For points p0, p1, p2, . . . , pr ∈ Rl denote by [p0, p1, . . . , pr] to be the unique linear map
∆r → Rl which sends vri 7→ pi and sends

∑
i αiv

r
i 7→

∑
i αipi. Let Y be a convex subset of

Rl and let τ be a map which is defined on Y . Let p0, p1, . . . , pr ∈ Y be points. Define

[p0, . . . , pr, τ ] := τ ◦ [p0, p1, . . . , pr] .

Note that

dr[p0, . . . , pr, τ ] =

n∑
i=0

(−1)i[p0, . . . , p̂i, . . . , pr, τ ] .

For a point p ∈ Y denote

p := p× 0 ∈ Y × I and p := p× 1 ∈ Y × I .

Define

Pn(σ) = Pn([v
n
0 , . . . , v

n
n, σ])

:=
n∑
i=0

(−1)i[vn0 , vn1 , . . . , vni , vni , . . . , vnn, F ◦ (σ × IdI)] .(16.3.5)

Then we have

dn+1Pn(σ) =
n∑
i=0

i∑
j=0

(−1)i+j [vn0 , . . . , v̂nj , . . . , vni , . . . , vnn, F ◦ (σ × IdI)]+

n∑
i=0

n∑
j=i

(−1)i+j+1[vn0 , . . . , v
n
i , v

n
i , . . . v̂

n
j , . . . , v

n
n, F ◦ (σ × IdI)] .

On the other hand dn(σ) =
∑n

j=0(−1)j [vn0 , . . . , v̂nj . . . , vnn, σ]. Applying the construction
for Pn−1 we see that

Pn−1([v
n
0 , . . . , v̂

n
j . . . , v

n
n, σ])

=

j−1∑
i=0

(−1)i[vn0 , . . . , vni , vni , . . . v̂nj , . . . , vnn, F ◦ (σ × IdI)] +

n∑
i=j+1

(−1)i−1[vn0 , . . . , v̂
n
j , . . . , v

n
i , v

n
i , . . . , v

n
n, F ◦ (σ × IdI)] .

Thus, we get

Pn−1(dn(σ)) =
n∑
j=0

j−1∑
i=0

(−1)i+j [vn0 , . . . , vni , vni , . . . v̂nj , . . . , vnn, F ◦ (σ × IdI)] +

n∑
j=0

n∑
i=j+1

(−1)i+j−1[vn0 , . . . , v̂
n
j , . . . , v

n
i , v

n
i , . . . , v

n
n, F ◦ (σ × IdI)] .
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Note that each term with j ̸= i in Pn−1 ◦ dn(σ) appears with the opposite sign in dn+1 ◦
Pn(σ). Thus, there is a cancellation and the only terms which survive are those in dn+1 ◦
Pn(σ) with j = i. Thus, we get

dn+1(Pn(σ)) + Pn−1(dn(σ)) =
n∑
i=0

[vn0 , . . . , v
n
i−1, v

n
i , . . . , v

n
n, F ◦ (σ × IdI)]+

−
n∑
i=0

[vn0 , . . . , v
n
i , v

n
i+1, . . . , v

n
n, F ◦ (σ × IdI)]

= [vn0 , . . . , v
n
n, F ◦ (σ × IdI)]− [vn0 , . . . , v

n
n, F ◦ (σ × IdI)]

= (F1)n(σ)− (F0)n(σ) .

This proves that the operators Pn, which have been defined on the generators of Cn(X),
satisfy equation (16.3.4). Thus, the proposition is proved.

Theorem 16.3.6 (Homotopy invariance). Let f : X → Y be a homotopy equivalence.
Then f∗ : Hi(X)→ Hi(Y ) is an isomorphism.

Proof. Let g : Y → X denote the homotopy inverse of f . Then g◦f ∼ IdY and f◦g ∼ IdX .
By the preceding proposition, this shows that g∗ ◦ f∗ = Id on Hi(X) and f∗ ◦ g∗ = Id on
Hi(Y ). This proves the theorem.

16.4 Subdividing a simplex

For points p0, p1, . . . , pk ∈ Rn+1 we denote by [p0, . . . , pk] the unique linear map ∆k →
Rn+1, which sends vki 7→ pi. Notice that the image of this map is the convex hull of the
points p0, . . . , pk. In this section we will abuse notation and also denote [p0, . . . , pk] to be
the image of this unique map. More generally, for a convex subset W , let [p,W ] denote
the convex hull of p and W .

We define an inductive process to subdivide an n- simplex [p0, . . . , pn] into smaller
n-simplices. In particular, here we assume that the vectors {pi − p0}i>0 are linearly
independent. For n = 0 we do nothing. For n = 1, we write

[p0, p1] =
[p0 + p1

2
, p0

]⋃[p0 + p1
2

, p1

]
.

Let us assume that we know how to subdivide an (n− 1)-simplex. Let Fi denote the face
[p0, . . . , p̂i, . . . , pn]. Let the subdivision of Fi be Fi =

⋃
αWi,α. Let b(W ) denote the point∑n

i=0 pi
n+1 ∈W .

Lemma 16.4.1. There is a subdivision

(16.4.2) [p0, . . . , pn] =
⋃
i,α

[b(W ),Wi,α] .
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Proof. Let w ∈ W . Since b(W ) is in the interior of W , consider the straight line (1 −
t)b(W )+ tw starting at b(W ). For a unique t ⩾ 1, it hits one of the boundary faces. Since
we have assumed that each face has a subdivision, it follows that there is Wj,α such that
w ∈ [b(W ),Wj,α].

p0 p1p0+p1
2

p0

p2
p1 p1+p2

2

p0+p2
2

p0+p1
2 p0+p1+p2

3

The diameter of a simplex W = [p0, . . . , pn] is defined to be the maximum distance
between any two of its points. Denote the diameter by diam(W ).

Lemma 16.4.3. With notation as above, we have

diam([b(W ),Wi,α]) ⩽
n

n+ 1
diam(W ) .

Proof. For points v,
∑n

i=0 tipi ∈ [p0, . . . , pn] we have

||v −
n∑
i=0

tipi|| = ||
n∑
i=0

ti(v − pi)|| ⩽
n∑
i=0

ti(||v − pi||)(16.4.4)

⩽ maxi{||v − pi||}(
n∑
i=0

ti) = maxi{||v − pi||}

Now writing v =
∑n

j=0 sjpj and repeating the above we see that

(16.4.5) maxi,j{||pi − pj ||} ⩽ diam([p0, . . . , pn]) ⩽ maxi,j{||pi − pj ||} .

When n = 1, the statement of the lemma is obvious, in fact, there is an equality. We will
prove the lemma by induction on n. Assume that n > 1. Let Wi,α denote an (n − 1)-
simplex in the subdivision of the face Fi. Let us assume that diam(Wi,α) ⩽ n−1

n diam(Fi).
This means that

(16.4.6) diam(Wi,α) ⩽
n− 1

n
diam(Fi) ⩽

n

n+ 1
diam(Fi) ⩽

n

n+ 1
diam(W ) .

From (16.4.5) it is clear that to compute the diameter of [b(W ),Wi,α], it suffices to compute
the distance between the vertices. If two vertices are in Wi,α then the distance between
them is bounded by n

n+1diam(W ), by (16.4.6). So consider the case when one vertex is
b(W ) and the other vertex is w ∈ Wi,α. Doing the same computation in (16.4.4) with
v = b(W ) we get

||b(W )− w|| ⩽ maxj{||b(w)− pj ||} .
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So let us compute ||b(W )− pj ||. We may write

b(W ) =
1

n+ 1
pj +

n

n+ 1

∑
l ̸=j pl

n
.

This shows that b(W ) is on the straight line joining pj and the point
∑

l ̸=j pl
n and that

||b(W )− pj || ⩽
n

n+ 1
||pj −

∑
l ̸=j pl

n
|| ⩽ n

n+ 1
diam(W ) .

Thus, we get that

||b(W )− w|| ⩽ n

n+ 1
diam(W ) .

By induction on n the lemma is proved.

16.5 Barycentric subdivision

Let Y be a convex subspace of Rl+1, for example, Y = ∆l+1. By a linear map σ : ∆n → Y
we mean that σ satisfies

σ(
n∑
i=0

tiv
n
i ) =

n∑
i=0

tiσ(v
n
i ) .

Let LCn(Y ) denote the free abelian group on linear maps ∆n σ−→ Y . It is clear that the
differential dn : LCn(Y )→ LCn−1(Y ). Note that LC0(Y ) is simply the free abelian group
on all points of Y . Let deg : LC0(Y )→ Z denote the map

l∑
i=1

ai[pi] 7→
l∑

i=1

ai .

Let LC•(Y ) denote the complex

· · · → LC1(Y )
d1−→ LC0(Y )

d0:=deg−−−−−→ Z→ 0→ 0 · · ·

A linear map ∆n σ−→ Y is completely determined by where the vertices go. Therefore,
we may denote such a map by an ordered set of points [p0, . . . , pn], where each pi ∈ Y .
We may also write

dn(σ) =

n∑
i=0

(−1)i[p0, . . . , p̂i, . . . , pn] .



16.5. BARYCENTRIC SUBDIVISION 153

For a point p ∈ Y , define

(Cp)−1 : LC−1(Y )→ LC0(Y )

1 7→ [p]

(Cp)0 : LC0(Y )→ LC1(Y )

[p0] 7→ [p, p0]

(Cp)k : LCk(Y )→ LCk+1(Y )

[p0, . . . , pk] 7→ [p, p0, . . . , pk]

It is easy to see that dk+1 ◦ (Cp)k = IdLCk(Y ) − (Cp)k−1 ◦ dk, or equivalently,

(16.5.1) dk+1 ◦ (Cp)k + (Cp)k−1 ◦ dk = IdLCk(Y ) .

Define

Sn = IdLCn(Y ) n ⩽ 0 .

Let n > 0 and assume that we have constructed maps Si : LCi(Y )→ LCi(Y ) for 0 ⩽ i ⩽
n − 1. To define Sn it suffice to define Sn(σ) and extend linearly. For σ = [p0, . . . , pn]

define b(σ) :=
∑n

i=0 pi
n+1 . Define

(16.5.2) Sn(σ) = (Cb(σ))n−1(Sn−1(dn(σ))) .

Let us try to understand what this is doing in the case n = 1. If σ = [p0, p1], then
d1(σ) = p1 − p0. On LC0(Y ), S0 is the identity, therefore, S0(d1(σ)) = p1 − p0. Finally,
applying (Cb(σ))0 we get

(16.5.3) S1(σ) =
[p0 + p1

2
, p1

]
−
[p0 + p1

2
, p0

]
.

The images of the simplices occurring in Sn(σ) along with the sign is illustrated in the
following picture when n = 1, 2.

p0 p1p0+p1
2

− +

p0

p2
p1 p1+p2

2

p0+p2
2

p0+p1
2

− +

−

+ −

+

Proposition 16.5.4. S• is a map of complexes.
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Proof. We will prove by induction on n that dn ◦Sn = Sn−1 ◦dn. It is clear that the square
on the right in the following diagram commutes.

