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Thus conscience does make cowards of us all;
And thus the native hue of resolution
Is sicklied o’er with the pale cast of thought,
And enterprises of great pith and moment
With this regard their currents turn awry,
And lose the name of action.

-Hamlet
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Chapter 1

Introduction

We will assume (very minimal) familiarity with Rings and Fields. By a field
we shall always mean a commutative field (as opposed to a division algebra).
By a ring we shall always mean a commutative ring with a multiplicative
identity. The typical example of a ring that we have in mind is K[X], where
K is a field. In this chapter we address some very basic and simple questions
that can be asked about fields and field extensions.

1.1 Extensions and Subfields

Let F be a field. A field extension of F is a fieldK and an inclusion i : F ↪→ K
such that i respects addition and multiplication. It is easily checked that
these conditions force i(0F ) = 0K and i(1F ) = 1K . Similarly, a subfield of F
is a field E and an inclusion j : E ↪→ F such that j respects addition and
multiplication.

Question 1.1.1. Given a field F , does it always have a proper extension?

Answer. Yes. Consider the ring F [X] whose elements are polynomials in
the variable X. Let K = F (X) denote its field of fractions. The precise
definition of K is

K :=
{ f(X)

g(X)

∣∣∣ f(X), g(X) ∈ F [X], g(X) ̸= 0
}
.

Then F ⊂ K. The field K is called the field of rational functions in one
variable over F .

7
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Question 1.1.2. Given a field F , does it always have a proper subfield?

Answer. No. Let F = Q. If E ⊂ F were a subfield, then 1 ∈ E (by definition
of subfield). This will force that n ∈ E for every n ∈ Z. Finally this shows
that n/m ∈ E for all n ∈ Z and m ∈ Z,m ̸= 0. This proves that E = F .
The same proof works with F = Z/(p).

The characteristic of a field is defined as follows. Consider the unique
ring homomorphism Z → F defined by sending 1 to 1F . The kernel of
this homomorphism is a prime ideal of Z. This prime ideal is either (0) or
(p), for some positive prime p. The characteristic of F is defined to be 0
or p accordingly. Equivalently, the characteristic may be defined to be the
smallest positive integer p such that p · 1F = 0, if there is such a positive
integer, or else define it to be 0. If F is a field of positive characteristic, then
we get that Z/(p) ⊂ F . Thus, given any field, there is a smallest subfield it
contains. This subfield is the one which is generated by 1F . This subfield is
isomorphic to Z/(p) or Q.

1.2 Subfields generated by elements

Remark 1.2.1. Recall the following property of polynomial rings. Let R and
S be rings and let ϕ : R → S be a ring homomorphism. Let I be a set and
consider the polynomial ring R[Xi](i∈I). Here the Xi are indeterminates
indexed by the set I. Clearly, there is an inclusion R ⊂ R[Xi](i∈I). Let T

denote the set of all ring homomorphisms ϕ̃ : R[Xi](i∈I) → S whose restriction
to R is ϕ. There is an obvious map

T →
∏
i∈I

S

given by ϕ̃ 7→ (ϕ̃(Xi))i∈I . An important fact about polynomial rings is that
this map is a bijection.

Suppose we are given fields F ⊂ K. Then we can form fields E which
satisfy F ⊂ E ⊂ K. This is done as follows. Let αi, for i ∈ I, be a
collection of elements in K. First consider the smallest subring of K which
contains F and all the αi. This ring, call it R, is the image of the unique
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ring homomorphism from the polynomial ring F [Xi]i∈I (see Remark 1.2.1)

(1.2.2) F [Xi]i∈I → K

which sends each Xi 7→ αi. Thus, we have F ⊂ R ⊂ K. Now define

F (αi)i∈I :=
{a
b

∣∣∣ a, b ∈ R, b ̸= 0
}
.

Clearly F (αi)i∈I is a field which contains F and all the αi. We claim that it
is the smallest subfield of K which contains F and all the αi. In other words,
if E ′ is a subfield of K which contains F and all the αi, then F (αi)i∈I ⊂ E ′.
This is left as an exercise to the reader.

1.3 Algebraic and Transcendental elements

We know that Q,R and C are fields and satisfy the inclusions Q ⊂ R ⊂ C.
Inside C we have the complex number i which has the property that it satisfies
the equation X2 + 1 = 0. Similarly, inside R we have

√
2, which has the

property that it satisfies the equation X2 − 2 = 0.

Definition 1.3.1 (Algebraic elements). Let F ⊂ K be fields. An element
α ∈ K is said to be algebraic over F if there exists a polynomial f(X) ∈ F [X]
such that f(α) = 0.

Thus, i ∈ C is algebraic over Q. Similarly,
√
2 ∈ R is algebraic over Q. It is

natural to ask if every element of C is algebraic over Q. The next proposition
shows that this is not the case.

We will use the following simple observation in the proof. Let R be a
ring and let f(X) ∈ R[X] be a polynomial with coefficients in R. Let α ∈ R.
Then

(1.3.2) f(X) = (X − α)g(X) + f(α)

for some polynomial g(X) ∈ R[X]. To see this, simply write X = X −α+α
in place of X in the expression for f(X), and then expand each monomial
Xn = (X − α + α)n using the binomial expansion. For example,

X2 = (X − α)2 + 2α(X − α) + α2 .
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From this (1.3.2) follows. In particular, if f(α) = 0 then we get that f(X) =
(X − α)g(X). We can ask if g(X) has a root in R. Repeating this process,
we see that we can write

f(X) = (X − α1)(X − α2) . . . (X − αr)h(X) .

Here h(X) is a polynomial of degree deg(f(X))− r ⩾ 0 and has no roots in
R. Consider the situation when R is a domain. This shows that the set of
roots of f(X) in R is a finite set. In fact, it is a subset of {α1, . . . , αr}.

Proposition 1.3.3. Let A denote the elements in C which are algebraic over
Q. Then A is a countable set.

Proof. The cardinality of Q[X] is countable. We sketch for the benefit of
the reader. If T1 and T2 are countable sets then T1 × T2 is also countable.
Applying this repeatedly we see that T×n is a countable set. In particular, the
vector space Qn is countable. The polynomials of degree ⩽ n are identified
with the vector space Qn+1. This shows that the set of polynomials of degree
⩽ n, denote is by P⩽n is countable. Finally, a countable union of countable
sets is countable, and so Q[X] =

⋃
n⩾0P⩽n is countable.

Then
A =

⋃
f∈Q[X]

{α ∈ C | f(α) = 0}

For each f , the set of roots of f is a finite set. Thus, the above is a countable
union of sets, each of which is finite. Since a countable union of countable
sets is countable, it follows that A is countable. On the other hand we know
that C is not countable. Thus, there are plenty of elements in C which are
not algebraic over Q.

Remark 1.3.4. The same proof shows that there are elements in R which
are not algebraic over Q.

Definition 1.3.5. Let F ⊂ K be fields. An element α ∈ K is called tran-
scendental over F if α is not algebraic over F .

Remark 1.3.6. Suppose F ⊂ K and α ∈ K. Let E := F (α) denote the
smallest subfield of K containing F and α. Then clearly α is algebraic over
E since it satisfies the polynomial X − α ∈ E[X]. In particular, α may be
transcendental over F , but it is obviously algebraic over F (α).
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Remark 1.3.7. The above proof that R (or C) has transcendental elements
over Q is not constructive. It motivates the following question, can we explic-
itly write down a number which is transcendental over Q? Although almost
every real number is transcendental, it is very difficult to prove that a given
number is transcendental. Joseph Liouville discovered the first transcenden-
tal number in 1844:

∞∑
n=1

10−n! = 0.1100010000000000000000010 . . .

In 1873 Charles Hermite proved that e is transcendental and in 1882 Ferdi-
nand von Lindemann proved that π is transcendental. This course is all about
algebraic elements. However, in this chapter let us make a small digression
and see Liouville’s construction of transcendental real numbers.

Theorem 1.3.8. [Liouville’s Theorem] Let α ∈ R\Q be algebraic, satisfying
a polynomial of degree n. Then there exists a constant c > 0 dependent on α

(c = c(α)) such that
∣∣∣α− p

q

∣∣∣ > 1
cqn

∀p, q ∈ Z, q > 0.

Proof. We know that for algebraic α, there is a monic polynomial P (X) ∈
Q[X] which is irreducible, of degree n and P (α) = 0, and this is the polyno-
mial of least degree. Clearing denominators we get P (X) ∈ Z[X] of degree
n such that P (α) = 0. By the Mean Value Theorem we have,∣∣∣∣P (α)− P

(
p

q

)∣∣∣∣ = ∣∣∣∣α− p

q

∣∣∣∣ · |P ′(ξ)|

for some ξ lying between α and p
q
. Let us observe that P ′(ξ) ̸= 0, or else, by

looking at the LHS in the above equation, we will have (since P (α) = 0)

P
(p
q

)
= 0 .

This will mean that p/q is a root of P (X), contradicting the fact that P (X)
is irreducible over Q. Then

P

(
p

q

)
= an

pn

qn
+ an−1

pn−1q

qn
+ an−2

pn−2q2

qn
+ · · ·+ a0

=
anp

n + an−1p
n−1q + · · ·+ a0q

n

qn
.
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Since anp
n + an−1p

n−1 + · · · + a0 ∈ Z and is nonzero, its absolute value is
⩾ 1. Thus, we get ∣∣∣∣P (pq

)∣∣∣∣ ⩾ 1

qn
.

This shows that ∣∣∣∣α− p

q

∣∣∣∣ ⩾ 1

qn|P ′(ξ)|
.

Assume
∣∣∣α − p

q

∣∣∣ < 1. Since ξ lies between α and p
q
we get |ξ| < |α| + 1.

Using this we get

|P ′(ξ)| ⩽
n∑
i=0

∣∣iaiξi−1
∣∣ ⩽ n∑

i=0

i|ai|(|α|+ 1)i−1 .

Define

M :=
n∑
i=0

i|ai|(|α|+ 1)i−1 .

Note that it only depends on α. Then we have just seen that

|P ′(ξ)| ⩽M .

Thus, if
∣∣∣α− p

q

∣∣∣ < 1 then ∣∣∣∣α− p

q

∣∣∣∣ > 1

(M + 1)qn
.

If
∣∣∣α− p

q

∣∣∣ ⩾ 1, then obviously
∣∣∣α− p

q

∣∣∣ > 1
2qn

. If c = max(M + 1, 2) then

it satisfies the condition
∣∣∣α − p

q

∣∣∣ > 1
cqn

for all rationals. This proves the

Theorem.

Corollary 1.3.9. Let α ∈ R \ Q. Assume there is β > 0 and an infinite

sequence of distinct rationals pn/qn satisfying
∣∣∣α − pn

qn

∣∣∣ < β
qωn
n

and ωn → ∞.

Then α is transcendental.

Proof. For any β > 0, there are only finitely many numbers with q = 1 and∣∣∣α− p
q

∣∣∣ < β. Thus, we can discard those pn
qn

for which qn = 1, there are only
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finitely many such. From now on we assume qn ⩾ 2. If α were algebraic with
degree m, by the previous theorem we can find a bound c(α) such that

1

c(α)qmn
<

∣∣∣∣α− pn
qn

∣∣∣∣ ∀n

By the assumption on α we have

1

c(α)qmn
<

∣∣∣∣α− pn
qn

∣∣∣∣ < β

qωn
n

∀n

Thus, qωn−m
n < β.c(α). But as ωn → ∞, qωn−m

n → ∞. We reach a contradic-
tion, and hence α is not algebraic.

Corollary 1.3.10. Consider the real number

α =
∑
i⩾0

1

10i!
.

This is transcendental over Q.

Proof. Define
pn
qn

:=
n∑
i=0

1

10i!
=

pn
10n!

Then ∣∣∣∣α− pn
qn

∣∣∣∣ = ∑
i⩾n+1

1

10i!

⩽
1

10(n+1)!

∑
i⩾n+1

1

10i!−(n+1)!

<
2

10(n+1)!

To apply the previous corollary, it suffices to show that α /∈ Q. To the
contrary, let us assume that α = p/q. Clearly, α ̸= pn/qn (since α > pn/qn)
and so pqn − qpn ̸= 0. Then we have

1

qqn
⩽

∣∣∣∣pqn − pnq

qqn

∣∣∣∣ = ∣∣∣∣α− pn
qn

∣∣∣∣ < 2

10(n+1)!
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This shows that for all n we have

1

q10n!
<

2

10(n+1)!
,

that is, 10(n+1)! < 2q10n!. This is of course not possible when n is sufficiently
large. This proves that α /∈ Q and now we apply the previous corollary.