· · · // LC1(Y )
d1 //

S1

��

LC0(Y )
d0=deg//

S0=Id
��

LC−1(Y )
0 //

S−1=Id

��

0

· · · // LC1(Y )
d1 // LC0(Y )

d0=deg// LC−1(Y )
0 // 0

This shows that the induction hypothesis is true for n = 0. Let n > 0 and assume that
the assertion is proved for 0 ⩽ i ⩽ n− 1. Applying dn to (16.5.2) we get

dn(Sn(σ)) = dn((Cb(σ))n−1(Sn−1(dn(σ))))

(using (16.5.1))

= Sn−1(dn(σ))− (Cb(σ))n−2 ◦ dn−1(Sn−1(dn(σ)))

(using induction hypothesis)

= Sn−1(dn(σ))− (Cb(σ))n−2(Sn−1(dn−1 ◦ dn(σ)))
= Sn−1(dn(σ))

Since it suffices to check on the generators of LCn(Y ), this proves that S• is a map of
complexes.

Proposition 16.5.5. There are maps Tn : LCn(Y )→ LCn+1(Y ) such that

(16.5.6) IdLCn(Y ) − Sn = Tn−1 ◦ dn + dn+1 ◦ Tn .

Proof. This is also proved by induction on n. Set Tn = 0 for n ⩽ −1. If n ⩽ −2 then
the assertion is trivially true. For n = −1, we need to show that IdLC−1(Y ) − S−1 =
d0 ◦ T−1 + T−2 ◦ d−1. But this is also trivially true since both sides are 0. Let n > −1 and
assume that for −1 ⩽ i ⩽ n − 1 we have defined maps Ti : LCi(Y ) → LCi+1(Y ) which
satisfy (16.5.6). Define

(16.5.7) Tn(σ) = (Cb(σ))n(σ − Tn−1(dn(σ))) .

We need to show that

IdLCn(Y ) − Sn = Tn−1 ◦ dn + dn+1 ◦ Tn .

Using the definition of Tn and (16.5.1) we get

dn+1 ◦ Tn(σ) = dn+1 ◦ (Cb(σ))n−1(σ − Tn−1(dn(σ)))

= σ − Tn−1(dn(σ))− (Cb(σ))n−1 ◦ dn(σ − Tn−1(dn(σ)))

= σ − Tn−1(dn(σ))− (Cb(σ))n−1 ◦ dn(σ)+
(Cb(σ))n−1 ◦ dn(Tn−1(dn(σ)))
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(using induction hypothesis for n− 1)

= σ − Tn−1(dn(σ))− (Cb(σ))n−1 ◦ dn(σ)+
(Cb(σ))n(dn(σ)− Sn−1(dn(σ)))

= σ − Tn−1(dn(σ))− (Cb(σ))n−1 ◦ Sn−1(dn(σ))

(using the definition (16.5.2) of Sn)

= σ − Tn−1(dn(σ))− Sn(σ)

This proves that

dn+1 ◦ Tn(σ) + Tn−1(dn(σ)) = σ − Sn(σ) .

Since it suffices to check the assertion on the generators of LCn(Y ), this completes the
proof of the proposition.

We make the following observation from the above proof, which will be important
later.

Lemma 16.5.8. Let n ⩾ 0 and let σ : ∆n → Y be a linear map. Write Tn(σ) =
∑

α nασα,
where σα ∈ LCn+1(Y ). Then the image of each σα is contained in the image of σ.

Proof. Let n = 0. Then σ : ∆0 → Y simply corresponds to a point p0 ∈ Y . Since
T−1 = 0, by the definition (16.5.7) of T it follows that T0(σ) = [p0, p0]. Clearly, the image
of T0(σ) is equal to the image of σ = [p0]. Assume n > 0 and that the assertion is true for
0 ⩽ i ⩽ n− 1. Now dn(σ) =

∑n
i=0(−1)iFi and so it is clear that Tn−1(dn(α)) =

∑
β nβσβ,

where the image of σβ is contained in one of the faces of σ. The lemma now follows from
the definition (16.5.7) of T .

Let A•(X) denote the complex

· · · → C1(X)
d1−→ C0(X)

d0:=deg−−−−−→ Z→ 0→ 0 · · ·

Our aim is to define maps S(X)n : An(X) → An(X) and T (X)n : An(X) → An+1(X)
similar to the maps S and T above. To do this, it suffices to define maps on the generators
of the free abelian groups and extend linearly. Let σ : ∆n → X denote a continuous map.
There are maps of complexes

LC•(∆
n)

S•−→ LC•(∆
n)

f•−→ A•(∆
n)

σ•−→ A•(X) .

In the above, σ−1 is defined to be the identity from A−1(X) → A−1(X) and f−1 is also
defined to be the identity. It is easily checked that with these definitions the maps are
maps of complexes.
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Before we define S(X)n and T (X)n we need some notation and we need to make an
observation. For a convex subspace Y ⊂ Rl we have already defined maps LC•(Y ) →
LC•(Y ). We denoted these map by S• and T• above, but now we shall need to emphasize
the Y , and so we denote the maps constructed above by S(Y )n and T (Y )n. Now consider
example (16.5.3), and assume that there is a convex subspace j : Y ′ ⊂ Y such that
p0, p1 ∈ Y ′. Then we may write σ = [p0, p1] as j ◦ σ′, where σ′ = [p0, p1] : ∆

1 → Y1. We
have j1 : LC1(Y

′)→ LC1(Y ). Then it is clear that

S(Y )1(σ) = j1(S(Y
′)1(σ

′)) .

This is true for all n and we record this as a Lemma.

Lemma 16.5.9. Let j : Y ′ ⊂ Y be the inclusion of a convex subset. Then for all n we have
S(Y )n(j◦σ) = jn◦S(Y ′)n(σ). Similarly, for all n we have T (Y )n(j◦σ) = jn+1◦T (Y ′)n(σ).

Proof. The proof follows easily using the definition of S(Y ), S(Y ′), the fact that b(σ) ∈ Y ′

and by induction on n. The case of T is similar.

Define

S(X)n = IdAn(X) n ⩽ 0 .

For n > 0 and σ : ∆n → X define

S(X)n(σ) := σn(fn(S(∆
n)n(Id∆n))) .

Proposition 16.5.10. S(X)• is a map of complexes.

Proof. If n ⩽ 0 then it is clear that dn ◦ S(X)n = S(X)n−1 ◦ dn. For n > 0 we have

dn ◦ S(X)n(σ) = dn ◦ σn(fn(S(∆n)n(Id∆n)))

(using that σ•, f•, S• are maps of complexes)

= σn−1(fn−1(S(∆
n)n−1(dn(Id∆n))))

= σn−1(fn−1(S(∆
n)n−1(

n∑
i=0

(−1)ifi)))

=

n∑
i=0

(−1)iσn−1(fn−1(S(∆
n)n−1(fi)))

Now apply Lemma 16.5.9 to Y = ∆n, Y ′ = ∆n−1, j = fi and σ = Id∆n−1 we see that

S(∆n)n−1(fi) = jn−1(S(∆
n−1)n−1(Id∆n−1)) .
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This shows that the terms in the above sum are

dn ◦ S(X)n(σ) =
n∑
i=0

(−1)iσn−1(fn−1(S(∆
n)n−1(fi)))

=
n∑
i=0

(−1)iσn−1(fn−1(jn−1(S(∆
n−1)n−1(Id∆n−1))))

On the other hand we have

S(X)n−1(dn(σ)) =
n∑
i=0

(−1)iS(X)n−1(σ ◦ fi)

=
n∑
i=0

(−1)i(σ ◦ fi)n−1(fn−1(S(∆
n−1)n−1(Id∆n−1)))

To prove the proposition, it suffices to check that

σn−1(fn−1(jn−1(S(∆
n−1)n−1(Id∆n−1)))) = (σ ◦ fi)n−1(fn−1(S(∆

n−1)n−1(Id∆n−1)))

But this is obviously true since j = fi.

Define T (X)n : An(X)→ An+1(X) by

T (X)n = 0 n < 0 .

For n ⩾ 0 and σ : ∆n → X define

T (X)n(σ) := σn+1(fn+1(T (∆
n)n(Id∆n))) .

Proposition 16.5.11. The maps T (X)• satisfy

(16.5.12) IdAn(X) − S(X)n = T (X)n−1 ◦ dn + dn+1 ◦ T (X)n .

Proof. The claim is clear for n < 0 since both sides are 0. For n = 0, we have T (X)0(σ) =
σ1(f1([p0, p0])) where p0 = σ(v00). This shows that T (X)0(σ) : ∆1 → X is the constant
map, mapping everything to the point p0. This shows that d1 ◦ T (X)0 = 0. Thus, for
n = 0 also, both sides are 0.

Now assume that n > 0 and we have proved the claim for T (X)i, 0 ⩽ i ⩽ n − 1. In
the RHS of (16.5.12) we have

dn+1 ◦ T (X)n(σ) = dn+1 ◦ σn+1(fn+1(T (∆
n)n(Id∆n)))

= σn(fn(dn+1 ◦ T (∆n)n(Id∆n)))

= σn(fn(Id∆n − S(∆n)n(Id∆n)− T (∆n)n−1 ◦ dn(σ)))
= σ − S(X)n(σ)− σn(fn(T (∆n)n−1 ◦ dn(σ)))
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Now using Lemma 16.5.9, exactly as in the previous Proposition, we may show that

σn(fn(T (∆
n)n−1(fi))) = σn(fn(jn(T (∆

n−1)n−1(Id∆n−1))))

= (σ ◦ fi)n(fn(T (∆n−1)n−1(Id∆n−1)))

= T (X)n−1(σ ◦ fi)

This shows that
σn(fn(T (∆

n)n−1 ◦ dn(σ))) = T (X)n−1(dn(σ)) .

Substituting this above proves the proposition.

Corollary 16.5.13. The map of complexes S(X)• : A•(X)→ A•(X) induces the identity
map on homology.

Proof. Combine the previous proposition with Lemma 16.1.7.

16.6 Long exact sequences of singular homology

In this section we will apply the results of the previous section to prove some important
properties of singular homology.

Definition 16.6.1. For A ⊂ X define Int(A) to be those points a ∈ A for which there is
a set U ⊂ A which contains a and is open in X.

Let U and V be subsets of X such that X = Int(U) ∪ Int(V ). Let AU
• (X) denote the

image of the map of complexes

A•(U)⊕A•(V )→ A•(X) .

In other words, elements of AU
n (X) are sums of the type

∑
α nασα, where each σα : ∆n →

X is a continuous map such that the image is contained in U or in V .

Lemma 16.6.2. The inclusion i : AU
• (X) ⊂ A•(X) induces an isomorphism on homology.

Proof. When n < 0, both these groups are 0 and so the assertion is trivially true. So
assume that n ⩾ 0.

We claim that the i∗ : Hn(AU
• (X)) → Hn(X) is surjective. Let

∑
α σα be an element

in An(X) which represents a homology class. For each α, we may consider the open cover
∆n = σ−1

α (U) ∪ σ−1
α (V ). By Lemma 8.3.2 and Lemma 16.4.3 we can find l≫ 0 such that

the image of each simplex in S(X)ln(σα) is contained in either U or V . We may choose
an l large enough which works for all σα. Thus, S(X)ln(

∑
α σα) ∈ AU

n (X). Since S(X)•
is a map of complexes, it follows that dn(S(X)ln(

∑
α σα)) = 0. From equation (16.5.12) it

follows that ∑
α

σα − S(X)ln(
∑
α

σα) = dn+1 ◦ T (X)n(
∑
α

σα) .
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Thus, S(X)ln(
∑

α σα) defines a homology class inHn(AU
• (X)) which maps to the homology

class represented by
∑

α σα. This proves that i∗ is surjective.

To show that i∗ is an inclusion, we need to show the following. Suppose there is a
homology class δ̄ ∈ Hn(AU

• (X)) such that i∗(δ) = dn+1(
∑

α σα), where σα : ∆n+1 → X,
then we can find σβ : ∆n+1 → X such that

∑
β σβ ∈ AU

n+1(X) and that δ = dn+1(
∑

β σβ).

This will show that δ̄ = 0 in Hn(AU
• (X)).

From equation (16.5.12) applied to
∑

α σα it follows that∑
α

σα − S(X)n+1(
∑
α

σα) = T (X)n(i∗(δ)) + dn+2 ◦ T (X)n+1(
∑
α

σα)

Let σ : ∆n → X and write T (X)n(σ) =
∑

j σj . It follows from the definition of T (X)n
and Lemma 16.5.8 that the image of each σj is contained in the image of σ. By definition,
δ is a sum of maps whose image is contained in U or V . Thus, it is clear that T (X)n(i∗(δ))
is in the image of AU

n+1(X). Applying dn+1 to both sides of the above equation we get

dn+1(
∑
α

σα) = dn+1(S(X)n+1(
∑
α

σα)) + dn+1(T (X)n(i∗(δ)))(16.6.3)

= dn+1

(
S(X)n+1(

∑
α

σα) + T (X)n(i∗(δ))
)

Choose l≫ 0 such that S(X)ln+1(
∑

α σα) is in the image of AU
n+1(X). So, for example, if

l = 1 we are done, since in the RHS the term in the bracket is in the image of AU
n+1(X).

The idea is to repeat the above process.

For 0 ⩽ j ⩽ l define ηj := S(X)jn+1(
∑

α σα). Then

dn+1(ηj) = dn+1(S(X)jn+1(
∑
α

σα)) = S(X)jn(i∗(δ)) .

It is clear that S(X)jn(i∗(δ)) is in the image of AU
n (X) and so define δj ∈ AU

n (X) by

i∗(δj) := S(X)jn(i∗(δ)) .

Then dn+1(ηj) = i∗(δj), δ0 = δ and η0 =
∑

α σα. Equation (16.6.3) may be rewritten as

dn+1(η0) = dn+1(η1) + dn+1(T (X)n(i∗(δ0))) .

Since dn+1(ηj) = i∗(δj), applying equation (16.5.12) to ηj and then applying dn+1 (that
is, repeating the above argument replacing δ0 by δj), we get for each 0 ⩽ j ⩽ l − 1,

dn+1(ηj) = dn+1(ηj+1) + dn+1(T (X)n(i∗(δj))) .
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Note that T (X)n(i∗(δj)) is contained in the image of AU
n (X). Adding these equations we

get

dn+1(η0) = dn+1(ηl) +
l−1∑
j=0

dn+1(T (X)n(i∗(δj)))

= dn+1

(
ηl +

l−1∑
j=0

T (X)n(i∗(δj))
)

As ηl+
∑l−1

j=0 T (X)n(i∗(δj)) is contained in the image of AU
n+1(X), the proof of the lemma

is complete.

Definition 16.6.4 (Reduced homology). Denote the homology groups of the complex
A•(X) by H̃n(X).

Lemma 16.6.5. For i > 0, H̃i(X) ∼= Hi(X). For i = 0 there is a short exact sequence

0→ H̃0(X)→ H0(X)→ Z→ 0 .

Let X have c path components. Then H̃0(X) ∼= Zc−1.

Proof. Let Z•[−1] denote the complex which has Z in degree −1 and 0 elsewhere. All the
differentials are then forced to be 0. We have a short exact sequence of complexes

0→ Z•[−1]→ A•(X)→ C•(X)→ 0 .

The short exact sequence follows from the long exact homology sequence. The second
assertion follows from Proposition 16.2.5.

Theorem 16.6.6 (Mayer-Vietoris sequence). Let U and V be subsets of X such that
X = Int(U) ∪ Int(V ). Then

(a) there is a long exact sequence of reduced homology groups

(16.6.7) · · · → H̃n(U ∩ V )→ H̃n(U)⊕ H̃n(V )→ H̃n(X)→ H̃n−1(U ∩ V )→ · · · .

(b) there is a long exact sequence of homology groups

(16.6.8) · · · → Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(X)→ Hn−1(U ∩ V )→ · · · .

Proof. We have a short exact sequence of complexes

0→ A•(U ∩ V )→ A•(U)⊕A•(V )→ AU
• (X)→ 0 .
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For n ⩾ 0 the maps

0→ An(U ∩ V )→ An(U)⊕An(V )→ AU
n (X)→ 0

have the following description. Let us denote by fU the inclusion of U ∩ V into U and by
fV the inclusion of U ∩ V into V . Denote by gU and gV the inclusions of U, V into X,
respectively. The first arrow is the inclusion σ 7→ (fU ◦ σ,−fV ◦ σ). The second arrow is
the map (σ, τ) 7→ gU ◦ σ + gV ◦ τ . For n = −1 one easily checks that the maps look like

0→ Z→ Z⊕ Z→ Z→ 0,

where the first arrow is n 7→ (n,−n) and the second arrow is (n,m) 7→ n+m. From this
it is easily checked that the above sequence of complexes is short exact. The first part of
the theorem now follows from Proposition 16.1.8 and Lemma 16.6.2.

Let CU• (X) denote the image of C•(U)⊕ C•(V )→ C•(X). Then we have the following
commutative diagram

0 // Z•[−1] // AU
• (X) //

��

CU• (X) //

��

0

0 // Z•[−1] // A•(X) // C•(X) // 0

The complex Z•[−1] has homology only when i = −1 and in this case the homology is Z.
Since the degree map

AU
0 (X)

deg−−→ Z A0(X)
deg−−→ Z

is surjective, H−1(AU
• (X)) = H−1(A•(X)) = 0. From the long exact homology sequence

we get the following diagram when i = 0.

0 // H0(AU
• (X)) //

≀
��

H0(CU• (X)) //

��

H−1(Z•[−1]) // 0

0 // H0(A•(X)) // H0(C•(X)) // H−1(Z•[−1]) // 0

The left vertical arrows are isomorphisms is proved above. It follows from Snake Lemma
that the induced map Hi(CU• (X))→ Hi(C•(X)) is an isomorphism. When i > 0 the terms
in the right column will be also be 0, in which case too we get the middle vertical arrow
is an isomorphism.

Remark 16.6.9. We emphasize that, unlike in the Siefert van-Kampen Theorem, we do
not require U ∩ V to be connected.

Proposition 16.6.10. H0(S
n) = Hn(S

n) = Z. If i ̸= 0, n then Hi(S
n) = 0.
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Proof. We will prove the proposition by induction on n. Let us consider the base case
n = 1. Let U = S1\{1} and V = S1\{−1}. The spaces U and V have the same homotopy
type as that of a point. Similarly, the space U ∩ V has the same homotopy type as a set
of two points with discrete topology. Using Theorem 16.6.7 we see that there is an exact
sequence

Hn(U)⊕Hn(V )→ Hn(S
1)→ Hn−1(U ∩ V ) .

From Theorem 16.3.6 and Proposition 16.2.6 it follows that Hn(S
1) = 0 if n > 1. When

n = 1 we have the exact sequence

H̃1(U)⊕ H̃1(V )→ H̃1(S
1)→ H̃0(U ∩ V )→ H̃0(U)⊕ H̃0(V ) .

It follows from Lemma 16.6.5 that the ends are 0 and that

H1(S
1) = H̃1(S

1) ∼= H̃0(U ∩ V ) ∼= Z

Since S1 is path connected, H0(S
1) ∼= Z. Thus, the base case for the induction is done.

Let us now assume that n > 1 and the proposition is true when 0 ⩽ i ⩽ n−1. Consider
the open cover of Sn where the open sets are obtained by removing the two poles. Each
of the open sets has the homotopy type of a point and the intersection has the homotopy
type of Sn−1. For j ⩾ 1 we have the exact sequence

H̃j(U)⊕ H̃j(V )→ H̃j(S
n)→ H̃j−1(U ∩ V )→ H̃j−1(U)⊕ H̃j−1(V ) .

Since both U and V have the homotopy type of a point, it follows that the ends in the
above sequence are 0. Thus, it follows that for j ⩾ 1 we have

H̃j(S
n)

∼−→ H̃j−1(S
n−1) .

Since Sn is connected, it follows that H0(S
n) = Z. From this the proposition easily

follows.

Corollary 16.6.11. If n > 0 then the sphere Sn is not homotopy equivalent to a point.

Corollary 16.6.12. Rn is homeomorphic to Rm iff n = m.

Proof. If Rn is homeomorphic to Rm then Rn \ {p} ∼= Rm \ {q}. This shows that Sn and
Sm have the same homotopy type, which forces that m = n, by looking at homology.

16.7 Homology of pairs

Let A ⊂ X be a subspace. Then we have an inclusion C•(A) ⊂ C•(X). It is easily checked
that we get a quotient complex, denoted C•(X,A), which sits in a short exact

0→ C•(A)→ C•(X)→ C•(X,A)→ 0 .
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Similarly, define A•(X,A). The homology groups of the complex C•(X,A) are denoted by
Hn(X,A) and are known as relative homology groups. By Proposition 16.1.8 there is a
long exact sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ · · · .

Theorem 16.7.1 (Excision). Let Z ⊂ A ⊂ X be such that Z̄ ⊂ Int(A). Then the inclusion
C•(X − Z,A− Z) ⊂ C•(X,A) induces an isomorphism on homology.

Proof. Applying Snake Lemma (16.1.4) to the following diagram

0 // An(A) //

��

An(X) //

��

An(X,A) //

��

0

0 // Cn(A) // Cn(X) // Cn(X,A) // 0

we see that there is an isomorphism An(X,A)
∼−→ Cn(X,A). Hence, it suffices to prove

that A•(X − Z,A − Z) ⊂ A•(X,A) induces an isomorphism on homology. Let U denote
the cover {X − Z,A}. Then note that the image of A•(X − Z,A − Z) in A•(X,A) is
precisely AU

• (X)/A•(A). Thus, we have an exact sequence of complexes

0→ AU
• (X)/A•(A)→ A•(X)/A•(A)→ A•(X)/AU

• (X)→ 0 .

We already know that the inclusion AU
• (X) ⊂ A•(X) induces an isomorphism on ho-

mology. It follows from the long exact homology sequence that all homology groups of
A•(X)/AU

• (X) are zero. It follows from the long exact homology sequence that the inclu-
sion AU

• (X)/A•(A)→ A•(X)/A•(A) induces an isomorphism on homology. Since

A•(X − Z,A− Z)
∼−→ AU

• (X)/A•(A),

the theorem is proved.