Remark 1.3.11. Using the same idea as above, we may show that e is
irrational. Let

e =
∑
i⩾0

1

i!
.

Assume that e = p/q and define

pn
qn

=
n∑
i=0

1

i!
=
pn
n!
.

Then ∣∣∣∣e− pn
qn

∣∣∣∣ = ∑
i⩾n+1

1

i!

<
2

(n+ 1)!

Clearly e− pn/qn ̸= 0. Thus, we have

1

qqn
<

∣∣∣∣pq − pn
qn

∣∣∣∣ < 2

(n+ 1)!
.

This shows that
(n+ 1)! < 2qn!

which is clearly not possible when n is sufficiently large.

1.4 Eisenstein’s criterion

In this section we will see a criterion to check when a polynomial is irre-
ducible. Let

f(X) =
n∑
i=0

aiX
i ∈ Z[X]

be a nonzero polynomial.
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Definition 1.4.1. The content of f(X) is defined to be the integer

cont(f) := gcd(a0, . . . , an) ∈ Z

If cont(f) = 1, we say that f(X) is a primitive polynomial.

Proposition 1.4.2. Product of two nonzero primitive polynomials in Z[X]
is a primitive polynomial in Z[X].

Proof. Let

f(X) =
r∑
i=0

aiX
i and g(X) =

s∑
j=0

bjX
j

be two nonzero primitive polynomials in Z[X]. If f(X)g(X) is not primi-
tive in Z[X], there is a prime number p which divides cont(f(X)g(X)). In
particular, it divides all the coefficients of f(X)g(X). Going mod p we see
that

f(X)g(X) ≡ 0 mod p .

But this gives a contradiction since f(X)mod p ̸≡ 0 and f(X)mod p ̸≡ 0
and Fp[X] is an integral domain.

Corollary 1.4.3. Let f(X), g(X) ∈ Z[X] \ {0}. Then

cont(f(X)g(X)) = cont(f(X)) · cont(g(X)) .

Proof. Note that f(X) = cf · f0(x) and g(X) = cg · g0(x), where

cf = cont(f(X)), cg = cont(g(X))

and both f0(x) and g0(x) are primitive polynomials in Z[X]. Then

cont(f(X)g(X)) = cont(cfcg · f0(X)g0(X))

= cfcg · cont(f0(X)g0(X))

= cfcg

since f0(x)g0(x) is primitive by Proposition 1.4.2.

Lemma 1.4.4 (Gauss). Let f(X) ∈ Z[X]. Then f(X) is irreducible in Z[X]
if and only if f(X) is irreducible in Q[X].
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Proof. Let f(X) ∈ Z[X] be irreducible in Z[X]. If f(X) is reducible in Q[X],
then there are two non-constant polynomials g(X), h[X] ∈ Q[X] such that

f(X) = g(X)h[X] .

Then there are integers a, b, c, d with b ̸= 0 and d ̸= 0, and primitive polyno-
mials g0(x), h0(x) ∈ Z[X] such that

g(X) = ab−1g0(x) and h(X) = cd−1h0(x) .

Then f(X) = ab−1cd−1g0(x)h0(x) and so

bd · f(X) = ac · g0(x)h0(x) .

Taking content we have

bd cont(f) = cont(ac · g0(x)h0(x))
= ac · cont(g0(x)h0(x))
= ac .

by Corollary 1.4.3. Therefore,

bd f(X) = bd cont(f)g0(x)h0(x) ,

that is, f(X) = cont(f)g0(x)h0(x) which contradicts irreducibility of f(X)
in Z[X].

If f(X) is irreducible in Q[X] then it is obvious that it is irreducible in
Z[X]. This is left as an exercise to the reader.

Theorem 1.4.5 (Eisenstein’s irreducibility criterion). Let f(X) = anX
n +

an−1X
n−1 + · · ·+ a0 ∈ Z[X]. If there is a prime integer p > 0 such that

(i) p
∣∣ai, for all i = 0, 1, . . . , n− 1,

(ii) p ∤ an, and

(iii) p2 ∤ a0,

then f(X) is irreducible in Z[X] and so also in Q[X].
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Proof. It follows from Lemma 1.4.4 that if f(X) is irreducible in Z[X], it
is irreducible in Q[X]. Thus, it suffices to show that f(X) is irreducible in
Z[X].

Suppose on the contrary that f(X) is reducible in Z[X]. Then there are
two nonzero non-constant polynomials

g(X) =
s∑
i=0

biX
i, h[X] =

t∑
i=0

ciX
i ∈ Z[X] .

such that f(X) = g(X)h[X]. Note that n = r + s and an = bsct. Now we
go mod p. Note that p divides all the ai except for an. This shows that the
leading coefficient of g(X) and h(X) are not divisible by p. We get that

anX
n = g(X)h(X) mod p .

This forces that g(X) ≡ bsX
smod p and h(X) ≡ ctX

tmod p. This proves
that the constant coefficients b0 and c0 are divisible by p. But since a0 = b0c0
this shows that p2 divides a0, which is a contradiction. Therefore, f(X) must
be irreducible in Z[X].

Corollary 1.4.6. For any prime number p > 0, the cyclotomic polynomial
Φp(X) := 1 +X +X2 + · · ·+Xp−1 is irreducible in Q[X].

Proof. Note that (X − 1)Φp(X) = Xp − 1. Putting X + 1 in place of X, we
get

XΦp(X + 1) = (X + 1)p − 1 =

p∑
i=1

(
p

i

)
X i .

This shows that

Φp(X + 1) =

p∑
i=1

(
p

i

)
X i−1 .

Since p divides
(
p
i

)
, for all i = 1, . . . , p − 1; p ∤

(
p
p

)
and p2 ∤

(
p
1

)
, by Theorem

1.4.5 we conclude that Φp(X + 1) is irreducible in Q[X]. Hence Φp(X) is
irreducible in Q[X].

Example 1.4.7. Let f(X) = X3− 3X2− 3X − 1 ∈ Z[X]. Then f(X +1) =
(X+1)3−3(X+1)2−3(X+1)−1 = X3−6X2+6X−2. Then by Eisenstein’s
irreducibility criterion, f(X + 1) is irreducible in Q[X], and hence f(X) is
irreducible in Q[X].
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Remark 1.4.8. With the same line of arguments, Theorem 1.4.5 can be
proved in the following more general setup. Let A be a unique factorization

domain and f(X) =
n∑
i=0

aiX
i ∈ A[X] a nonzero non-unit polynomial. If there

is a prime element p ∈ A such that

(i) p | ai, for all i = 0, 1, . . . , n− 1,

(ii) p ∤ an and

(iii) p2 ∤ a0,

then f(X) is irreducible in Q(A)[X], where Q(A) is the field of fractions of
A. Take A = K[X] where K is a field, and formulate and prove the theorem
in this case.



Chapter 2

Algebraic Extensions

In this chapter we introduce and study the notion of finite extensions and
algebraic extensions. Algebraic extensions are almost like finite extensions.
Almost all statements about algebraic extensions are proved by first proving
those results for finite extensions.

2.1 Finite extensions

Let E ⊂ F be fields. Then clearly F is a vector space over E. The vector
space dimension of F as an E vector space is denoted by [F : E] and is
called the degree of the extension. Although the techniques in this chapter
may seem very modest, to understand their utility, the reader may try the
following exercise before and after reading this section.

Exercise: Compute the degree [Q( 3
√
2,
√
5) : Q].

Definition 2.1.1. We say that F is a finite extension of E if [F : E] is
finite.

We next explain a construction which gives several examples of finite exten-
sions. First we need the following Lemma.

Lemma 2.1.2. Let F be a field. Then the ring F [X] is a principal ideal
domain.

Proof. Let I ̸= 0 be a nonzero ideal. We need to show that there is a
polynomial f(X) such that I = (f(X)). Let f(X) be a nonzero polynomial

19
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in I of least degree. We claim that I = (f(X)). If not, then there is
h(X) ∈ I \ (f(X)). Dividing h(X) by f(X) we get

h(X) = b(X)f(X) + t(X)

where deg(t(X)) < deg(f(X)). As h(X), b(X)f(X) ∈ I, it follows that
t(X) ∈ I. But this contradicts the minimality of degree of f(X). Thus, it
follows that I = (f(X)). This completes the proof of the Lemma.

Proposition 2.1.3. Let F be a field and let p(X) ∈ F [X] be an irreducible
polynomial. Let (p(X)) denote the ideal generated by the polynomial p(X).
Then the ring E := F [X]/(p(X)) is a field. The vector space dimension of
E over F is deg(p(X)).

Proof. To show E is a field, it suffices to show that if α ∈ E and α ̸= 0,
then there is a β such that αβ = 1. Let α = f(X) mod p(X). Let I :=
(f(X), p(X)) denote the ideal in F [X] generated by f(X) and p(X). By
Lemma 2.1.2 it follows that I = (t(X)). Since t(X) divides p(X) it follows
that t(X) is either a constant, which we may assume to be 1, or it is p(X).
If it were p(X) then we get that p(X) divides f(X), which is not true. Thus,
t(X) = 1, that is, I = (1). Thus, we get that

1 = g(X)f(X) + k(X)p(X) .

Going modulo p(X) we see that β = g(X) mod p(X) is such that βα = 1.
This proves that E is a field.

Let d = deg(p(X)). We will show that the images of 1, X, . . . , Xd−1 in E
form a basis for E as a vector space over F .

Linear independence. First we claim that these are linearly independent.
If not, suppose there is a relation

a0 + a1X + . . .+ ad−1Xd−1 = 0 .

This implies that p(X) divides the polynomial a0 + a1X + . . . + ad−1X
d−1,

that is,
p(X)h(X) = a0 + a1X + . . .+ ad−1X

d−1 .

But this is impossible, as is seen by looking at the degree. This proves that
the images of 1, X, . . . , Xd−1 in E are linearly independent over F .
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Spanning set. Next we show that the images of 1, X, . . . , Xd−1 span E as
a vector space over F . Given any f(X) ∈ F [X], we have

f(X) ≡ r(X) mod p(X) deg(r(X)) < d .

This shows that the element f(X) is represented by r(X) which is in the

span of 1, X, . . . , X
d−1

. This completes the proof of the Proposition.

As a corollary of the above proposition, corresponding to an irreducible
polynomial,we may construct a finite extension.

Next let us consider the situation when we are given an extension of fields
E ⊂ K and we want to construct subfields of K which are finite over E. This
is closely related to elements in K which are algebraic over E. The reader
may recall the definition of E(α) from section 1.2. Similar to the notation in
section 1.2, we will use the following notation. Suppose E ⊂ K and αi, i ∈ I
is a collection of elements, then E[αi]i∈I ⊂ K is by definition the smallest
subring of K that contains E and all the αi. In section 1.2 this is the image
of the ring homomorphism (1.2.2).

Proposition 2.1.4. Let E ⊂ K be an extension of fields. Let α ∈ K be
algebraic over E and let f(X) ∈ E[X] be a polynomial of least degree such
that f(α) = 0. Then

(i) f(X) is irreducible,

(ii) the subring E[α] is isomorphic to E[X]/(f(X)),

(iii) there is an equality E[α] = E(α).

Proof. (i) Let us assume that f(X) is not irreducible. Then there are poly-
nomials f1(X) and f2(X) such that f(X) = f1(X)f2(X) and deg(fi(X)) <
deg(f(X)). Evaluating at α we see that one of the fi(α) has to be zero. This
contradicts the assumption that f was of least degree such that f(α) = 0.

(ii) and (iii) There is a unique homomorphism from Φ : E[X] → K which is
the identity on E and sends X to α. We claim that the kernel of this homo-
morphism is (f(X)), the ideal generated by f(X). Assume that h(X) 7→ 0.
Then we can write

h(X) = g(X)f(X) + r(X) deg(r(X)) < deg(f(X)) .
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Evaluating at α we see that r(α) = 0, which forces that r(X) = 0. This
shows that h(X) ∈ (f(X)). From this we conclude that Φ induces an in-
clusion Φ : E[X]/(f(X)) → K. Thus, Φ is an isomorphism onto its image,
which is clearly E[α]. This proves (ii).