Corollary 16.7.2. If U ⊂ Rm and V ⊂ Rn are homeomorphic then m = n.

Proof. If U and V are homeomorphic then there is an isomorphism Hk(U,U − {p}) ∼=
Hk(V, V − {q}). Let Z = Rm − U and A = Rm − {p}. Then by excision we have
Hk(Rm,Rm − {p}) ∼= Hk(U,U − {p}). From the long exact sequence for pairs we get

Hk(Rm − {p})→ Hk(Rm)→Hk(Rm,Rm − {p})→
Hk−1(Rm − {p})→ Hk−1(Rm) .

Case m = 1:

� The map H0(R1 − {p}) → H0(R1) is clearly surjective. From this it follows that
H0(R1,R− {p}) = 0.
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� The kernel of the map H0(R1 − {p}) → H0(R1) is Z. From this it follows that
H1(R1,R− {p}) = Z.

� Hk(R1,R− {p}) = 0 for k ⩾ 2

Case m > 1:

� The map H0(Rm − {p}) → H0(Rm) is an isomorphism. From this it follows that
H0(Rm,Rm − {p}) = H1(Rm,Rm − {p}) = 0.

� Hk(Rm,Rm − {p}) = 0 for k ⩾ 2 and k ̸= m

� Hm(Rm,Rm − {p}) = Z

Thus, we may recover m as the index for which Hk(U,U − {p}) ̸= 0. This proves that
m = n.

If f : X → Y is a map such that f(A) ⊂ B, then we denote this by f : (X,A)→ (Y,B).
It is easily checked that f induces a map of complexes f• : C•(X,A)→ C•(Y,B). It follows
that f induces a map on relative homology.

Theorem 16.7.3 (Homotopy invariance for pairs). Let f, g : (X,A) → (Y,B) be maps
which are homotopic through a homotopy of pairs. Then they induce the same maps on
relative homology.

Proof. Let F denote the homotopy. By definition, F (A× I) ⊂ B. It suffices to check that
the Prism operator, defined in (16.3.5) takes Cn(A)→ Cn+1(B). But this is obvious from
the definition. It follows that there are induced maps P̄n : Cn(X,A) → Cn+1(Y,B) such
that the analogue of (16.3.4),

dn+1 ◦ P̄n + P̄n−1 ◦ dn = (F̄1)n − (F̄0)n ,

holds. It follows that the maps F̄1• and F̄0• are homotopic. The theorem follows using
Lemma 16.1.7.

Proposition 16.7.4. Let A be a deformation retract of V . Then the map of complexes
C•(X,A)→ C•(X,V ) induces an isomorphism on relative homology.

Proof. We have a commutative diagram

0 // C•(A) //

��

C•(X) // C•(X,A) //

��

0

0 // C•(V ) // C•(X) // C•(X,V ) // 0
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where the rows are exact. From the long exact sequence we get the following commutative
diagram

Hi(A) //

≀
��

Hi(X) // Hi(X,A) //

��

Hi+1(A) //

≀
��

Hi+1(X)

Hi(V ) // Hi(X) // Hi(X,V ) // Hi+1(V ) // Hi+1(X)

An easy diagram chase now shows that the middle vertical arrow is an isomorphism.

Theorem 16.7.5. Let A be a closed subspace of X such that there is an open neigh-
bourhood V of A which deformation retracts onto A. Then the map q∗ : Hn(X,A) →
Hn(X/A,A/A) is an isomorphism.

Proof. Consider the commutative diagram

Hn(X,A)
1 //

q∗
��

Hn(X,V )

6
��

Hn(X −A, V −A)2oo

5
��

Hn(X/A,A/A)
3 // Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)4oo

The arrows 1 and 3 are isomorphisms because of Proposition 16.7.4. Arrows 2 and 4 are
isomorphisms because of excision. Arrow 5 is an isomorphism since the pairs (X−A, V −A)
and (X/A − A/A, V/A − A/A) are the same. It follows that arrow 6 is an isomorphism,
and so is q∗.

Let X be a topological space and let A be a closed subspace. Let X/A denote the
space obtained by identifying all points in A and let q : X → X/A denote the quotient
map. Then we get a map of pairs q : (X,A)→ (X/A,A/A). Note the A/A is a point and
so from the long exact homology sequence it follows that

� there are isomorphisms Hn(X/A)
∼−→ Hn(X/A,A/A) for n > 1

� SinceH0(A/A)→ H0(X/A) is an inclusion it follows thatH1(X/A)
∼−→ H1(X/A,A/A)

� Finally, we have H0(X/A) ∼= Zc, where c is the number of path components of X/A.
Then the image of H0(A/A) corresponds to the path component of A/A, and so we
get that H0(X/A,A/A) ∼= Zc−1.

Combining the above and Theorem 16.7.5 we get the following corollary.

Corollary 16.7.6. Let A be a closed subspace of X such that there is an open neighbour-
hood V of A which deformation retracts onto A. Then we have isomorphisms Hn(X,A)

∼−→
Hn(X/A,A/A)

∼←− Hn(X/A) for n ⩾ 1.
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As a corollary let us compute the homology groups of spheres using the above theorem.

Corollary 16.7.7. Hi(S
n) = 0 if i ̸= 0, n and H0(S

n) = Hn(S
n) = Z.

Proof. Since we know that the spheres are path connected, from the remark preceding the
theorem it follows that it suffices to compute Hi(D

n, ∂Dn) for i > 0. Here ∂Dn denotes
Sn−1 when n > 1, and denotes the set {0, 1} when n = 1. Note that Dn/∂Dn = Sn. We
have

Hi(D
n)→ Hi(D

n, ∂Dn)→ Hi−1(∂D
n)→ Hi−1(D

n)

Now proceed by induction on n. This is easy and is left to the reader.

16.8 Relation between π1(X, x0) and H1(X)

In this section we want to show that there is a natural map π1(X,x0)ab → H1(X) which
is an isomorphism.
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16.9 Exercises

16.9.1. Consider the map f : S1 × S1 → S1 × S1 which switches the factors. Show that
f is not homotopic to the constant map c(1,1) which maps every point to the point (1, 1).
Using homology to show that f is not homotopic to the identity map. See also exercise
15.4.14.

16.9.2. Let σ : ∆1 → X be a path. Let σ̃ be the path σ̃(t) = σ(1 − t). Show that the
element [σ] + [σ̃] ∈ C1(X) is in the image of d2 : C2(X)→ C1(X). (HINT: Show that σ ∗ σ̃
is 0 in homology.)

16.9.3. Compute the homology groups of X = Rm − {p1, p2, . . . , pr} for m > 2. (HINT:
Use the pair (Rm, X) and excision. Or else convince yourself that X deformation retracts
onto a wedge of spheres.)

16.9.4. For a continuous map f : X → Y we proved that the following diagram commutes

π1(X,x0)
f∗ //

Φ(X)

��

π1(Y, y0)

Φ(Y )

��
H1(X)

f∗
// H1(Y )

Use the Mayer-Vietoris sequence to compute the homology groups of P2
R.

16.9.5. Let G be a group and let g ∈ [G,G] be an element. Show that Gab
∼−→ (G/⟨g⟩)ab

is an isomorphism. Here ⟨g⟩ is the normal subgroup generated by g.

16.9.6. Let C denote the sphere with k handles, described in Exercise 13.8.23.

1. Use excision to compute the homology groups Hk(C,C − {p}).

2. Show that C − {p} has the homotopy type of a wedge of 2k circles.

3. Compute the homology groups of C.

16.9.7. The suspension of X is SX := X × I/ ∼, where (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1).
Use the Mayer-Vietoris sequence to find the homology groups of SX in terms of the
homology groups of X.

16.9.8. Give a “nice” homeomorphism S(Sn)
∼−→ Sn+1.

16.9.9. Fix a generator a ∈ Hn(S
n). The map 1 7→ a gives an identification of Z and

Hn(S
n). A continuous map f : Sn → Sn induces a map on homology f∗ : Hn(S

n) →
Hn(S

n). Using the above identification, we get a map Z→ Z. This map is multiplication
by an integer, and this integer is referred to as the degree of the map. Show that deg(g ◦
f) = deg(g)deg(f).
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16.9.10. Let An : Sn → Sn denote the antipodal map. Convince yourself that A1 is
rotation by 1800. What is deg(A1)?

16.9.11. Let Ãn : Sn× I → Sn× I denote the map (x, t) 7→ (An(x), 1− t). Show that this
map induces a map on the suspension and, after identifying with the homeomorphism in
exercise 16.9.8, it gives An+1. Now use the long exact sequence for the pair (Sn × I, Sn ×
0 ∪ Sn × 1) and induction on n to find deg(An).

16.9.12. Consider the map Sn × I → Sn × I given by (x, t) 7→ (x, 1− t). Show that this
map induces a map on the suspension and, after identifying with the homeomorphism in
exercise 16.9.8, it gives the reflection map Sn → Sn

(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn,−xn+1) .

Now use the long exact sequence for the pair (Sn × I, Sn × 0 ∪ Sn × 1) and compute the
degree of the reflection map.

16.9.13. In this exercise we will compute the homology groups of PnC. Recall PnC =(
Cn+1 \ (0, . . . , 0)

)
/C∗. A point in PnC can be represented by [x0, . . . , xn]. For λ ∈ C∗,

[λx0, . . . , λxn] represents the same point as [x0, . . . , xn].

1. For points p, q ∈ PnC, define the unique straight line passing through p and q. Define
this using coordinates and check that the line is independent of the coordinates.

2. View Pn−1
C as sitting inside PnC as the hyperplane x0 = 0. Use the previous part to

show that U = PnC \ [1 : 0, . . . , 0] deformation retracts onto Pn−1
C .

3. Show that P1
C is homeomorphic to S2.

4. Use M-V sequence and induction to compute the homology groups of PnC. Alterna-
tively, use the pair (PnC, U).



Chapter 17

Some Homological Algebra

In the previous chapter we defined complexes. Throughout this chapter we shall be inter-
ested in complexes indexed by Z.

17.1 Preliminaries

17.1.1 Split exact sequence. Let 0→M ′ α−→M
β−→M ′′ → 0 be a short exact sequence.

We say this is split if there is a map s :M ′′ →M such that β ◦ s = IdM ′′ . If a short exact
sequence is split then it is easily seen that M ∼=M ′⊕M ′′. It is easy to check that a short
exact sequence splits iff there is a map s′ :M →M ′ such that s′ ◦ α = IdM ′ .

17.1.2 Cochain complexes. In the previous chapter we introduced chain complexes.
A variant of this is a cochain complex. This is a sequence of abelian groups {Ai, di}
where dn : An → An+1 are homomorphisms satisfying dn+1 ◦ dn = 0. We define the nth

cohomology of a cochain complex to be the group

Hn({A•, d•}) = Ker(dn)

Im(dn−1)
.

Remark 17.1.3. Given a cochain complex {A•, d•}, we can view it as a chain complex by
defining Bi := A−i and di := d−i. Similarly, we can go from chain complexes to cochain
complexes. We shall often use the word complex to mean a chain complex or a cochain
complex, and it will be clear from the context what we mean.

17.1.4 Long exact cohomology sequence. If we have a short exact sequence of cochain
complexes 0→ A• → B• → C• → 0 then there is a long exact cohomology sequence

. . .→ Hn(A•)→ Hn(B•)→ Hn(C•)→ Hn+1(A•)→ . . . .

Theorem 17.1.5. Let R be a PID, for example, R = Z. Let M be a free R module (not
necessarily finitely generated). If N ⊂M is a submodule then N is free.

169
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Proof. See [Lan02, Chapter 3, Theorem 7.3].

Proposition 17.1.6. Let M ′ α−→ M
β−→ M ′′ → 0 be an exact sequence of abelian groups.

Let N be an abelian group. Then the following two sequences are exact.

(1) 0→ Hom(M ′′, N)
β̃−→ Hom(M,N)

α̃−→ Hom(M ′, N) ,

(2) M ′ ⊗N α⊗1−−→M ⊗N β⊗1−−→M ′′ ⊗N → 0

Proof. The map β̃ is defined as β̃(f) = f ◦β. The definition of α̃ is similar. The exactness
of the first is easy and left as an exercise. This is often referred to as left exactness
of Hom(−, N). For the second see [AM69, Proposition 2.18]. Exactness of the second
sequence is often referred to as tensor product being right exact.

17.1.7 Shifting complexes. Given a complex A• we define the shifted complex A[k]• as
follows. Define

(i) A[k]n := An+k

(ii) dA[k],n := (−1)kdA,n

17.2 Universal Coefficient Theorems

17.2.1 Homology of A•⊗M . Given a complex of abelian groups {A•, d•} and an abelian
group M we may define the following, which is obviously a complex:

. . .
dn+2⊗1−−−−−→ An+1 ⊗M

dn+1⊗1−−−−−→ An ⊗M
dn⊗1−−−→ An−1 ⊗M

dn−1⊗1−−−−−→ . . .

We denote this complex by A•⊗M . In this subsection we relate the homologies of A•⊗M
with the homologies of A•.

We begin by defining Tor groups. Let M be an abelian group. Then we can find a
surjective map F0 →M , where F0 is a free abelian group. Since subgroup of a free abelian
group is free (Theorem 17.1.5), it follows that we have the following exact sequence in which
the Fi are free:

0→ F1
α−→ F2

β−→M → 0 .

Such an exact sequence is often referred to as a free resolution ofM . We have the following
standard facts from homological algebra:

1. Let N be any abelian group. By Proposition 17.1.6 the sequence

F1 ⊗N
α⊗1−−→ F0 ⊗N

β⊗1−−→M ⊗N → 0

is exact. The kernel of the map F1 ⊗N
α⊗1−−→ F0 ⊗N is defined to be Tor1(M,N).

For ease of notation we shall denote Tor1(M,N) by M ∗N .
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2. The group M ∗N is independent of the free resolution we choose. If M is free, then
the resolution splits, from which it easily follows that M ∗N = 0.

3. Suppose we have a short exact sequence of abelian groups 0→M ′ →M →M ′′ → 0
then we have a long exact sequence

0→M ′ ∗N →M ∗N →M ′′ ∗N
→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0 .

Theorem 17.2.2 (Universal coefficients). Let A• be a complex of free abelian groups and
let M be an abelian group. Then there is a split exact sequence

0→ Hn(A•)⊗M
c−→ Hn(A• ⊗M)→ Hn−1(A•) ∗M → 0 .

Proof. For a complex C•, denote the kernel of the differential dn by Zn(C•) and the image
of the differential dn+1 by Bn(C•). We have inclusions Bn(C•) ⊂ Zn(C•) ⊂ Cn. For an
element z ∈ Zn(C•) we shall denote by z̄ its image in Hn(C•).

For the complex A•, let Zn := Ker(dn) and let Bn := Im(dn+1). We shall slightly abuse
notation and denote the map An+1 → Bn by dn+1. We have inclusions Bn ⊂ Zn ⊂ An.
Since An is free, using Theorem 17.1.5, we see that Bn and Zn are free.

We have a short exact sequence 0 → Zn → An
dn−→ Bn−1 → 0. Since Bn−1 is free, we

have Bn−1 ∗M = 0. Thus, tensoring the above sequence with M we get an exact sequence

0→ Zn ⊗M → An ⊗M → Bn−1 ⊗M → 0 .

These sit in a commutative diagram

0 // Zn+1 ⊗M //

0
��

An+1 ⊗M
dn+1⊗1 //

dn+1⊗1

��

Bn ⊗M //

0
��

0

0 // Zn ⊗M // An ⊗M
dn⊗1 // Bn−1 ⊗M // 0

Define a complex Z• ⊗M by taking the abelian group in degree n to be Zn ⊗M and
all differentials to be 0. Similarly, we define a complex B• ⊗M . Putting together the
preceding commutative diagrams we get a map of complexes (see 17.1.7 for the definition
of (B• ⊗M)[−1])

0→ Z• ⊗M → A• ⊗M → (B• ⊗M)[−1]→ 0 .

Taking homology we get an exact sequence

(17.2.3) Bn ⊗M a // Zn ⊗M // Hn(A• ⊗M) // Bn−1 ⊗M b // Zn−1 ⊗M.
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It is easy to check, using the definition of the connecting homomorphism, that the map
a is in ⊗ IdM , where in : Bn → Zn is the inclusion. Similarly, the map b is in−1 ⊗ IdM .
Thus, we have a short exact sequence

0→ Coker(a)→ Hn(A• ⊗M)→ Ker(b)→ 0 .

To compute the cokernel and kernel in the above, tensor the exact sequence 0 → Bn
in−→

Zn → Hn(A•)→ 0 with M and use Zn is free to get the exact sequence

(17.2.4) 0→ Hn(A•) ∗M → Bn ⊗M
a−→ Zn ⊗M → Hn(A•)⊗M → 0 .

This shows that Coker(a) = Hn(A•) ⊗M and Ker(b) = Hn−1(A•) ∗M . This proves the
existence of the exact sequence

0→ Hn(A•)⊗M
c−→ Hn(A• ⊗M)→ Hn−1(A•) ∗M → 0 .

It is clear that the map c has the following description. In view of the surjectivity in
(17.2.4), an element of Hn(A•)⊗M can be represented as

∑
i z̄i ⊗mi, where zi ∈ Zn. It

is clear that
∑

i zi ⊗mi ∈ Zn(A• ⊗M). It follows easily that c(
∑

i z̄i ⊗mi) =
∑

i zi ⊗mi.
Here zi ⊗mi is the image of

Next we show that this sequence is split. Since Bn−1 is free, the short exact sequence
0 → Zn → An → Bn−1 → 0 splits. We choose a splitting s : An → Zn of the inclusion
Zn ⊂ An. We have a commutative diagram

An+1 ⊗M
(s◦dn+1)⊗1 //

dn+1⊗1
��

Bn ⊗M

in⊗1

��
Zn(A• ⊗M) �

� //

a

��

An ⊗M
s⊗1 // Zn ⊗M

b
��

Hn(A• ⊗M)
s̄ //________________ Hn(A•)⊗M

The commutativity of the square follows because s◦dn+1(a) = in ◦dn+1(a). Note Hn(A•⊗
M) is cokernel of dn+1 ⊗ 1 by definition and Hn(A•) ⊗M is cokernel of in ⊗ 1 as tensor
product is right exact. Thus, we get an induced map s̄, which we claim is the required
splitting. Consider the following diagram in which the squares commute. The square on
the right is the bottom rectangle in the diagram above. The square on the left commutes
as explained in the first para of the proof.

Zn ⊗M

b
��

// Zn(A• ⊗M)

a

��

s⊗1 // Zn ⊗M

b
��

Hn(A•)⊗M // Hn(A• ⊗M)
s̄ // Hn(A•)⊗M
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We need to show that the composite in the bottom row is the identity. But this is clear
by the surjectivity of b and as the composite in the top row is the identity. This completes
the proof of the Theorem.

Corollary 17.2.5. Hn(A• ⊗M) ∼= (Hn(A•)⊗M)
⊕

(Hn−1(A•) ∗M) .

17.2.6 Cohomology of Hom(A•,M). Given a complex of abelian groups {A•, d•} and
an abelian group M we may define the following cochain complex which we denote by
Hom(A•,M):

d′n−2−−−→ Hom(An−1,M)
d′n−1−−−→ Hom(An,M)

d′n−→ Hom(An+1,M)
d′n+1−−−→ . . .

Here the maps d′n are defined as follows. If f ∈ Hom(An,M) then d′n(f) := f ◦ dn+1. It
is easily checked that d′n+1 ◦ d′n = 0. Thus, we get a cochain complex. The cohomology
groups are

Hn(Hom(A•,M)) :=
Ker(d′n)

Im(d′n−1)
.

Remark 17.2.7. For a map g : A→ B and an abelian groupN we define g̃ : Hom(B,N)→
Hom(A,N) by g̃(f) = f ◦ g. Thus, comparing notations we see that d′n = d̃n+1.

We will prove a similar result, as the one in the preceding subsection, for the cohomol-
ogy groups of the complex Hom(A•,M). For this we need to introduce the Ext groups.
Start with a free resolution of M .

0→ F1
α−→ F2

β−→M → 0 .

We have the following standard facts from homological algebra:

1. Let N be any abelian group. Recall that for a map g : A → B we define g̃ :
Hom(B,N)→ Hom(A,N) by g̃(f) = f ◦ g. By Proposition 17.1.6 the sequence

0→ Hom(M,N)
β̃−→ Hom(F0, N)

α̃−→ Hom(F1, N)

is exact. The cokernel of α̃ is defined to be Ext1(M,N).

2. The group Ext1(M,N) is independent of the free resolution we choose. If M is free,
then the resolution splits, from which it easily follows that Ext1(F,N) = 0.

3. Suppose we have a short exact sequence of abelian groups 0→M ′ →M →M ′′ → 0
then we have a long exact sequence

0→ Hom(M ′′, N)→ Hom(M,N)→ Hom(M ′, N)

→ Ext1(M ′′, N)→ Ext1(M,N)→ Ext1(M ′, N)→ 0 .
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Theorem 17.2.8 (Universal coefficients). Let A• be a complex of free abelian groups and
let M be an abelian group. Then there is a split exact sequence

0→ Ext1(Hn−1(A•),M)→ Hn(Hom(A•,M))
ā−→ Hom(Hn(A•),M)→ 0 .

Proof. For a cochain complex C•, denote the kernel of the differential dn by Zn(C•), the
image of the differential dn−1 by Bn(C•). We have inclusions Bn(C•) ⊂ Zn(C•) ⊂ Cn.

Before beginning the proof we describe the mapHn(Hom(A•,M))
ā−→ Hom(Hn(A•),M).

Applying Hom(−,M) to the exact sequence 0 → Bn
in−→ Zn → Hn(A•) → 0 yields the

exact sequence

0→ Hom(Hn(A•),M)→ Hom(Zn,M)
ĩn−→ Hom(Bn,M) .