(iii) Since E[α] is isomorphic to E[X]/(f(X)), it follows that it is a field.
Recall that E(α) is obtained by taking all elements in K of the type a/b,
where a, b ∈ E[α] and b ̸= 0. Thus, clearly, E[α] ⊂ E(α). On the other hand
since E(α) is the smallest subfield of K containing E and α, and E[α] is also
a field that has this property, it follows that E(α) ⊂ E[α]. This proves that
E[α] = E(α).

Remark 2.1.5. In the above we have proved that E[α] = E(α). In particu-
lar, this means that given a polynomial g(X) such that g(α) ̸= 0 there is an
inverse 1/g(α) in E[α]. This inverse can be found as follows. Since g(α) ̸= 0
it follows that f(X) does not divide g(X) and so they are coprime, since
f(X) is irreducible. Thus, there are polynomials h(X) and q(X) such that

h(X)g(X) + q(X)f(X) = 1 .

Evaluating both sides at α we see that

h(α) =
1

g(α)
.

We emphasize that this means that every element of E(α) can be obtained
by evaluating a polynomial in E[X], of degree < deg(f(X)), at α.

Corollary 2.1.6. Let E ⊂ K be extension. Let α ∈ K be algebraic over E
with irreducible polynomial f(X). Then the extension E(α) is finite over E
of degree equal to deg(f(X)).

Proof. Since E(α) ∼= E[X]/(f(X)) and E[X]/(f(X)) is finite dimensional
over E, it follows that E(α) is finite dimensional. Now use Proposition 2.1.3
and Proposition 2.1.4.

Corollary 2.1.7. Let E ⊂ K be fields and let α1, α2, . . . , αr ∈ K be elements
which are algebraic over E. Then

E[α1, α2, . . . , αr] = E(α1, α2, . . . , αr) .
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Proof. Recall that from the definition of E(α1, α2, . . . , αr) we have that

E[α1, α2, . . . , αr] ⊂ E(α1, α2, . . . , αr) .

Thus, to prove the assertion, we will first show that E[α1, α2, . . . , αr] is a
field. Then using the fact that E(α1, α2, . . . , αr) is the smallest subfield
of K which contains E and αi, it will follow that both are equal. Define
Ei = E[α1, . . . , αi] and E0 = E. Applying Proposition 2.1.4 to E0 and α1 we
see that E1 = E[α1] = E(α1) is a field. The element α2 is algebraic over E1

and so similarly we get that E2 = E1[α2] = E1(α) is a field. Proceeding in
this way we see that E[α1][α2] . . . [αr] is a field. But

E[α1][α2] . . . [αr] = E[α1, α2, . . . , αr]

and so the assertion is proved.

Lemma 2.1.8. Let E ⊂ L ⊂ K be fields. Consider the three numbers
[K : E], [L : E], [K : L]. There is an equality

[K : E] = [K : L][L : E] .

Proof. Assume that both [K : L] =: n and [L : E] =: m are finite. This
means that we can find k1, k2, . . . , kn ∈ K such that these form a basis for K
as a vector space over L. Similarly, we can find l1, l2, . . . , lm ∈ L such that
these form a basis for L as a vector space over E. Consider the set {kilj}.
We claim that these form a basis for K over E. First let us check that these
span K as a vector space over E. Every element of K can be written as

k =
n∑
i=1

αiki, αi ∈ L .

Each αi can be written as

αi =
m∑
j=1

βijlj, βij ∈ E .

Thus, we get

k =
n∑
i=1

m∑
j=1

βijljki, βij ∈ E .
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This shows that the set {kilj} spans K as a vector space over E.

Next let us prove that these are linearly independent over E. If not, then
there is a relation

0 =
n∑
i=1

m∑
j=1

αijljki, αij ∈ E .

Since the ki are linearly independent over L, this shows that for each i we
have

0 =
∑
j

αijlj .

Since the lj are linearly independent over E, this shows that the αij are 0.
This proves that {kilj} is a basis for K over E. Thus, we get that if both
[K : L] and [L : E] are finite then

[K : E] = [K : L][L : E] .

Now consider the situation when one of [K : L] or [L : E] is infinite. If [L : E]
is infinite then it is clear that [K : E] is also infinite since E ⊂ L ⊂ K (the
vector space K has an infinite dimensional subspace). Now consider the case
[K : L] infinite. Choose an infinite basis for K over L. It is clear that these
basis elements are linearly independent over E. Thus, the E span of these
elements is an E-subspace of K which is infinite dimensional. This shows
that [K : E] is infinite.

Thus, the equality [K : E] = [K : L][L : E] holds in all cases.

Corollary 2.1.9. Let E ⊂ K be fields and let α1, . . . , αn ∈ K be algebraic
over E. Then E(α1, . . . , αn) is a finite extension of E.

Proof. We saw before that E[α1, . . . , αn] = E(α1, . . . , αn). Define E0 = E
and let Ei = E[α1, . . . , αi]. Then we have

[En : E] =
n∏
i=1

[Ei : Ei−1] =
n∏
i=1

[Ei−1[αi] : Ei−1] .

As Ei is a field containing E and αi+1 is algebraic over E, it follows that
αi+1 is algebraic over Ei. The degree of extension [Ei[αi+1] : Ei] is the degree
of the irreducible polynomial of αi+1 over Ei. Similarly, for the extension



2.1. FINITE EXTENSIONS 25

[E[αi+1] : E]. Thus, we clearly have [Ei[αi+1] : Ei] ⩽ [E[αi+1] : E]. This
shows that

[En : E] ⩽
n∏
i=1

[E[αi] : E] <∞ .

This completes the proof of the Corollary.

Let us now try to answer the question that was raised at the beginning
of this section. First we note that Q( 3

√
2,
√
5) = Q[ 3

√
2,
√
5]. Next note that

[Q(
3
√
2,
√
5) : Q] = [Q[

3
√
2,
√
5] : Q[

3
√
2]] · [Q[

3
√
2] : Q] .

To compute [Q[ 3
√
2] : Q] we note that 3

√
2 satisfies the equation X3 − 2 = 0.

This polynomial is irreducible, since if it factors, it will have a factor of degree
1, which implies that there is a rational number whose cube is 2, which is
not possible. Thus, Q[ 3

√
2] ∼= Q[X]/(X3 − 2) and so [Q[ 3

√
2] : Q] = 3.

To compute [Q[ 3
√
2,
√
5] : Q[ 3

√
2]] we need to find the irreducible polyno-

mial of
√
5 over Q[ 3

√
2]. The element

√
5 satisfies the equation X2 − 5 = 0.

If this polynomial is reducible over Q[ 3
√
2], then it has linear factors, that

is, a root in Q[ 3
√
2]. But we can check by hand (a clumsy way to solve this

problem) that the equation

(a0 + a1
3
√
2 + a2

3
√
4)2 = 5

has no solutions for ai ∈ Q.

Alternatively, (more cleverly) we can first check that [Q[
√
5] : Q] = 2.

Now if X2 − 5 = 0 has a root in Q[ 3
√
2] then this would mean that there is a

nonzero homomorphism Q[
√
5] ∼= Q[X]/(X2 − 5) → Q[ 3

√
2]. That is, we will

get an inclusion Q[
√
5] ⊂ Q[ 3

√
2]. Now this would imply that

[Q[
3
√
2] : Q] = [Q[

3
√
2] : Q[

√
5]] · [Q[

√
5] : Q] .

The LHS is 3 and the RHS is even, a contradiction. This means that X2−5 is
irreducible over Q[ 3

√
2] and so Q[ 3

√
2,
√
5] ∼= Q[ 3

√
2][X]/(X2− 5). This proves

that [Q[ 3
√
2,
√
5] : Q[ 3

√
2]] = 2. Thus,

[Q(
3
√
2,
√
5) : Q] = 6 .

Before we end this section, let us consider an abstract example we took
earlier, F ⊂ F (X), and try to see if F (X) has any elements which are
algebraic over F . The following lemma proves that the only elements in
F (X) which are algebraic over F are the ones in F .
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Lemma 2.1.10. If α ∈ F (X) is algebraic over F , then α ∈ F .

Proof. Suppose α = f(X)
g(X)

is algebraic over F . Let P (T ) be the irreducible

polynomial of α over F . We may assume that f(X) and g(X) have no
common factors. Then we get P (α) = 0, that is,

an
f(X)n

g(X)n
+ an−1

f(X)n−1

g(X)n−1
+ · · ·+ a0 = 0 .

Multiplying with g(X)n this becomes

anf(X)n + an−1f(X)n−1g(X) + · · ·+ a0g(X)n = 0 .

If f(X) were a non-constant polynomial, then it will have an irreducible
factor, call it p(X). It follows that p(X) will divide g(X), which is a contra-
diction since we assumed that they have no common factor. If follows that
f(X) is constant. Similarly, we see that g(X) is also a constant.

Remark 2.1.11. This lemma shows that the extension F (X) is far from
being algebraic over F , in fact, it contains no algebraic elements other than
those already in F . On the other hand, the extension C of Q contains ele-
ments which are algebraic over Q (for example,

√
2) and also elements which

are transcendental over Q (as was seen in Proposition 1.3.3 and Corollary
1.3.10)

2.2 Algebraic extensions

Definition 2.2.1. Let F ⊂ K be an extension of fields. We say that K is
algebraic over F if every element of K is algebraic over F .

Proposition 2.2.2. Let E be a field extension of F . Suppose E is finite
over F , then E is an algebraic extension.

Proof. We need to show that every element of E is algebraic over F . Let
α ∈ E. Consider the F -vector subspace spanned by

1, α, α2, . . .



2.2. ALGEBRAIC EXTENSIONS 27

Since E is finite dimensional, it follows that this subspace is finite dimen-
sional. Thus, there is l such that every element of this subspace is a span of
1, α, α2, . . . , αl. We can write αl+1 as an F -linear combination of these, say

αl+1 = a0 + a1α + . . . alα
l .

This shows that α is a root of the polynomial

X l+1 − alX
l − . . .− a0 ∈ F [X] .

Thus, α is algebraic over F . This proves that E is algebraic over F .

Proposition 2.2.3. Let E ⊂ K be an extension of fields. Let α and β ̸= 0 be
elements of K which are algebraic over E. Then α+β, αβ, α/β are algebraic
over E.

Proof. By Corollary 2.1.9 the extension E(α, β) is a finite extension of E.
The proposition now follows using Proposition 2.2.2.

Corollary 2.2.4. Let E ⊂ K be field extensions. Let

F := {α ∈ K | α is algebraic over E } .
Then F is a field.

Proposition 2.2.5. If E ⊂ L ⊂ K, L is algebraic over E and K is algebraic
over L, then K is algebraic over E.

Proof. Let β ∈ K. Since K is algebraic over L, it follows that β satisfies an
equation p(X) ∈ L[X]. Let

p(X) = αnX
n + αn−1X

n−1 + . . .+ α0, αi ∈ L .

Since L is algebraic over E, it follows that each of the αi is algebraic over
E. Define E0 = E and define Ei+1 = Ei[αi−1]. Since αi is algebraic over E,
it is clearly algebraic over Ei. It follows, using Proposition 2.1.4 that each
[Ei+1 : Ei] <∞. Using Lemma 2.1.8 we see

[En+1 : E0] =
n∏
i=0

[Ei+1 : Ei] <∞ .

The polynomial p(X) ∈ En+1[X] and this means that [En+1[β] : En+1] <∞.
Thus, we get that

[En+1[β] : E0] = [En+1[β] : En+1][En+1 : E0] <∞ .

This shows that En+1[β] is algebraic over E0, in particular, β is algebraic
over E0.
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2.3 Algebraically closed fields

Definition 2.3.1. A field K is called algebraically closed if every nonconstant
polynomial f(X) ∈ K[X] has a root in K.

We will not prove the following important theorem which we will use
later.

Theorem 2.3.2. Let F be a field. There exists an algebraically closed field
K such that F ⊂ K.

Definition 2.3.3. An extension E ⊂ Ē such that Ē is algebraically closed
and algebraic over E is called an algebraic closure of E.

Theorem 2.3.4. Let E be a field. Then there is a field Ē which is alge-
braically closed and such that each element of Ē is algebraic over E.