We will define a map Zn(Hom(A•,M))
a−→ Hom(Zn,M) and check that the image lands

inside Hom(Hn(A•),M). By exactness of the preceding sequence, it suffices to check that
ĩn ◦ a = 0. Let f ∈ Zn(Hom(A•,M)). Then f : An → M is such that f ◦ dn+1 = 0. We
may restrict f to Zn to get a map Zn → M . Clearly, f(Bn) = f ◦ dn+1(An+1) = 0, that
is, ĩn(f) = 0. This defines a map Zn(Hom(A•,M)) → Hom(Hn(A•),M). If we take an
element of the type g ◦ dn ∈ Zn(Hom(A•,M)) then it is easily checked that its restriction
to Zn is 0. This shows that elements in Bn(Hom(A•,M)) get mapped to 0. Thus, we get

a map Hn(Hom(A•,M))
ā−→ Hom(Hn(A•),M).

We have a short exact sequence 0 → Zn → An
dn−→ Bn−1 → 0. Since Bn−1 is free, we

have Ext1(Bn−1,M) = 0. Thus, applying Hom(−,M) to the above sequence we get an
exact sequence

0→ Hom(Bn−1,M)→ Hom(An,M)→ Hom(Zn,M)→ 0 .

These sit in a commutative diagram

0 // Hom(Bn−1,M)
d̃n //

0
��

Hom(An,M) //

d′n
��

Hom(Zn,M) //

0
��

0

0 // Hom(Bn,M)
d̃n+1 // Hom(An+1,M) // Hom(Zn+1,M) // 0

Define a cochain complex Z ′
• by taking the nth degree term to be Hom(Zn,M) and all

differentials to be 0. Note that nth differential is a map from Z ′
n to Z ′

n+1. Similarly, we
define a cochain complex B′

•. Putting together the preceding commutative diagrams we
get a short exact sequence of cochain complexes

0→ B′
•[−1]→ Hom(A•,M)→ Z ′

• → 0 .

Taking cohomology we get a long exact sequence (note that the indices will increase as
this is a short exact sequence of cochain complexes). One checks that the maps in the
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long exact sequence have the following description. This is a simple diagram chase which
is left to the reader.

Hom(Zn−1,M)
ĩn−1−−−→ Hom(Bn−1,M)→ Hn(Hom(A•,M))

ā−→(17.2.9)

Hom(Zn,M)
ĩn−→Hom(Bn,M) .

Thus, we have a short exact sequence

0→ Coker(̃in−1)→ Hn(Hom(A•,M))→ Ker(̃in)→ 0 .

To compute the cokernel and kernel apply Hom(−,M) to the exact sequence 0→ Bn
in−→

Zn → Hn(A•)→ 0 and use Zn is free to get the exact sequence

0→ Hom(Hn(A•),M)→ Hom(Zn,M)
ĩn−→ Hom(Bn,M)→(17.2.10)

Ext1(Hn(A•),M)→ 0 .

This shows Coker(̃in−1) = Ext1(Hn−1(A•),M) and Ker(̃in) = Hom(Hn(A•),M). This
proves the existence of the exact sequence

0→ Ext1(Hn−1(A•),M)→ Hn(Hom(A•,M))
ā−→ Hom(Hn(A•),M)→ 0 .

Next we show that this sequence is split. We have the short exact sequence 0→ Zn
jn−→

An → Bn−1 → 0. Since Bn−1 is free, we can choose a splitting s : An → Zn of the inclusion
jn. This induces a splitting s̃ : Hom(Zn,M)→ Hom(An,M) of the short exact sequence

0→ Hom(Bn−1,M)→ Hom(An,M)→ Hom(Zn,M)→ 0 .

It is easily checked that there is a commutative diagram

Hom(Zn,M)
s̃ // Hom(An,M) // Hom(Zn,M)

Hom(Hn(A•),M) //
?�

OO

Zn(Hom(A•,M))
?�

OO

// Hn(Hom(A•,M))
ā // Hom(Zn,M)

We have already seen that the image of ā lands inside Hom(Hn(A•),M). Thus, the bottom
row factors as

Hom(Hn(A•),M)→ Hn(Hom(A•,M))
ā−→ Hom(Hn(A•),M) ⊂ Hom(Zn,M) .

The composite in the top row is identity as s̃ is a splitting. It follows that the composite
map

Hom(Hn(A•),M)→ Hn(Hom(A•,M))
ā−→ Hom(Hn(A•),M)

is also the identity. This is a splitting of the short exact sequence. This completes the
proof of the Theorem.
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Corollary 17.2.11.

Hn(Hom(A•,M)) ∼= Hom(Hn(A•),M)
⊕

Ext1(Hn−1(A•),M) .

17.2.12 Cohomology of Hom(A•,Z)⊗M . Let A• be a complex of free abelian groups. In
section 17.2.1 we expressed the homologies of the complex A•⊗M in terms of the homolo-
gies of the complex A•. In a similar spirit, in this section we shall express the homologies
of the complex Hom(A•,M) in terms of the homologies of the complex Hom(A•,Z) when
A• is a complex of free abelian groups for which all the Hn(A•) are finitely generated
abelian groups.

Remark 17.2.13. First consider the case when each An is a finitely generated free
abelian group. In this case the cochain complex Hom(A•,Z) is a complex of free abelian
groups and Hom(An,M) ∼= Hom(An,Z) ⊗ M . Thus, by Theorem 17.2.2 (use Remark
17.1.3 to apply this Theorem) we get that there is a split exact sequence

0→ Hn(Hom(A•,Z))⊗M →Hn(Hom(A•,M))

→ Hn+1(Hom(A•,Z)) ∗M → 0 .

For the general case we need the following preliminary lemmas.

Definition 17.2.14. Let A• and B• be chain complexes and let f : A• → B• be a map of
complexes. If the induced map on homologies is an isomorphism, then we say that f is a
quasi-isomorphism.

Lemma 17.2.15. Let D• and C• be complexes of free abelian groups. Let f : D• → C•
be a quasi-isomorphism. Then for any abelian group M , the induced map of complexes
f̃ : Hom(C•,M)→ Hom(D•,M) is a quasi-isomorphism.

Proof. This follows easily using Lemma 16.1.3, Theorem 17.2.8 and the following commu-
tative diagram of short exact sequences in which the extreme vertical arrows are isomor-
phisms.

0 // Ext1(Hn−1(C•),M) //

��

Hn(Hom(C•,M))

��

// Hom(Hn(C•),M) //

��

0

0 // Ext1(Hn−1(D•),M) // Hn(Hom(D•,M)) // Hom(Hn(D•),M) // 0

We leave it to the reader to check the details.

Lemma 17.2.16. Let C• be a complex of free abelian groups such that the homology
groups Hn(C•) are finitely generated. Then we can find a complex D• such that each Dn

is a finitely generated free abelian group and a quasi-isomorphism f : D• → C•.
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Proof. We have a surjective map Zn(C•) → Hn(C•). As Hn(C•) is finitely generated,
we can find a finitely generated submodule Fn ⊂ Zn such that the composite Fn →
Zn → Hn(C•) is surjective. Let Gn denote the kernel of Fn → Hn(C•). It is clear that
Gn = Fn ∩Bn(C•). Both Gn and Fn are free, being submodules of the free abelian group
Cn. Define Dn := Fn ⊕ Gn−1 and the differential dn(x, y) := (y, 0). It is clear that this
defines a complex {D•, d•}.

We define a map fn : Dn → Cn. It suffices to define fn on Fn and Gn−1, and then we
can extend it linearly to Dn. Let fn : Fn → Cn be the inclusion. As Gn−1 ⊂ Bn−1(C•) and
Gn−1 is free, we can find a map fn : Gn−1 → Cn so that dn ◦ fn is the identity. It is easily
checked that the fn define a map of complexes D• → C• which is a quasi-isomorphism.

Theorem 17.2.17 (Universal coefficients). Let A• be a complex of free abelian groups for
which all the Hn(A•) are finitely generated abelian groups. Then we have a split exact
sequence

0→ Hn(Hom(A•,Z))⊗M →Hn(Hom(A•,M))

→ Hn+1(Hom(A•,Z)) ∗M → 0 .

Proof. In view of Lemma 17.2.16 we can find a quasi-isomorphism f : D• → A• such
that each Dn is a finitely generated free abelian group. In view of Lemma 17.2.15 the
induced maps of complexes f̃Z : Hom(A•,Z) → Hom(D•,Z) and f̃M : Hom(A•,M) →
Hom(D•,M) are quasi-isomorphisms. Let us denote Hn(Hom(A•,M)) by Hn(A•,M). It
is easily checked that there is a commutative diagram

0 // Hn(A•,Z)⊗M //

��

Hn(A•,M) //

��

Hn+1(A•,Z) ∗M //

��

0

0 // Hn(D•,Z)⊗M // Hn(D•,M) // Hn+1(D•,Z) ∗M // 0

in which the vertical arrows are isomorphisms. The Theorem now follows using Remark
17.2.13.

17.3 Kunneth Formula

17.3.1 Tensor product of complexes. Let i : M ′ ⊂ M be abelian groups. In general,
the map i⊗ 1N :M ′ ⊗N →M ⊗N will not be an inclusion. However, sometimes we will
abuse notation and write M ⊗ N/(M ′ ⊗ N) instead of writing M ⊗ N/i ⊗ 1N (M

′ ⊗ N).
Similarly, if h : M ⊗ N → G is a map, then by the restriction of h to M ′ ⊗ N we shall
mean the composite h ◦ (i⊗ 1N ).

Let D• and E• be complexes. Define a complex C• as follows. Let Cn :=
⊕

j∈ZDj⊗En−j .
Define dn : Cn → Cn−1 by defining it on pure tensors a⊗ b ∈ Dl ⊗ Ek (where l+ k = n) by

dn(a⊗ b) := dl(a)⊗ b+ (−1)la⊗ dk(b) .
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One easily checks that dn+1 ◦ dn = 0. It is clear that there is a map Zp(D•) ⊗ Zq(E•) →
Zp+q(C•). We claim that under this map the image of Bp(D•) ⊗ Zq(E•) lands inside
Bp+q(C•). This is clear as (using dq(z) = 0)

dp+1(a)⊗ z = dp+q+1(a⊗ z) .

Similarly, the image of Zp(D•)⊗Bq(E•) lands inside Bp+q(C•). Thus, we have a map

Zp(D•)⊗ Zq(E•)
Bp(D•)⊗ Zq(E•) + Zp(D•)⊗Bq(E•)

→ Zp+q(C•)
Bp+q(C•)

.

Using tensor product is right exact we easily check that the LHS in the above is isomorphic
to Hp(D•)⊗Hq(E•). Thus, there is a map

Hp(D•)⊗Hq(E•)→ Hp+q(C•) .

Theorem 17.3.2. Let D• be a complex of free abelian groups. Let E• be a complex of
abelian groups. Then we have a short exact sequence

(17.3.3) 0→
⊕
i+j=n

Hi(D•)⊗Hj(E•)→ Hn(D• ⊗ E•)→
⊕

i+j=n−1

Hi(D•) ∗Hj(E•)→ 0 .