Proof. We apply Theorem 2.3.2. Let K be a field such that E ⊂ K and K
is algebraically closed. Let

Ē := {α ∈ K | α is algebraic over E } .

Using Corollary 2.2.4 we see that Ē is a field and it is algebraic over E. It
remains to show that it is algebraically closed.

Let p(X) ∈ Ē[X] be a polynomial. Write

p(X) = αnX
n + αn−1X

n−1 + . . .+ α0, αi ∈ Ē .

For i ⩾ 0 let Fi be the extension E[α0, . . . , αi]. Let F−1 = E. Then

[Fn : E] = [Fn : Fn−1][Fn−1 : Fn−2] . . . [F1 : F0][F0 : F−1] .

Since each αi is algebraic over E, it follows that αi is algebraic over Fi−1. This
shows that the RHS is a finite number. Thus, it follows that Fn is a finite
extension of E. Since K is algebraically closed, let β be a root of p(X) in K.
The polynomial p(X) ∈ Fn[X]. Let f(X) be the unique monic polynomial
of least degree in Fn[X] such that f(β) = 0. Then Fn[β] ∼= Fn[X]/(f(X))
and so Fn[β] is a finite extension of Fn. This shows that Fn[β] is a finite
extension of E. Thus, β is algebraic over E, that is, β ∈ Ē. This proves that
Ē is algebraically closed.



Chapter 3

Embeddings into algebraically
closed fields

3.1 Existence of embeddings

Fix an algebraically closed field K. Assume that we are given a homomor-
phism of fields ϕ : E → K. Let E ⊂ L be an algebraic extension. Consider
the following diagram.

(3.1.1) L
ψ ___ K

E
ϕ

K

Definition 3.1.2. The set of field homomorphisms ψ : L → K which make
the above diagram commute is denoted by Homϕ(L,K).

Proposition 3.1.3. Fix an algebraically closed field K. Suppose that we are
given a homomorphism of fields ϕ : E → K. Let E ⊂ L be an algebraic ex-
tension. Assume that there is α ∈ L such that L = E[α]. Then Homϕ(L,K)
is non-empty.

Proof. Let p(X) ∈ E[X] be the monic irreducible polynomial of α. Say

p(X) = Xn + an−1X
n−1 + . . .+ a0 .

29
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Then the kernel of the natural map E[X] → L, which is identity on E and
sends X 7→ α, is precisely (p(X)). Consider the polynomial

Xn + ϕ(an−1)X
n−1 + . . .+ ϕ(a0) ∈ K[X] .

Let β ∈ K be a root of this polynomial. Such a root exists since K is
algebraically closed. Consider the unique ring homomorphism

ψ̃ : E[X] → K

given by

ψ̃(
∑

biX
i) :=

∑
ϕ(bi)β

i .

Clearly, ψ̃(p(X)) = 0. Thus, there is a map ψ which makes the following
diagram commute

E

ϕ ""E
EE

EE
EE

EE
� � // E[X] // //

ψ̃
��

L

ψ}}z
z
z
z
z

K

Clearly the restriction of ψ to E is ϕ.

Proposition 3.1.4. Fix an algebraically closed field K. Assume that we are
given a homomorphism of fields ϕ : E → K. Let E ⊂ L be an algebraic
extension. Assume that L is a finite extension of E. Then Homϕ(L,K) is
non-empty.

Proof. The idea is to use the preceding proposition repeatedly. We can
find elements α1, α2, . . . , αr such that L = E[α1, . . . , αr]. Define Ei =
E[α1, . . . , αi]. Then Ei+1 = Ei[αi+1]. Applying the preceding proposition
to E1 = E[α1], we get that Homϕ(E1, K) ̸= ∅. Let ϕ1 ∈ Homϕ(E1, K).
Again, applying the preceding proposition to ϕ1 we get Homϕ1(E2, K) ̸= ∅.
Proceeding in this fashion we get ϕr ∈ Homϕr−1(Er, K). Clearly, the restric-
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tion of ϕr to E is ϕ. In terms of a diagram we have

L = Er
ϕr ___ K

E2
ϕ2 ____ K

E1
ϕ1 ____ K

E
ϕ

K

We have found ϕi which make each of the above squares commute.

Proposition 3.1.5. Fix an algebraically closed field K. Assume that we are
given a homomorphism of fields ϕ : E → K. Let E ⊂ L be an algebraic
extension. Then Homϕ(L,K) is non-empty.

Proof. The main point in this case is that we can keep extending as in the
preceding proposition and finally we will have defined a map on all of L. The
following formal proof is a standard application of Zorn’s Lemma.

1. Consider pairs (A, ϕA) where E ⊂ A ⊂ L and ϕA : A→ K extends ϕ.

2. Put a partial order on such pairs as follows. (A, ϕA) ⩽ (T, ϕT ) if A ⊂ T
and ϕT |A = ϕA. Let P denote this collection of pairs along with this
partial order.

3. Let I be a totally ordered set and assume we are given a chain in P
indexed by i. That is, we are given a collection (Ai, ϕAi

) for i ∈ I
such that if i < j then (Ai, ϕAi

) ⩽ (Aj, ϕAj
). This chain has an upper

bound, namely, (∪iAi, ϕ). Here ϕ is defined as follows. If a ∈ Ai then
define ϕ(a) = ϕAi

(a). If a was also in Aj, then we need to check that
ϕAi

(a) = ϕAj
(a). We have either i < j or j < i. Assume that i < j.

Then by the definition of the partial order, Ai ⊂ Aj and ϕAj
|Ai

= ϕAi
.

Thus, in this case both agree. The case j < i is similar. Thus, we have
proved that every chain in P has an upper bound in P .
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4. By Zorn’s Lemma it follows that the collection P has a maximal el-
ement, that is, an element (A,ψ) such that if (A,ψ) ⩽ (A′, ψ′) then
A = A′ and ψ = ψ′. We claim that A = L. If not, then let α ∈ L \ A.
Then applying the preceding proposition we can extend ψ to an em-
bedding of A[α], which contradicts the maximality of the pair (A,ψ).

Recall that we saw that given a field E, it has an algebraic closure. The
way we saw this was to fix an inclusion E ⊂ K into any algebraically closed
field, and then taking Ē to be the set of elements of K which are algebraic
over E. Now from this construction it may seem that given a field E, it may
have two algebraic closures which are not isomorphic. We now prove that
this is not the case.

Corollary 3.1.6. Let Ē1 and Ē2 be two algebraic closures of E. Then they
are isomorphic.

Proof. Using Proposition 3.1.5 we can find a map ψ : Ē1 → Ē2 such that

Ē1
ψ ___ Ē2

E Ē2

The map ψ being a homomorphism of fields is an inclusion. It suffices to
show that it is a surjection.

We first claim that ψ(Ē1) is algebraically closed. Choose a polynomial
p(X) =

∑n
i=0 ψ(ai)X

i ∈ ψ(Ē1)[X]. Let α ∈ Ē1 be a root of
∑n

i=0 aiX
i. This

means that ψ(α) is a root of p(X). This shows that ψ(Ē1) is algebraically
closed.

Now we claim that ψ is a surjection. Since Ē2 is algebraic over E, it is
algebraic over ψ(Ē1). But as ψ(Ē1) is algebraically closed, this forces that
the irreducible polynomial of each β ∈ Ē2 over ψ(Ē1) is of degree 1. That is,
the irreducible polynomial is X − β. This shows β ∈ ψ(Ē1).

Let E,K be fields and suppose we are given a field homomorphism
ϕ : E → K. Assume K is algebraically closed. Let p(X) ∈ E[X] be a
monic polynomial. Then we get a polynomial in K[X] by applying ϕ to the
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coefficients of p(X). In other words, we can construct a ring homomorphism
ϕ̃ : E[X] → K[X] which is ϕ on the coefficients E and mapsX toX. It is eas-
ily checked that ϕ̃ is a ring homomorphism. Since K is algebraically closed,
the polynomial ϕ̃(p(X)) factors into linear polynomials. Suppose we have
another homomorphism into an algebraically closed field θ : E → K ′, then
similarly we get θ̃(p(X)) and θ̃(p(X)) factors into linear polynomials. Apri-
ori, it is not clear if these factorizations have anything to do with each other.
For instance, if p(X) is of degree 6, can it happen that ϕ̃(p(X)) = (X −α1)

6

and θ̃(p(X)) = (X−β1)2(X−β2)4? As a consequence of the above Corollary
let us see the following application.

Lemma 3.1.7. If ϕ̃(p(X)) has distinct roots α1, . . . , αn with multiplicity
a1, . . . , an then θ̃(p(X)) has distinct roots β1, . . . , βn with multiplicity a1, . . . , an.

Proof. Let Ē1 ⊂ K denote the algebraic closure of E inside K and let Ē2 ⊂
K ′ denote the algebraic closure of E inside K ′. Note that the αi ∈ Ē1. Since
ϕ̃(p(X)) =

∏n
i=1(X−αi)ai , note that ϕ̃(p(X)) ∈ Ē1[X] since it is a product of

elements of Ē1[X]. Let ψ : Ē1 → Ē2 be an isomorphism such that ψ ◦ ϕ = θ.
Such an isomorphism exists by Corollary 3.1.6. We get a ring isomorphism
ψ̃ : Ē1[X] → Ē2[X] such that ψ̃ ◦ ϕ̃ = θ̃. Thus, it follows that

θ̃(p(X)) = ψ̃ ◦ ϕ̃(p(X))

= ψ̃(
n∏
i=1

(X − αi)
ai)

=
n∏
i=1

(X − ψ(αi))
ai

Letting βi := ψ(αi) the Lemma is proved.

3.2 Finiteness of embeddings

The next theorem is the main result of this chapter. We work with the
same setup as above. Let E ⊂ F ⊂ L be algebraic extensions of E. Fix an
embedding ϕ : E → K. Then we have a restriction map

(3.2.1) Rest : Homϕ(L,K) → Homϕ(F,K)
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given by
ψ 7→ ψ|F .

Fix an element ψ0 ∈ Homϕ(F,K). It follows from Proposition 3.1.5 that the
map Rest is surjective.

Proposition 3.2.2. Fix an algebraically closed field K. Assume that we are
given a homomorphism of fields ϕ : E → K. Let E ⊂ L be a finite extension
of E. Then #Homϕ(L,K) is finite.

Proof. Let us first assume that L = E[α] for some α ∈ L. Let p(X) ∈ E[X]
denote the monic irreducible polynomial of α. Let

p(X) = Xn + an−1X
n−1 + . . .+ a0 .

An element of Homϕ(L,K) corresponds to a ring homomorphism E[X] → K,
which is ϕ on E and whose kernel is precisely (p(X)). If such a homomor-
phism sends X 7→ β then it is forced that β is a root of the polynomial

Xn + ψ0(an−1)X
n−1 + . . .+ ψ0(a0) .

Thus, it follows that #Homϕ(L,K) is finite as the number of roots of this
polynomial is finite.

The general case can be proved by induction on the degree [L : E]. The
base case for induction is n = 1. In this case L = E and so

#Homϕ(L,K) = 1 .

Assume we have proved that whenever [L : E] < n then #Homϕ(L,K) is
finite. Let [L : E] = n. Let α ∈ L \ E and assume we have

E ⫋ F = E[α] ⫋ L

We have the restriction map

Homϕ(L,K) → Homϕ(F,K) .

Since [F : E] < n the set Homϕ(F,K) is finite. Let ψ0 ∈ Homϕ(F,K). Then
the fiber Rest−1(ψ0) is precisely Homψ0(L,K). Since [L : F ] < n the set
Homψ0(L,K) is finite. Now if we have a map of sets X → Y such that Y is
finite and the cardinality of each fiber is finite, then clearly the cardinality
of X is finite. Thus, it follows that the set Homϕ(L,K) is finite.
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Theorem 3.2.3. Fix an algebraically closed field K. Assume that we are
given a homomorphism of fields ϕ : E → K. Let E ⊂ F ⊂ L be finite
extensions of E. Let ψ0 ∈ Homϕ(F,K). Then the fibers of the map Rest,
see equation (3.2.1), are finite and have the same cardinality, each equal to
#Homψ0(L,K).

Proof. Let ψ0, ψ1 ∈ Homϕ(F,K). We will construct a map

Rest−1(ψ0) → Rest−1(ψ1) .

Let us denote by F1 the algebraic closure of ϕ(E) inside K, that is,

F1 := {a ∈ K | a is algebraic over ϕ(E)}

Since K is algebraically closed, it follows from Theorem 2.3.4 that F1 is
algebraically closed. Let β ∈ L and let p(X) ∈ E[X] be the irreducible
polynomial of β. If p(X) = Xn + an−1X

n−1 + . . .+ an, then

0 = ϕ(p(β)) = ϕ(β)n + ϕ(an−1)ϕ(β)
n−1 + . . .+ ϕ(an) .

This proves that ϕ(β) is algebraic over ϕ(E), that is, ϕ(β) ∈ F1. Thus,
the image of L under any extension of ϕ will actually land inside F1. That
is, the natural map (given a homomorphism to F1, we obviously have a
homomorphism to K)

Homϕ(L, F1)
∼−→ Homϕ(L,K) ,

is actually a bijection.

Consider the diagram

F1
θ //_______ F1

ψ0(F )
ψ1◦ψ−1

0 // F1

Since F1 is an algebraic extension of ψ0(F ), it follows from Proposition
3.1.5 that there is a θ which makes the above diagram commute. Since
η ∈ Rest−1(ψ0), this means that η ∈ Homϕ(L,K) and the restriction of η to
F is ψ0. Consider the diagram

L
η // F1

θ //____ F1
� � // K

F
ψ0 // ψ0(F )

ψ1◦ψ−1
0 // K
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From the above diagram it is clear that θ ◦ η restricted to F is ψ1. Thus, the
required map Rest−1(ψ0) → Rest−1(ψ1) is given by

η 7→ θ ◦ η .

We claim that this map is an inclusion. This is because θ being a homo-
morphism of fields is an inclusion and so θ(η1(x)) = θ(η2(x)) implies that
η1(x) = η2(x). Interchanging the roles of ψ0 and ψ1 we get an inclusion the
other way as well. This proves that

#Rest−1(ψ0) ⩽ #Rest−1(ψ1) ⩽ #Rest−1(ψ0) .

Thus, if we know that #Rest−1(ψ0) is finite, then it will follow that both
have the same cardinality. But the set Rest−1(ψ0) = Homψ0(L,K) and this
is finite because of the previous proposition.

Corollary 3.2.4. Let notation be as in Theorem 3.2.3. Then

#Homϕ(L,K) = #Homψ0(L,K) ·#Homϕ(F,K) .

Let us show that this cardinality is independent of the algebraically closed
field K and the map ϕ which is being chosen.

Lemma 3.2.5. With notation as in Theorem 3.2.3, the cardinality of the set
Homϕ(L,K) is independent of the algebraically closed field K and the map
ϕ.

Proof. Let ϕ : E → K and F1 be as in the proof of Theorem 3.2.3. Now letK ′

be another algebraically closed field and let ψ : E → K ′ be a homomorphism
of fields. Let

F2 := {a ∈ K ′ | a is algebraic over ψ(E)}
As above, it follows that F2 is algebraically closed and that

Homϕ(L, F2)
∼−→ Homϕ(L,K

′) .

Thus, it suffices to show that the cardinality of the two sets Homϕ(L, F1) and
Homψ(L, F2) are the same. Consider the diagram

F2
θ ____ F1

ψ(E)
ϕ◦ψ−1

ϕ(E)
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By Theorem 3.1.5 there is a map θ which makes the diagram commute. Now
using the same proof as in Corollary 3.1.6 it follows that θ is an isomorphism.
Consider the diagram

L
η // F2

θ //_______ F1

E
ψ // ψ(E)

ϕ◦ψ−1
// ϕ(E)

This diagram shows that the map which sends η 7→ θ ◦ η defines a map of
sets

Homψ(L, F2) → Homϕ(L, F1) .

Applying the same argument we get the map induced by θ−1 from

Homϕ(L, F1) → Homψ(L, F2) .

Clearly these two maps are inverses of each other, as their composition is the
identity. This proves that these sets have the same cardinality.

Definition 3.2.6. Let L be a finite extension of E. Let K be an algebraically
closed field and let there be a map ϕ : E → K. Denote the cardinality of the
set Homϕ(L,K) by [L : E]s. We also call this the separable degree of L over
E.

With this definition we may restate Corollary 3.2.4 as

Proposition 3.2.7. Let E ⊂ F ⊂ L be finite extensions. Then

[L : E]s = [L : F ]s[F : E]s .

3.3 Action of Aut(Ē/E) on embeddings

Let us fix an embedding i : E ⊂ Ē. Let Aut(Ē/E) denote the set of field
isomorphisms σ : Ē → Ē make the following diagram commute

E

i
��

E

i
��

Ē
σ // Ē
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In other words, σ is the identity on E. Let E ⊂ K ⊂ Ē be a subfield.
In this section we want to show that the group Aut(Ē/E) acts on the set
Homi(K, Ē) in a natural way and that this action is transitive. The action
is defined as follows

Aut(Ē/E)× Homi(K, Ē) → Homi(K, Ē) (σ, τ) 7→ σ ◦ τ .

In terms of a diagram, we may express this as

K
τ // Ē

σ // Ē

E
?�

OO

E
?�
i

OO

E
?�
i

OO

Let τ1, τ2 ∈ Homi(K, Ē). To show this action is transitive, we need to find
σ ∈ Aut(Ē/E) such that σ◦τ1 = τ2. Consider the following diagram (without
the arrow σ)

Ē σ //________ Ē

K
τ1 // τ1(K)

OO

τ2◦τ−1
1 // τ2(K)

OO

E
?�

OO

E
?�

OO

E
?�

OO

Applying Proposition 3.1.5 we can find an arrow σ which makes the above
diagram commute. Then it is clear that σ ◦ τ1 = τ2.



Chapter 4

Separable Extensions

4.1 Criterion for separability using derivations

Define an E-linear map
DE : E[X] → E[X]

as follows. Define DE(1) = 0, define DE(X
n) = nXn−1 for n > 0, and extend

this map E-linearly. One easily checks that

1. DE(X
nXm) = XnDE(X

m) + XmDE(X
n). Using this and linearity it

follows that

DE(f(X)g(X)) = f(X)DE(g(X))+g(X)DE(f(X)) ∀ f, g ∈ E[X] .

2. If E ⊂ F , then DF |E[X] = DE.

Lemma 4.1.1. Let p(X) ∈ E[X] be a non constant polynomial. If charac-
teristic of E is zero then DE(p(X)) ̸= 0. If characteristic of E is p > 0
then there is a polynomial p1(X) ∈ E[X] such that p(X) = p1(X

p) iff
DE(p(X)) = 0.

Proof. It is clear that if characteristic of E is zero then DE(p(X)) ̸= 0.

So let us assume that characteristic is p > 0. It is trivial to check that if
p(X) = p1(X

p) then DE(p(X)) = 0. So let us check the converse. Write

p(X) = Xn +

j∑
i=1

atiX
ti .

39
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In the above, each 0 ⩽ ti < n and each ati ̸= 0. Then

DE(p(X)) = nXn−1 +

j∑
i=1

tiatiX
ti−1 .

Since DE(p(X)) = 0 it follows that the characteristic p divides n and each
of the ti. Thus, it follows that Then p(X) = p1(X

p), where

p1(X) = Xn/p +

j∑
i=1

atiX
ti/p .

Proposition 4.1.2. Let p(X) ∈ E[X] denote a monic irreducible polynomial
(obviously of degree ⩾ 1). Let K be an algebraically closed field and assume
that E ⊂ K. Let α be a root of p(X) in K. Then α is a repeated root iff
DE(p(X)) = 0.

Proof. First let us assume that α is a repeated root of p(X). It suffices to
show that DE(p(X)) has α as a root. Since p(X) is the nonzero polynomial
of least degree which has α as a root, and since deg(DE(p(X))) < deg(p(X)),
it will follow that DE(p(X)) = 0. Since DE(p(X)) = DK(p(X)), it suffices to
show that DK(p(X)) has α as a root. Over K the polynomial p(X) factors
as

p(X) =
r∏
i=1

(X − αi)
ri =: (X − α1)

r1g(X) ,

where g(X) ∈ K[X] is defined by the above equation. Assume that α = α1,
then by assumption r1 > 1. Applying DK we get

DE(p(X)) = DK(p(X)) = DK

(
(X − α1)

r1g(X)
)

= r1(X − α1)
r1−1g(X) + (X − α1)

r1DK

(
g(X)

)
.

Since r1 > 1, it is clear that (X − α1) divides the RHS. This shows that
α = α1 is a root of DE(p(X)). This proves that DE(p(X)) = 0.

Conversely, let us assume that DE(p(X)) = 0. By Lemma 4.1.1 it follows
that there is a polynomial p1(X) ∈ E[X] such that p(X) = p1(X

p). Let

p1(X) = Xn + an−1X
n−1 + · · ·+ a0 .
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Let bi be elements in K such that bpi = ai. We can find such elements as we
have assumed K to be algebraically closed. Then

p(X) = p1(X
p) = (Xn + bn−1X

n−1 + · · ·+ b0)
p ∈ K[X] .

Then p(X) = p1(X)p. Thus, by looking at the roots of the RHS in K we
see that every root of p(X) is a repeated root. In particular, α is a repeated
root. This proves the proposition.

Definition 4.1.3. Let E ⊂ L be an algebraic extension. Let α ∈ L and
let p(X) denote the irreducible polynomial of α over E. Fix an algebraically
closed field K such that E ⊂ L ⊂ K. We say that α is separable over E is
α is not a repeated root of p(X).

Remark 4.1.4. In view of Proposition 4.1.2, the separability of α does not
depend on the choice of the field K, since α is separable iff DE(p(X)) = 0.

Definition 4.1.5. An algebraic extension L is said to be separable over E if
every element of L is separable over E.

Corollary 4.1.6. When characteristic is 0, all algebraic extensions are sep-
arable.

Proof. The polynomial DE(p(X)) can not be 0.

Corollary 4.1.7. Let p(x) ∈ E[X] be an irreducible polynomial which has a
repeated root in K. Then every root of p(X) in K is a repeated root.

Proof. Let α be a repeated root of p(X). Then DE(p(X)) = 0. From the
Proposition 4.1.2 it follows that every root of p(X) is a repeated root.

4.2 Degree of separability

Lemma 4.2.1. Let L = E[α] be a finite extension. Let p(X) denote the
monic irreducible polynomial of α over E. Then [L : E]s is equal to the
number of distinct roots of p(X).

Proof. Let us fix an algebraically closed field K and an inclusion E ⊂ K
Giving a homomorphism from L → K is the same as giving a homomor-
phism from E[X] → K which is identity on E and 0 on p(X). But such
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homomorphisms are equivalent to sending X to a root of p(X). Thus, the
number of such homomorphisms is precisely the number of distinct roots of
p(X).

Proposition 4.2.2. Let char k = 0. Let L be a finite extension of E. Then
[L : E]s = [L : E].

Proof. Let us fix an algebraically closed field K and an inclusion E ⊂ K.

First consider the case where L = E[α]. Let p(X) ∈ E[X] be the monic
irreducible polynomial of α. Since we are in char 0, it follows that all the
roots of p(X) are distinct.

The degree of the extension [L : E] = deg(p(X)). By Lemma 4.2.1, the
separable degree [L : E]s is equal to the number of distinct roots, that is,
deg(p(X)). This proves the assertion in the case where L = E[α].

The general case is proved by induction on [L : E]. The base case for
the induction is when [L : E] = 1, in which case L = E and there is noth-
ing to prove. Let us assume that the assertion has been proved whenever
[L : E] < n. Now let [L : E] = n and choose α ∈ L \ E. Assume that

E ⫋ F = E[α] ⫋ L .

Then we have
[L : E] = [L : F ][F : E]

and
[L : E]s = [L : F ]s[F : E]s .

By induction hypothesis, [L : F ]s = [L : F ] and [F : E]s = [F : E]. Thus,
[L : E]s = [L : E]. This completes the proof.

Proposition 4.2.3. Let char k = p > 0. Let L be a finite extension of E.
Then [L : E]s divides [L : E].

Proof. Let us fix an algebraically closed field K and an inclusion E ⊂ K.