If E• is a complex of free abelian groups then the above sequence splits.

Proof. The proof is similar to that of Theorem 17.2.2 and so we only sketch it. We consider
the complexes

Z• = Z•(D•) : . . .
0−→ Zn+1(D•)

0−→ Zn(D•)
0−→ Zn−1(D•)

0−→ . . .

B• = B•(D•) : . . .
0−→ Bn+1(D•)

0−→ Bn(D•)
0−→ Bn−1(D•)

0−→ . . .

These are complexes of free abelian groups as Bn ⊂ Zn ⊂ Dn and Dn is free. As before,
the short exact sequences 0→ Zn → Dn → Bn−1 → 0 can be put together to get a short
exact sequence of complexes:

0→ Z• → D• → B•[−1]→ 0 .

As Bn−1 is free, the above short exact sequence remains exact after tensoring with Ej .
Thus, tensoring and taking direct sums we get a short exact sequence of complexes

(17.3.4) 0→ Z• ⊗ E• → D• ⊗ E• → B• ⊗ E•[−1]→ 0 .

Note that the differential of Z• ⊗ E• has the following description. If z ⊗ b ∈ Zj ⊗ Ek then
d(z ⊗ b) = (−1)jz ⊗ d(b). Consider the free abelian group Zj and the complex E•. We



17.3. KUNNETH FORMULA 179

obtain the complex Zj ⊗E•. The abelian group which appears in degree l in this complex
is Zj ⊗ El. Notice that the complex Z• ⊗ E• is simply the direct sum of complexes

Z• ⊗ E• =
⊕
j∈Z

(Zj ⊗ E•[j]) .

Similarly, the complex B• ⊗ E• is simply the direct sum of complexes

B• ⊗ E• =
⊕
j∈Z

(Bj ⊗ E•[j]) .

Observe that Hn(Zi ⊗ E•) = Zi ⊗Hn(E•). It follows easily that

Hn(Z• ⊗ E•) =
⊕
k+j=n

Zk ⊗Hj(E•) .

Similarly,

Hn(B• ⊗ E•) =
⊕
k+j=n

Bk ⊗Hj(E•) .

Taking the long exact homology sequence of (17.3.4) we get⊕
k+j=n

Bk ⊗Hj(E•)
a−→
⊕
k+j=n

Zk ⊗Hj(E•)→ Hn(D• ⊗ E•)→⊕
k+j=n−1

Bk ⊗Hj(E•) −→
⊕

k+j=n−1

Zk ⊗Hj(E•)

Using the definition of the connecting homomorphism it is easily checked that a = ik⊗ Id,
where ik : Bk → Zk is the inclusion. From this it follows easily that we have a short exact
sequence

0→
⊕
k+j=n

Hk(D•)⊗Hj(E•)→ Hn(D• ⊗ E•)→
⊕

k+j=n−1

Hk(D•) ∗Hj(E•)→ 0 .

Now assume that E• is a complex of free abelian groups. As Bn−1(E•) is free, we may
choose a splitting tn : En → Zn(E•) of the inclusion Zn(E•) ⊂ En. Let sn : Dn → Zn(D•)
of the inclusion Zn(D•) ⊂ Dn. Define a map

un : (D• ⊗ E•)n =
⊕
i+j=n

Di ⊗ Ej → Zi(D•)⊗ Zj(E•)

by defining it on pure tensors a ⊗ b ∈ Di ⊗ Ej by si(a) ⊗ tj(b) ∈ Zi(D•) ⊗ Zj . Obviously
the composite map⊕

i+j=n

Zi(D•)⊗ Zj(E•)→ Zn(D• ⊗ E•) ⊂ (D• ⊗ E•)n →
⊕
i+j=n

Zi(D•)⊗ Zj(E•)
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is the identity. We claim that the image of Bn(D• ⊗ E•) ⊂ Zn(D• ⊗ E•) lands inside⊕
i+j=n

(
Bi(D•)⊗ Zj(E•) + Zi(D•)⊗Bj(E•)

)
.

It is enough to check this for pure tensors a⊗ b ∈ Di+1 ⊗ Ej . This is clear as

un(d(a⊗ b)) = un(d(a)⊗ b) + (−1)i+1un(a⊗ d(b))
= d(a)⊗ tj(b) + (−1)i+1si+1(a)⊗ d(b) ,

d(a)⊗ tj(b) ∈ Bi(D•)⊗Zj(E•) and si+1(a)⊗ d(b) ∈ Zi+1(D•)⊗Bj−1(E•). Thus, it follows
that we get a map

Hn(D• ⊗ E•)→
⊕
i+j=n

Hi(D•)⊗Hj(E•)

which is a splitting for the short exact sequence (17.3.3). This completes the proof of the
Theorem.



Chapter 18

CW complexes

In this chapter we introduce a class of spaces central to algebraic topology, called CW
complexes. For CW complexes we shall define cellular homology and show that this
coincides with singular homology. Thus, this will give a different way to compute the
homology groups of spaces homotopy equivalent to a CW complex.

18.1 CW complexes

A CW complex is a space X which is inductively built out of cells as follows. For k ⩾ 1,
a k-cell is defined to be the space Dk := {x ∈ Rn | ||x|| ⩽ 1}. By ∂Dk we shall mean the
boundary of Dk, that is, Dk \ Int(Dk). Thus, for k ⩾ 2 we have ∂Dk = Sk−1 and ∂D1 is
a discrete set consisting of two points. A 0-cell is just a point and ∂D0 = ∅. With these
definitions we build X as follows.

(1) Start with a non-empty discrete set of points X0. This is called the 0-skeleton of X

(2) Let n ⩾ 1 and assume that we have constructed Xn−1.

(3) Suppose we have a collection of n-cells Dn
α indexed by α and maps fα : ∂Dn

α → Xn−1.
Define Xn := (Xn−1

∐
αD

n
α)/ ∼, where x ∈ ∂Dn

α is identified with fα(x) ∈ Xn−1.
Note that the map Xn−1 → Xn is an inclusion. The maps fα are called the attaching
maps. We get a chain of inclusions X0 ⊂ X1 ⊂ X2 ⊂ . . . where Xi is a closed subset
of Xi+1.

(4) Define X = ∪n⩾0X
n and give it the weak topology, that is, a set A is defined to be

closed iff A ∩Xn is closed for each n.

The subspace Xn is called the n-skeleton of X. Thus, it is a closed subspace of X. If
X is connected then it is clear that Xn/Xn−1 is a wedge of n-spheres where each sphere
corresponds to an n-cell. By an open n-cell in Xn we shall mean the following. Note that

181



182 CHAPTER 18. CW COMPLEXES

Int(Dn
α) → Xn is an inclusion and is an open subset. We shall refer to this as an open

n-cell in Xn and denote it by eα.

18.2 Examples of CW complexes

(1) It is clear that a point is a CW complex.

(2) The sphere Sn is a CW complex as follows. Take X0 to be a single point. There are
no k-cells for 1 ⩽ k ⩽ n− 1. Thus, X0 = X1 = . . . = Xn−1. Take one n-cell and take
the attaching map f : Sn−1 = ∂Dn → X0 to be the constant map.

(3) P1
R is S1 and this has a CW structure by the previous example.

(4) Now consider the case n ⩾ 2. We view PnR as the open upper hemisphere of Sn along
with the identification by the antipodal map on the equatorial Sn−1. From this it is
clear that we take Xn−1 = Pn−1

R , take one n-cell and attach the boundary to Xn−1

using the usual quotient map Sn−1 → Pn−1
R . Thus, for each 0 ⩽ k ⩽ n there is exactly

one k-cell.

(5) P1
C is S2 and this has a CW structure as shown above.

(6) There is a surjective map D2k → PkC given as follows,

f(y1, . . . , y2k) = [y1 + iy2 : . . . : y2k−1 + iy2k : 1− ||y||] .

It is clear that the sphere ∂D2k = S2k−1 maps to Pk−1
C sitting as the hyperplane xk = 0.

One checks easily that f is a bijective homeomorphism from D2k \S2k−1 → PkC \P
k−1
C .

In view of this, we get a bijective continuous map

X := (D2k
∐

Pk−1
C )/ ∼ → PkC .

The equivalence on the left is given by, for x ∈ S2k−1 identify x ∼ f(x) ∈ Pk−1
C . Thus,

if we can show that X is Hausdorff, then it will also be compact and this map will be
a homeomorphism. That X is Hausdorff is left as an exercise.

This description shows that we can inductively give PkC a CW structure as follows.
Assume that we have given Pk−1

C a CW structure. Take one 2k-cell and use the
attaching map S2k−1 → Xk−1. Then we get that Xk = PkC. Thus, cells exist only in
even dimension and for each 0 ⩽ k ⩽ n there is exactly one cell of dimension 2k.

(7) For compact orientable surfaces of genus g, we have the following well known repre-
sentation.
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We leave it to the reader to use this representation and give this surface the structure
of a CW complex.

In all the above examples, for each n there are only finitely many n-cells. However, in
general the number of n-cells is allowed to be infinite.

18.3 Cellular Homology

Throughout we will assume thatX is connected. It is easy to check that this happens iff the
1-skeleton X1 is connected. The reader will also easily check that connected components
and path components for a CW complex are the same. Moreover, the reader will correctly
guess and prove that when X has more than one path component then the algebraic
objects we associate to X are simply direct sums of the algebraic objects we associate to
each connected component of X.

For a CW-complex X we define a chain complex as follows. For n ⩾ 1 define

CWn(X) := Hn(X
n/Xn−1) ,

and define CW0(X) = H0(X
0). If n ⩾ 1 then since Xn/Xn−1 is a wedge of Sn’s, it follows

that CWn(X) is free abelian of rank equal to the number of n-cells. It is clear that the
same is true when n = 0.

Next we define maps dn+1 : CWn+1(X) → CWn(X). First consider the case n ⩾ 1.
The long exact sequence for the pair (Xn+1/Xn−1, Xn/Xn−1) gives

CWn+1(X) = Hn+1(X
n+1/Xn)

∼
��

Hn+1(X
n+1/Xn−1, Xn/Xn−1)

δn+1 // Hn(X
n/Xn−1) = CWn(X)

In the above we have used Corollary 16.7.6. Define dn+1 : CWn+1(X)→ CWn(X) by

dn+1 := δn+1 .

Next we define d1 : CW1(X) → CW0(X). In the same way as above, using Corollary
16.7.6, the long exact sequence for the pair (X1, X0) gives

CW1(X) = H1(X
1/X0)

δ1 // H0(X
0) = CW0(X) .
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Define d1 = δ1. Define d0 = 0.

Next let us show that the di’s define a chain complex. We first describe a way to
compute the differential dn+1(e) in terms of the n-cells. Let n ⩾ 1. Let e ∈ CWn+1(X)
be a generator corresponding to an (n + 1)-cell. We have a map of pairs (Dn+1, Sn) →
(Xn+1/Xn−1, Xn/Xn−1), where Dn+1 is the (n+1)-cell corresponding to e. Let q denote
the map Sn → Xn → Xn/Xn−1 which is the attaching map followed by the quotient map.
We get the following commutative diagram from the long exact sequences attached to the
above map of pairs.

(18.3.1) Hn+1(D
n+1, Sn)

∼ //

��

Hn(S
n)

q∗
��

Hn+1(X
n+1/Xn)

δn+1 // Hn(X
n/Xn−1)

If Xn/Xn−1 = ∨αSnα then for the map q∗ : Z→
⊕

α Zα, each component can be found by
considering the composition Sn → ∨αSnα → Snα. In the second map all the spheres other
than the one corresponding to α are smashed to a point. This induces a map Z→ Zα and
that map is precisely the projection of q∗ to the α’th coordinate. This gives a topological
description of the differentials.

Lemma 18.3.2. dn ◦ dn+1 = 0

Proof. This is clear when n = 0 since d0 = 0. First assume that n ⩾ 2. It suffices
to show that dn ◦ dn+1 = 0 on the generators. Thus, from the preceding discussion, it
suffices to show that dn(q∗(1)) = 0. Consider the map j which is the composite Sn →
Xn → Xn/Xn−2. Then q is the composite Sn

j−→ Xn/Xn−2 π−→ Xn/Xn−1. Thus, we have
a commutative diagram where the bottom row is from the long exact sequence of pairs
(Xn/Xn−2, Xn−1/Xn−2) and using Corollary 16.7.6

Hn(S
n)

q∗
��

j∗

vvlll
lll

lll
lll

l

Hn(X
n/Xn−2)

π∗ // Hn(X
n/Xn−1)

δn // Hn−1(X
n−1/Xn−2)

From the long exact sequence of the pair (Xn/Xn−2, Xn−1/Xn−2) we have δn ◦ π∗ = 0.
The lemma follows when n ⩾ 2.

Next consider the case n = 1. It suffices to show that d1 ◦ d2 = 0 on the generators.
Thus, from the preceding discussion, it suffices to show that d1(q∗(1)) = 0. Then q is the

composite S1 j−→ X1 π−→ X1/X0. Thus, we have a commutative diagram where the bottom
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row is from the long exact sequence of pairs (X1, X0) and using Corollary 16.7.6

H1(S
1)

q∗
��

j∗

xxppp
ppp

ppp
pp

H1(X
1)

π∗ // H1(X
1/X0)

δ1 // H0(X
0)

From the long exact sequence of the pair (X1, X0) we have δ1 ◦π∗ = 0. The lemma follows
when n = 1.

This constructs a chain complex and the homology groups of this complex are denoted
HCW
n (X).

Definition 18.3.3. Let X and Y be CW complexes. A map f : X → Y is said to be
cellular if f(Xn) ⊂ Y n.

Using the idea in equation (18.3.1) we easily check that a cellular map f induces a map
of complexes f∗ : CW•(X) → CW•(Y ) and so induces maps f∗ : HCW

n (X) → HCW
n (Y ).

This is left as an exercise to the reader, see Exercise 18.5.6.

18.4 Comparing cellular and singular homology

We begin with some preliminaries. We first want to show that a compact set C ⊂ X in
a CW complex is contained in a union of finitely many cells. We first prove the following
easy lemma.

Lemma 18.4.1. Let X be a CW complex. Let C ⊂ Xn be a compact set. Then C meets
only finitely many open n-cells in Xn.

Proof. On the contrary, let us assume that C meets infinitely many open n-cells. If
eα ⊂ Xn is one such open n-cell, let xα be a point in C ∩eα. Then the set {xα} is a subset
of C which has the discrete topology. Since C is compact, it follows that this set has finite
cardinality, a contradiction.

Corollary 18.4.2. Let C ⊂ X be a compact set. Then for all n the set C∩Xn is contained
in a finite union of cells.

Proof. Let us assume that this is not the case. Choose the smallest n for which C ∩Xn

is not contained in a finite union of cells. This means that C ∩Xn meets infinitely many
open n-cells in Xn, which contradicts the previous lemma.

Proposition 18.4.3. Let X be a CW complex. Let C ⊂ X be a compact set. Then C is
contained in a finite union of cells.
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Proof. Let us assume that this is not the case. This would mean that for infinitely many
n the set C ∩Xn meets some open n-cells in Xn. For each n, and each open n-cell eα in
Xn choose a point xα ∈ C ∩ eα, whenever this intersection is non-empty. Let S denote
the collection of these xα. For each n, the set S ∩ Xn has finite cardinality, from the
previous result. Thus, the same is true for every subset T ⊂ S. This shows that every
such T is closed in X and so closed in S. That is, every subspace of S is closed and so
S has the discrete topology. Since S ⊂ C which is compact, this forces that S is finite, a
contradiction.

Lemma 18.4.4. Let X be a CW complex. Then

(1) Hr(X
n) = 0 for r > n.

(2) Hr(X
n)

∼−→ Hr(X
n+1) is an isomorphism if 1 ⩽ r < n.

(3) Hn(X
n+1)

∼−→ Hn(X) is an isomorphism for all n.

Proof. We shall prove (1) by induction on n. This is clearly true when n = 0. Assume
this is true for n ⩾ 0 and consider the long exact sequence for the pair (Xn+1, Xn). We
get

Hr(X
n)→ Hr(X

n+1)→ Hr(X
n+1, Xn) .

Since r > n + 1, it follows that r ⩾ 1. It is clear that there is a neighborhood of Xn in
Xn+1 which deformation retracts onto Xn. Thus, applying Corollary 16.7.6 we get that
Hr(X

n+1, Xn) ∼= Hr(X
n+1/Xn). The space Xn+1/Xn is either a point of a wedge of

spheres Sn+1. Since r > n + 1 it follows thiat this homology group is 0. Thus, it follows
that Hr(X

n+1) = 0. This proves (1).

Let us prove (2). If 1 ⩽ r < n then, as above, we have

Hr+1(X
n+1/Xn) ∼= Hr+1(X

n+1, Xn)→ Hr(X
n)→ Hr(X

n+1)

→ Hr(X
n+1, Xn) ∼= Hr(X

n+1/Xn) .

This proves (2) since the ends are 0.

Let us prove (3). We leave it as an exercise to the reader to check that the path
components of X are in bijective correspondence with the path components in X1. From
this the assertion in (3) follows for n = 0. So let us assume that n ⩾ 1. In view of
Proposition 18.4.3 it follows that there is an isomorphism

lim−→
m

Hn(X
m)

∼−→ Hn(X) .

By part (2) since Hn(X
m)

∼−→ Hn(X
m+1) is an isomorphism for 1 ⩽ n < m, it follows that

Hn(X
n+1)

∼−→ lim−→m
Hn(X

m)
∼−→ Hn(X). Thus, (3) is proved.
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Theorem 18.4.5. Let X be a CW complex. There are isomorphisms HCW
n (X) ∼= Hn(X).

If f : X → Y is a cellular map then we have a commutative diagram

HCW
n (X)

∼ //

f∗
��

Hn(X)

f∗
��

HCW
n (Y )

∼ // Hn(Y )

The left vertical arrow is defined using Exercise 18.5.6.

Proof. It suffices to prove the theorem when X is connected.

For n = 0 the CW homology HCW
0 (X) is the cokernel of the map H1(X

1, X0) →
H0(X

0). This fits in the exact sequence

H1(X
1, X0)→ H0(X

0)→ H0(X
1)

Since X is connected it follows that X1 is connected and the map H0(X
0) → H0(X

1) is
surjective. Thus, in this case we get that HCW

0 (X)
∼−→ H0(X).

Now consider the case when n = 1. Consider the following diagram

H1(X
1/X0) = CW1(X)

∼a
��

H1(X
1)

b // H1(X
1, X0)

c // H0(X
0) = CW0(X)

The bottom row is from the long exact sequence of the pair (X1, X0). The arrow a is an
isomorphism using Corollary 16.7.6. By definition of d1 : CW1(X) → CW0(X) we have
that d1 = c ◦ a. Thus, Ker(d1) = Im(b). Consider the following commutative diagram
for n ⩾ 2. The middle row is from the long exact sequence of the pair (Xn, Xn−1). The
bottom row is from the long exact sequence of the pair (Xn/Xn−2, Xn−1/Xn−2).

Hn(X
n/Xn−1) = CWn(X)

∼a
��

Hn(X
n)

b // Hn(X
n, Xn−1)

c //

∼d
��

Hn−1(X
n−1)� _

e
��

Hn(X
n/Xn−2, Xn−1/Xn−2)

f // Hn−1(X
n−1/Xn−2) = CWn−1(X)

The arrows a and d are isomorphisms using Corollary 16.7.6. The arrow e is an inclusion
follows from the long exact of the pair (Xn−1, Xn−2) and Lemma 18.4.4 (1). By definition
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the map dn = f ◦d ◦a. If we put n = 2 then it is easy to see that HCW
1 (X) is the cokernel

of the map c. But from the long exact sequence of the pair (X2, X1),

H2(X
2)→ H2(X

2, X1)→ H1(X
1)→ H1(X

2)→ H1(X
2/X1) = 0,

we get that HCW
1 (X) ∼= H1(X

2). Now applying Lemma 18.4.4 (3) we see that the theorem
is true for n = 1.

The general case proceeds in the same way and we get that HCW
n (X) is isomorphic to

cokernel of the map
Hn+1(X

n+1, Xn)→ Hn(X
n),

which by same considerations as above is isomorphic toHn(X
n+1). Again applying Lemma

18.4.4 (3) we see that the theorem is true for all n.
Let f : X → Y be a map of CW complexes. On the one hand we saw that f induces

a map f∗ : HCW
n (X) → HCW

n (Y ). On the other hand it also induces a map on singular
homology groups. These induced maps are the same modulo the isomorphism of cellular
homology with singular homology. In other words the above isomorphisms and maps f∗
fit into a commutative diagram

(18.4.6) HCW
n (X)

∼ //

f∗
��

Hn(X)

f∗
��

HCW
n (Y )

∼ // Hn(Y )

Again this check follows by combining the above proof with equation (18.3.1). We leave
this check to the reader.
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18.5 Exercises

18.5.1. Let X be a CW complex. Show that the path components of X are in bijective
correspondence with the path components of X1. Show that the path components and
the components of X are the same.

18.5.2. Let X be a CW complex and let Z ⊂ Xn be a subspace. Show that the topology
on Z induced from Xn is that the same as the topology on Z induced from X.

18.5.3. In Example 6 show that X is Hausdorff.

18.5.4. Use CW homology to compute the homology groups of all examples in section
18.2.

18.5.5. Let X and Y be CW complexes and let Z = X
⊔
Y . Show that HCW

n (Z) ∼=
HCW
n (X)⊕HCW

n (Y ).

18.5.6. Let X and Y be CW complexes and let f : X → Y be a cellular map. Using
the idea in equation (18.3.1) check that a cellular map f induces a map of complexes
f∗ : CW•(X)→ CW•(Y ) and so induces maps f∗ : H

CW
n (X)→ HCW

n (Y ).

18.5.7. Let the setup be as in Theorem 18.4.5. Prove the commutativity of (18.4.6).
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