First consider the case where L = E[α]. Let p(X) ∈ E[X] be the monic
irreducible polynomial of α. Choose the largest possible r ⩾ 0 such that we
can write p(X) = f(Xpr).
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The polynomial f(Y ) is clearly irreducible, or else, this will contradict
the irreducibility of p(X). The polynomial f(Y ) has no repeated roots. If
this is not the case, then we get, using Proposition 4.1.2 that DE(f(Y )) = 0,
from which we can conclude, using Lemma 4.1.1, that f(Y ) = g(Y p). But
this would mean that p(X) = g(Xpr+1

), contradicting the maximality of r.
This shows that f(Y ) has distinct roots. Denote these by β1, . . . , βl. Let
γi ∈ K be such that γp

r

i = βi. Then

f(Y ) = (Y − β1) · · · (Y − βl) .

This shows that

f(Xpr) = (Xpr − β1) · · · (Xpr − βl)

= (X − γ1)
pr · · · (X − γl)

pr .

Thus, this shows that deg(p(X)) = prl and the number of distinct roots of
p(X) is equal to l. The degree of the extension [L : E] = deg(p(X)) = prl.
By Lemma 4.2.1, the separable degree [L : E]s is equal to the number of dis-
tinct roots, that is, l. This proves the assertion in the case where L = E[α].

The general case is proved by induction on [L : E]. The base case for
the induction is when [L : E] = 1, in which case L = E and there is noth-
ing to prove. Let us assume that the assertion has been proved whenever
[L : E] < n. Now let [L : E] = n and choose α ∈ L \ E. Assume that

E ⫋ F = E[α] ⫋ L .

Then we have
[L : E] = [L : F ][F : E]

and
[L : E]s = [L : F ]s[F : E]s .

By induction hypothesis, [L : F ]s divides [L : F ] and [F : E]s divides [F : E].
Thus, [L : E]s divides [L : E]. This completes the proof.

Definition 4.2.4. Let char k > 0. Let L be a finite extension of E. Then
the ratio [L : E]i = [L : E]/[L : E]s is called the purely inseparable degree of
L over E.

Clearly, in view of the above results, we have

Proposition 4.2.5. Let E ⊂ F ⊂ L be finite extensions. Then

[L : E]i = [L : F ]i[F : E]i .
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4.3 Separable extensions and separable de-

gree

Lemma 4.3.1. Let E ⊂ F ⊂ L be finite extensions. Let α ∈ L be an element
which is separable over E. Then α is separable over F .

Proof. Let pE(X) denote the monic irreducible polynomial of α over E and
let pF (X) denote the monic irreducible polynomial over α over F . Clearly,
the polynomial pE(X) ∈ F [X] since it has coefficients in E, which is a subset
of F . Since pE(α) = 0, this shows that pF (X) divides pE(X). Since α is
separable over E, pE(X) has no repeated roots. Thus, pF (X) also has no
repeated roots. This shows that α is separable over F .

Theorem 4.3.2. Let L be a finite extension of E. Then L is separable over
E iff [L : E]s = [L : E] (equivalently, iff [L : E]i = 1).

Proof. First assume that L is separable over E. Let α ∈ L and let p(X)
denote the monic irreducible polynomial of α. Then [E[α] : E] = deg(p(X)),
and by Lemma 4.2.1, [E[α] : E]s is equal to the number of distinct roots of
p(X). Since α is separable over E, it follows that both these are the same,
that is, [E[α] : E]s = [E[α] : E]. For a separable extension E ⊂ L. We
will prove by induction on [L : E] that [L : E]s = [L : E]. The assertion
is trivially true for [L : E] = 1. Assume that the assertion is true when
[L : E] < n and let [L : E] < n. Choose an α ∈ L. If L = E[α] then we are
done. Otherwise we have

E ⫋ E[α] ⫋ L .

By the previous Lemma, L is separable over E[α]. By induction hypothesis
we have

[L : E[α]]s = [L : E[α]] .

Thus,

[L : E]s = [L : E[α]]s · [E[α] : E]s = [L : E[α]] · [E[α] : E] = [L : E] .

Now let us prove the converse. Assume that [L : E]s = [L : E]. This is same
as saying that [L : E]i = 1. Let α ∈ L. Then since [L : E[α]]i · [E[α] : E]i =
[L : E]i = 1, it follows that [E[α] : E]i = 1, that is, [E[α] : E]s = [E[α] : E].
Thus, if p(X) is the monic irreducible polynomial of α over E, then this
shows that the number of distinct roots is equal to the degree, that is, there
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are no repeated roots. Thus, α is separable. This proves that L is separable
over E.

Proposition 4.3.3 (Primitive elements). Let E be an infinite field and let
E ⊂ L be a finite and separable extension. Then there is α ∈ L such that
L = E[α].

Proof. It suffices to prove this when L = E[α, β]. Let n = [L : E]. Fix an
embedding E ⊂ Ē into an algebraic closure. Since L is separable over E, we
have [L : E] = [L : E]s = n. Thus, there are n distinct extensions of the
embedding to L. Denote these by ϕ1, ϕ2, . . . , ϕn. These are maps ϕi : L→ Ē.

Let α, β ∈ L\E. Now consider elements of the type α+λβ, where λ ∈ E.
Suppose ϕi(α + λβ) = ϕj(α + λβ), then this means that

(4.3.4) λ
(
ϕi(β)− ϕj(β)

)
= ϕj(α)− ϕi(α) .

For those pairs of i, j for which ϕi(β)− ϕj(β) ̸= 0 consider the elements

S =
{ϕj(α)− ϕi(α)

ϕi(β)− ϕj(β)
∈ Ē

}
.

Choose λ0 ∈ E such that λ0 is different from the above. This is possible since
the above collection is finite and E is infinite. We claim that the ϕi(α+λ0β)
are distinct. If not then we get equation (4.3.4). If ϕi(β) − ϕj(β) ̸= 0
then we get a contradiction since we chose λ0 /∈ S. Consider the case when
ϕi(β)− ϕj(β) = 0. Equation (4.3.4) forces that ϕj(α)− ϕi(α) = 0. But this
means that ϕi and ϕj agree on α and β. This in turn would mean that ϕi
and ϕj agree on L, since L = E[α, β], but we chose the ϕi to be distinct.
This gives a contradiction.

The above proves that [E[α+ λ0β] : E]s = n. Since every subfield of L is
separable over E, this shows that

[E[α + λ0β] : E] = [E[α + λ0β] : E]s = n .

Finally,

n = [L : E] = [L : E[α + λ0β]] · [E[α + λ0β] : E] = [L : E[α + λ0β]] · n,

shows that [L : E[α + λ0β]] = 1, that is, L = E[α + λ0β].
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Proposition 4.3.5. Let E ⊂ K be an algebraic extension. Let α, β ∈ K be
elements which are separable over E. Then α+β and α/β are separable over
E.

Proof. Since α is separable over E, it follows that [E[α] : E]s = [E[α] : E].
Since β is separable over E, by Lemma 4.3.1 it follows that it is separable
over E[α]. Thus, [E[α, β] : E[α]]s = [E[α, β] : E[α]]. Multiplying these we
get that [E[α, β] : E]s = [E[α, β] : E]. Using the above theorem we see that
E[α, β] is separable over E. In particular, α+ β and α/β are separable.

In view of the above we have the following.

Theorem 4.3.6. Let E be a field and let Ē be an algebraic closure. Let

Es := {a ∈ Ē | a is separable over E} .

Then Es is a field.

4.4 Purely inseparable extensions

Throughout this section we will work with fields of characteristic p > 0.

Definition 4.4.1. Let characteristic of E be p > 0. Let L be an algebraic
extension such that for every element α ∈ L there is r > 0 such that αp

r ∈ E.
Then we say that L is purely inseparable over E.

Theorem 4.4.2. Let L be a purely inseparable extension of E. Let α ∈ L\E
and let s > 0 be the smallest such that β := αp

s ∈ E. Then the irreducible
polynomial of α over E is Xps − β.

Proof. We know that there is r > 0 such that αp
r ∈ E. This means that

α satisfies the polynomial Xpr − αp
r ∈ E[X]. Let p(X) be the irreducible

polynomial of α over E. Then p(X) divides Xpr − αp
r
. Fix an algebraic

closure E ⊂ L ⊂ Ē. Over Ē, the polynomial Xpr − αp
r
splits as (X − α)p

r
,

since we are in characteristic p. Since p(X) divides this polynomial, it forces
that p(X) = (X − α)m for some m > 0.

Let s > 0 be the smallest integer such that αp
s ∈ E. Clearly, the poly-

nomial Xps − αp
s ∈ E[X]. Thus, since p(X) will divide this polynomial,
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m ⩽ ps. Let us assume that m < ps and write m = lpt, where p does not
divide l. Then

p(X) = (X − α)lp
t

= (Xpt − αp
t

)l

= X lpt − lαp
t

Xpt(l−1) + · · ·

This shows that αp
t ∈ E. But this is a contradiction since t < s. Thus,

m = ps.

Corollary 4.4.3. If L is purely inseparable over E then [L : E]s = 1. That
is, [L : E] = [L : E]i.

Proof. Let us fix an inclusion E ⊂ L ⊂ Ē. We want to count the number
of field homomorphisms ϕ : L → Ē which are identity when restricted to
E. For any α ∈ L, there is an r such that αp

r ∈ E. Thus, if ϕ is any such
homomorphism, then ϕ(αp

r
) = αp

r
. This forces that ϕ(α)p

r
= αp

r
, which in

turn forces that ϕ(α) = α. This proves the corollary.

Theorem 4.4.4. Let L be a finite and purely inseparable extension of E.
The degree [L : E] = pr for some r ⩾ 0.

Proof. Let us first prove the following, from which the theorem will follow
easily. Let E ⊂ L1 ⊂ L2 ⊂ L. Let α ∈ L2. The irreducible polynomial of
α over L1 is of the form Xpt − β. First notice that L2 is purely inseparable
over L1. Let s be the smallest such that αp

s ∈ L1. Define β := αp
s
. It now

follows, using Theorem 4.4.2, that the irreducible polynomial of α over L1 is
Xps − β. Now the theorem follows easily. Simply take a tower

E ⊂ E[α1] ⊂ E[α1, α2] ⊂ . . . ⊂ E[α1, . . . , αn] = L

and apply Lemma 2.1.8.

Let E ⊂ L be an algebraic extension. In the preceding section we proved
that the set

E1 := {a ∈ L | a is separable over E }

is a field. In this section we want to say something about the extension L
over E1.
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Proposition 4.4.5. The extension L is purely inseparable over E1.

Proof. Let α ∈ L \ E1. Let f0(X) denote the monic irreducible polynomial
of α over E. Since α is not separable over E, it follows that DE(f0(X)) = 0.
As we saw before, this shows that there is f1(X) ∈ E[X] such that

f0(X) = f1(X
p) .

Let r > 0 be largest so that

f0(X) = f1(X
p) = f2(X

p2) = . . . = fr(X
pr) .

We claim that DE(fr(X)) ̸= 0, or else, fr(Y ) = fr+1(Y
p), which will show

that f0(X) = fr+1(X
pr+1

), contradicting the maximality of r. Since

0 = f0(α) = fr(α
pr) ,

it follows that αp
r
is a root of fr(X). Obviously, fr(X) is irreducible since

f0(X) is irreducible. Since DE(fr(X)) ̸= 0 it follows from proposition 4.1.2
that αp

r
is separable over E. This means that αp

r ∈ E1. This proves the
proposition.

We conclude this section with summarizing the above results.

Theorem 4.4.6. Let L be an algebraic extension of E. Then

E1 := {a ∈ L | a is separable over E }

is a field and is a separable extension of E. The field L is purely inseparable
over E1. Further, if L is finite over E, then we have

(1) [L : E1]s = 1

(2) [L : E1] = [L : E1]i

(3) [E1 : E] = [E1 : E]s

(4) [E1 : E]i = 1

(5) [L : E]s = [E1 : E]s = [E1 : E]

(6) [L : E]i = [L : E1]i = [L : E1]
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In terms of a diagram, the above says the following.

E

E1

L

separable closure of E in L

separable

purely inseparable
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Chapter 5

Finite Fields

By Fp we shall denote the field Z/pZ. We fix, in this entire discussion, an
algebraic closure of Fp. Denote this field by F̄p.

5.1 Existence and uniqueness

Given any integer n > 1, there are infinitely many extensions Q ⊂ K ⊂ Q̄
such that [K : Q] = n. For example, if we take n = 2, then for different
primes p, the extensions Q[

√
p] are distinct. In contrast to this, we have the

following theorem over finite fields.

We will need the following lemma.

Lemma 5.1.1. Let p(X) ∈ E[X] be a polynomial with root α ∈ Ē. Then α
is a repeated root of p(X) iff α is a root of DE(p(X)).

Proof. First let us assume that α is a repeated root of p(X). SinceDE(p(X)) =
DĒ(p(X)), it suffices to show that DĒ(p(X)) has α as a root. Over Ē, the
polynomial p(X) factors as

p(X) =
r∏
i=1

(X − αi)
ri .

Assume that α = α1, then by assumption r1 > 1. Applying DĒ we get

DE(p(X)) = DĒ(p(X)) = DĒ

( r∏
i=1

(X − αi)
ri
)
.
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Since r1 > 1, it is clear that (X − α1) divides the RHS. This shows that
α = α1 is a root of DE(p(X)).

Conversely, let us assume that α is a root of p(X) and DE(p(X)). Since
DE(p(X)) = DĒ(p(X)), consider the factorization as above. If r1 = 1, then
when we evaluate DĒ(p(X)) at α, we will get

r∏
i=2

(α1 − αi)
ri .

This is nonzero and this is a contradiction to the assumption that α is a root
of DE(p(X)).

Theorem 5.1.2. Let n ⩾ 1 be an integer. Then there is a unique field K
such that Fp ⊂ K ⊂ F̄p and the degree [K : Fp] = n.

Proof. Let us first prove the existence of such a field. The idea is to show
that the roots of the equation Xpn −X = 0 in F̄p form a field. Let us first
check that this equation has no repeated roots. First note that

DFp(f(X)) = pnXpn−1 − 1 = −1,

since pn ≡ 0 in Fp. By Lemma 5.1.1 it follows that all roots of this equation
are distinct, since DFp(f(X)) does not vanish for any root of f(X). We could
not have used Proposition 4.1.2 since we do not know if the polynomial f(X)
is irreducible (in fact, it is not, as we will see later).

LetK denote the set of roots of f(X) in F̄p. It follows that the cardinality
of K is exactly pn.

Claim: If α, β ∈ K then α + β is in K.
This simply follows from the binomial expansion since

(α + β)p
n

= ((α + β)p)p
n−1

=
( p∑
i=0

(
p

i

)
αiβp

n−i
)pn−1
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(using that the binomial coefficients are divisible by p when i ̸= 0, p)

= (αp + βp)p
n−1

= (αp
2

+ βp
2

)p
n−2

= . . .

= αp
n

+ βp
n

(using α, β ∈ K)

= α + β .

Thus, we have proved that (α+ β)p
n
= α+ β, which shows that α+ β ∈ K.

Claim: If α, β ∈ K then αβ is in K.
This is clear since

(αβ)p
n

= αp
n

βp
n

= αβ .

Claim: If α ∈ K then α−1 ∈ K
This is clear since

(α−1)p
n

= α−pn = (αp
n

)−1 = α−1 .

In view of the above three and the fact that 0,1 are in K, it follows that K
is a field. It is clear that Fp ⊂ K since every element of Fp satisfies αp = α.
Thus,

α = αp = αp
2

= · · · = αp
n

.

Thus, Fp ⊂ K ⊂ F̄p and this proves that there is at least one extension of
degree n.

Let us next show that this is the unique extension of degree n. Let
Fp ⊂ K ′ ⊂ F̄p be another extension of degree n. Then K ′ has pn elements.
The set K ′ \ {0} is a multiplicative group of order pn − 1. Thus, if α is an
element of K ′ \ {0} then it satisfies αp

n−1 = 1. This shows that the elements
of K ′ satisfy the equation Xpn − X = 0. Thus, K ′ ⊂ K. Since both have
the same cardinality, it follows that K ′ = K. This proves the uniqueness of
the field extension of degree n.

Corollary 5.1.3. Every finite extension of Fp is separable.
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Proof. We saw above that every α ∈ K is a root of the polynomial Xpn −X
and that this polynomial has distinct roots. Thus, the irreducible polynomial
of α over Fp, which divides this, also has distinct roots. Thus, α is separable
over Fp.

5.2 Multiplicative group of a finite field

Theorem 5.2.1. The group K× ∼= Z/(pn − 1).

Proof. The structure theorem for finite abelian groups says that for every
finite abelian group G of cardinality > 1, there is a positive integer r, and
positive integers 1 < n1 ⩽ n2 ⩽ . . . ⩽ nr such that ni|ni+1 and G is iso-
morphic to Z/(n1) × Z/(n2) × · · · × Z/(nr). Clearly every element satisfies
nrg = 0. Since K× is a finite abelian group under multiplication, let us write

K× ∼= Z/(n1)× Z/(n2)× · · · × Z/(nr)

Notice that the LHS is a multiplicative group and the RHS is an additive
group. The RHS is an additive group in which every element g satisfies
the equation nrg = 0. This means that every element of K× satisfies the
equation αnr = 1. The cardinality of K× is pn − 1. The cardinality of the
RHS is n1n2 . . . nr. If r > 1, then it follows that nr < n1n2 . . . nr = pn − 1.
This will mean that the equation Xnr − 1 = 0 has more than nr roots in the
field F̄p, which is a contradiction. Thus, the only possibility is r = 1 and
K× ∼= Z/(pn − 1).

As a corollary we see that there is an α ∈ K such that K = Fp[α]. In
fact, we may take α to be the generator of the cyclic group K×. Then it
is clear that every element of K can be written as a polynomial in α with
coefficients in Fp.

Theorem 5.2.2. Let E ⊂ K be a finite separable extension. Then there is
an α ∈ K such that K = E[α].

Proof. The case when E is an infinite field was proved in Proposition 4.3.3.
Consider the case when E is a finite field. Then there is a p such that
Fp ⊂ E ⊂ K. Since K is a finite extension of E, it follows that K is also a
finite field. It follows that K× is a cyclic group. If α is a generator of this
cyclic group then K = E[α].
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5.3 Frobenius

One of the questions that one considers when we talk about field extensions
E ⊂ L is what is the group of automorphims of L over E. The definition of
Aut(L/E) is given by

Aut(L/E) := {σ : L→ L | σ is a field isomorphism, σ|E = IdE}

Theorem 5.3.1. Let K denote the unique extension of Fp of degree n. Then
there is an element Fr ∈ Aut(K/Fp) which has order n.

Proof. Denote by Fr : K → K the map Fr(a) = ap. It is clear that

Fr(a+ b) = Fr(a) + Fr(b),

F r(ab) = Fr(a)Fr(b) .

This shows that Fr is a field homomorphism. Since the kernel of a field
homomorphism is 0, it follows that Fr is 1-1. If we view K as a vector space
over Fp, then we see that Fr is a map of Fp vector spaces, since for a ∈ Fp
and b ∈ K we have

Fr(ab) = apbp = abp = aFr(b) .

Since Fr is an inclusion, this proves that the image of Fr is a vector space
of dimension n. Thus, Fp ⊂ Fr(K) ⊂ K and both Fr(K) and K are vector
spaces over Fp of the same dimension. This shows that Fr(K) = K. Thus,
Fr is a field automorphism.

Next we find the order of Fr. Since Frn(a) = ap
n
and a ∈ K we see that

Frn = IdK . Suppose that there is an integer 0 < m < n and Frm = IdK .
Then this would mean that all elements of K satisfy the equation Xpm = X.
However, this is not possible as that would mean that an equation of degree
pm has pn roots. This shows that the order of the element Fr in Aut(K/Fp)
is exactly n.

Theorem 5.3.2. The group Aut(K/Fp) is cyclic of order n and is generated
by the Frobenius element.

Proof. It suffices to show that the order of the group Aut(K/Fp) is n. This
will prove that

Aut(K/Fp) = ⟨Fr⟩ ,
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since the order of the Frobenius is precisely n. Let E ⊂ F be an algebraic
extension. Fix an inclusion iE : E → Ē and a lift of this iF : F → Ē. Now
note the set Aut(F/E) can be made a subset of HomiE(F, Ē) by sending
ϕ ∈ Aut(E/F ) to iF ◦ ϕ. This map is clearly an inclusion. Thus, if F is a
finite extension of E, then we have that

#Aut(F/E) ⩽ [F : E]s ⩽ [F : E] .

Applying this to the case Fp ⊂ K we see that

n ⩽ #Aut(K/Fp) ⩽ [K : Fp] = n .

This proves that the Frobenius generates the group of automorphisms.

5.4 Galois correspondence for finite fields

Let us now see a glimpse of the main result of this course in the special
case of finite fields. Above we proved that the group Aut(K/Fp) = Z/nZ
and is generated by the Frobenius automorphism. Let H ⊂ Aut(K/Fp) be a
subgroup. Define

KH := {a ∈ K |h(a) = a for all h ∈ H} .

It is easily checked that KH is a subfield of K. Consider the map

Φ : {Subgroups of Aut(K/Fp)} → {Subfields of K containing Fp}

given by

H 7→ KH .

We claim that the above map is a bijection between the two sets. To see
this, note that for every integer d|n we have

1. A unique subgroup of Z/nZ which has cardinality d. In fact, this
subgroup is generated by the element n/d.

2. A unique subfield Fp ⊂ Kd ⊂ K such that [K : Kd] = d. Let Kd be the
unique extension of Fp of degree n/d. Then Kd contains the roots of
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the equation Xpn/d −X = 0. If α ∈ Kd then αp
n/d

= α. Raising both
sides to the power pn/d we see that

(αp
n/d

)p
n/d

= αp
2n/d

= αp
n/d

= α .

Repeating this d times we get αp
n
= α, that is, α ∈ K. This proves

that Kd ⊂ K.

The map Φ sends the subgroup ⟨Frn/d⟩ to the subfield K⟨Frn/d⟩. If γ is
an element of Aut(K/Fp), then it is trivial to check that K⟨γ⟩ = Kγ. In
particular, we have

K⟨Frn/d⟩ = KFrn/d

= {a ∈ K |Frn/d(a) = a} = {a ∈ K | apn/d − a = 0} .

This proves that KFrn/d
= Kd. In view of the above two points, we see that

the map Φ is a bijection.
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Chapter 6

Normal extensions

6.1 Normal extensions

Consider the extensions Q ⊂ Q[
√
2] ⊂ Q̄ ⊂ C. Let us find the set of

homomorphisms from Q[
√
2] → Q̄. Since Q[

√
2] ∼= Q[X]/(X2− 2), it follows

that there are precisely two distinct homomorphisms from Q[X]/(X2−2) →
Q̄, namely, one which sends X 7→

√
2 and the other which sends X 7→ −

√
2.

Thus, there are precisely two homomorphisms Q[
√
2] → Q̄. One which sends√

2 7→
√
2 and the other sends

√
2 7→ −

√
2. However, note that the image of

both the homomorphisms is the field Q[
√
2].

Let ω = e2πi/3 ∈ C. Consider the extensions Q ⊂ Q[ 3
√
2] ⊂ Q̄ ⊂ C. In the

same way as above, we see that there are 3 possible homomorphisms from
Q[ 3

√
2] → Q̄, these are given by 3

√
2 7→ 3

√
2, 3

√
2 7→ ω 3

√
2 and 3

√
2 7→ ω2 3

√
2.

The image of Q[ 3
√
2] under the first of these, the one which 3

√
2 7→ 3

√
2 is

contained in R. This is clearly not the case with the other two. For example,
for the second one, the image of the homomorphism is Q[ω 3

√
2], which is

clearly not a subset of R, and so cannot be equal to Q[ 3
√
2].

Definition 6.1.1 (Normal extension). Let E ⊂ L ⊂ Ē be an algebraic
extension. We say that L is normal if for every homomorphism ϕ : L → Ē
such that ϕ|E = Id, the image ϕ(L) ⊂ L.

Thus, in the above examples, Q[
√
2] is a normal extension, whereas,

Q[ 3
√
2] is not normal.

Theorem 6.1.2. Let E ⊂ L be an extension. Then the following are equiv-
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alent.

(1) L is a normal extension,

(2) Let f(X) ∈ E[X] be an irreducible polynomial. If f(X) has one root
in L, then all its roots are in L.

Proof. First assume that L is a normal extension of E. Let f(X) ∈ E[X] be
an irreducible polynomial and let α ∈ L be a root of f(X). Let β ∈ Ē be an-
other root of f(X). There is a unique field homomorphism E[X]/(f(X)) →
Ē which is the identity on E and which sends X 7→ β. Since E[α] ∼=
E[X]/(f(X)), we get a homomorphism ϕ : E[α] → Ē which sends α 7→ β.
Now we apply Proposition 3.1.5 and extend ϕ to all of L.

L
ψ ____ Ē

E[α]
ϕ ___ Ē

E Ē

Since L is normal, it follows that ψ(L) ⊂ L. Thus, it follows that β ∈ L.

Now let us consider the converse of the above. Assume that L has the
property that for every irreducible polynomial f(X) ∈ E[X], if L contains
one root of f(X) then it contains all roots of f(X). Let ϕ : L → Ē be a
homomorphism. We need to show that if α ∈ L then ϕ(α) ∈ L. Let f(X) be
the irreducible polynomial of α over E. If f(X) = anX

n+an−1X
n−1+. . .+a0,

then we have that

anα
n + an−1α

n−1 + . . .+ a0 = 0 .

Applying ϕ to the above we get that

anϕ(α)
n + an−1ϕ(α)

n−1 + . . .+ a0 = 0 .

This shows that ϕ(α) is also a root of f(X). Since L contains all roots of
f(X), it follows that ϕ(α) ∈ L. This proves that L is normal.
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Proposition 6.1.3. Let f(X) ∈ E[X] be a polynomial. Let α1, α2, . . . , αr
denote its distinct roots in Ē. Then the field E[α1, α2, . . . , αr] is a normal
extension of E.

Proof. Let ϕ : E[α1, . . . , αr] → Ē be a field homomorphism. Let α = αi. If
f(X) = anX

n + an−1X
n−1 + . . .+ a0, then we have that

anα
n + an−1α

n−1 + . . .+ a0 = 0 .

Applying ϕ to the above we get that

anϕ(α)
n + an−1ϕ(α)

n−1 + . . .+ a0 = 0 .

This shows that ϕ(α) = αj, for some j. This shows that ϕ leaves the set
{α1, . . . , αr} invariant. Since every element of E[α1, . . . , αr] can be written
as a polynomial in the αi with coefficients in E, this shows that the image
of ϕ lands in E[α1, . . . , αr]. This completes the proof of the Proposition.
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Chapter 7

Galois correspondence

7.1 Galois extensions

Definition 7.1.1 (Galois extension). An extension E ⊂ L ⊂ Ē is called
Galois if L is separable and normal over E.

Proposition 7.1.2. Let E ⊂ L be a finite Galois extension. Then

#Aut(L/E) = [L : E] .

Proof. Since L is normal, for every homomorphism ϕ : L → Ē, the image
ϕ(L) ⊂ L. Since the vector space dimension of ϕ(L) and L over E are equal,
it follows that they are equal. Thus, every such ϕ is in Aut(L/E). Since L
is separable over E, we have #HomE(L, Ē) = [L : E]s = [L : E]. From this
the proposition follows.

Proposition 7.1.3. Let E ⊂ F ⊂ L. If L is a finite Galois extension of
E, then it is also a finite Galois extension of F . If L is Galois over E then
Aut(L/F ) ⊂ Aut(L/E).

Proof. Obvious and left as an exercise.

Definition 7.1.4. The group Aut(L/E) is often denoted Gal(L/E), in hon-
our of Evariste Galois.

https: // en. wikipedia. org/ wiki/ %C3% 89variste_ Galois
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The following lemma will be used in the proof of the next theorem.

Lemma 7.1.5. Let E ⊂ L be a separable extension, not necessarily finite.
Assume that there is an n ⩾ 1 such that for every α ∈ L, the degree [E[α] :
E] ⩽ n. Then the degree [L : E] ⩽ n.

Proof. Let β ∈ L be such that [E[β] : E] is largest. There is such a β since
we know that [E[α] : E] ⩽ n for all α ∈ L. We claim that L = E[β]. If not,
then there is β′ such that E[β] ⫋ E[β][β′]. By Theorem 5.2.2, there is a γ ∈
E[β, β′] such that E[β, β′] = E[γ]. This shows that [E[γ] : E] > [E[β] : E].
Since γ ∈ L, this contradicts the maximality of [E[β] : E]. Thus, L = E[β]
and [L : E] ⩽ n.

Theorem 7.1.6. Let K be a field and let G ⊂ Aut(K) be a finite subgroup of
the group of field automorphisms of K. Then KG is a field and K is a Galois
extension of KG of degree #G. Moreover, the natural map G→ Aut(K/KG)
is an isomorphism.

Proof. The check that KG is a field is a trivial exercise which is left to the
reader. Let us first show that K is a separable algebraic extension of KG.
Let a ∈ K and let Ha := {g ∈ G | g(a) = a}. One easily checks that Ha ⊂ G
is a subgroup. Let g1, g2, . . . , gl be coset representatives for G/Ha. Then
G =

⊔
i giHa. Consider the polynomial

p(X) :=
∏
i

(X − gi(a)) ∈ K[X] .

For g ∈ G, define an automorphism of K[X] as follows. On the coefficients
K, define the map to be g, and send X to X. Precisely,

anX
n + . . .+ a0 7→ g(an)X

n + . . .+ g(a0) .

Now it is clear that under this automorphism

g(p(X)) =
∏
i

(X − ggi(a)) =
∏
i

(X − gjhi(a)) =
∏
i

(X − gj(a)) = p(X) .

This shows that the coefficients of p(X) are in KG. Let us now check that
p(X) has distinct roots. If not, then we will have g−1

i (gj(a)) = a, for some
i ̸= j, that is, g−1

i gj ∈ Ha. But this is a contradiction since the gi were
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representatives of distinct cosets. Taking the coset representative of the
identity eG ∈ G to be eG, we see that a is a root of p(X). This shows that
a is separable over K. This proves that K is an algebraic and separable
extension of KG.

Next let us show that K is a normal extension of KG. Suppose

ϕ : K → KG

is a homomorphism into an algebraic closure, such that it is the identity on
KG. Let a ∈ K. Then, as we saw above, a is a root of the polynomial

p(X) =
∏
i

(X − gi(a)) ∈ KG[X] .

Thus, ϕ(a) is also a root of this polynomial. But the roots of this polynomial
are precisely gi(a) and all these are in K. This shows that ϕ(a) ∈ K, that
is, K is normal over KG.

Applying the preceding lemma we see that [K : KG] ⩽ #G. Thus, K is
a finite Galois extension of KG. There are natural maps

G→ Aut(K/KG) ⊂ Aut(K) .

Since the composite of the above is an inclusion by assumption, it follows
that G → Aut(K/KG) is an inclusion. But from Proposition 7.1.2 we know
that

#G ⩽ #Aut(K/KG) = [K : KG] ⩽ #G .

This proves that the natural map G → Aut(K/KG) is an isomorphism and
that [K : KG] = #G. The proof of the theorem is now complete.

7.2 Galois correspondence

Suppose we are given a finite Galois extension L/E. For a subgroup H ⊂
Gal(L/E) we shall denote by LH the elements which are left fixed by all
members of H, that is,

LH := {a ∈ L |h(a) = a for all h ∈ H} .

Consider the following map

Φ : {Subgroups of Gal(L/E)} → {Subfields of L containing E}
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given by
H 7→ LH .

Consider also the map in the other direction

Ψ : {Subfields of L containing E} → {Subgroups of Gal(L/E)}

given by
F 7→ Gal(L/F ) .

Definition 7.2.1 (Conjugates). Let E be a field and let α ∈ Ē. The roots
of the irreducible polynomial of α over E are called the conjugates of α over
E.

The following is the main result of this course.

Theorem 7.2.2. Let E ⊂ L be a finite Galois extension.

(1) Then Φ ◦Ψ = Id and Ψ ◦Φ = Id. In particular, they are both bijections.

(2) Under this bijection normal subgroups correspond to normal extensions
of E.

(3) Let H ⊂ Gal(L/E) be a normal subgroup and let F = LH . By the
previous part, F is a normal extension of E. The kernel of the natural
(surjective) restriction map Gal(L/E) → Gal(F/E) is precisely H.

Proof. Let us first show that Ψ ◦ Φ = Id. This is equivalent to showing
that for a subgroup H ⊂ Gal(L/E), we have Gal(L/LH) = H. But this is
precisely the content of Theorem 7.1.6.

Next let us show that Φ ◦ Ψ = Id. Let E ⊂ F ⊂ L be a subfield. We
need to show that LGal(L/F ) = F . Suppose g ∈ Gal(L/F ) then g fixes all
elements of F . Thus, every element of F is left invariant by Gal(L/F ).
This shows that F ⊂ LGal(L/F ). Let us assume that F ⫋ LGal(L/F ). Let
θ ∈ LGal(L/F ) \ F . Since L is separable over E, it follows that L is separable
over F , in particular, θ is separable over F . Thus,

1 < [F [θ] : F ] = [F [θ] : F ]s .

Let θ = θ1, θ2, . . . be conjugates of θ. Consider the field homomorphism from
ϕ : F [θ] → Ē which is identity on F and sends θ 7→ θ2. Extend ϕ to a field
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homomorphism ψ : L→ Ē. By normality of L, it follows that ψ ∈ Gal(L/F ).
However, ψ(θ) = θ2 ̸= θ1. This shows that θ /∈ LGal(L/F ), which is a contra-
diction. This forces that F = LGal(L/F ). Thus, (1) of the theorem is proved.

(2) Let us assume that H ⊂ Gal(L/E) is a normal subgroup. We need
to show that LH is a normal extension of E. Let ϕ : LH → Ē and let h ∈ H.
Extend ϕ to a map ψ : L→ Ē. Then ψ ∈ Gal(L/E) since L is normal. Then
h(ψ(a)) = ψ(ψ−1(h(ψ(a)))). Since ψ−1 ◦h◦ψ ∈ H as H is normal, and since
a ∈ LH , it follows that h(ψ(a)) = ψ(a). This shows that ψ(a) = ϕ(a) ∈ LH .
This proves that LH is a normal extension of E.

(3) Let F := LH . Then we have the natural restriction map Gal(L/E) →
Gal(F/E). This map is surjective because given any automorphism ϕ ∈
Gal(F/E) we can first extend it to ψ : L → Ē. But then ψ is actually an
element of Gal(L/E) since L is normal. The kernel of this map is precisely,
those automorphisms of L which are identity on F , that is, Gal(L/F ). By
the Galois correspondence, this is H. Thus, we have an exact sequence of
groups

1 → H → Gal(L/E) → Gal(F/E) → 1 .

This completes the proof of the theorem.

Proposition 7.2.3. (1) If H1 ⊂ H2 ⊂ Gal(L/E) then LH2 ⊂ LH1.

(2) If E ⊂ L1 ⊂ L2 ⊂ L then Gal(L/L2) ⊂ Gal(L/L1).

(3) LGal(L/E) = E.

Proof. All the above assertions are easy to prove and are left to the reader.

7.3 Some examples

In this section we will work out a some examples of the Galois correspondence.
Let ω = e2πi/3. Let E = Q[ 3

√
5, ω]. We will first show that E/Q is a Galois

extension and then work out the Galois correspondence explicitly in this
example.

7.3.1. Isomorphism class of the Galois group. Let σ : E → Q̄ be a
homomorphism. We need to show that σ(E) ⊂ E. It suffices to show that
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σ( 3
√
5) ∈ E and σ(ω) ∈ E. Note that σ( 3

√
5) is forced to be 3

√
5 or ω 3

√
5 or

ω2 3
√
5 and each of these is in E. Similarly, σ(ω) is forced to be ω or ω2, again

these are in E. This shows that σ(E) ⊂ E. Thus, E is a Galois extension of
Q.

Let us compute the degree of the extension [E : Q]. We claim that the
polynomial X2 + X + 1 is irreducible over Q[ 3

√
5]. This being a degree 2

polynomial, if it factors, then its roots lie in Q[ 3
√
5]. The roots are ω and

ω2 and these are not in R. Thus, they cannot be in Q[ 3
√
5] ⊂ R. This

shows that [Q[ 3
√
5, ω] : Q[ 3

√
5]] = 2. Since [Q[ 3

√
5] : Q] = 3, we get that

[Q[ 3
√
5, ω] : Q] = 6.

Thus, the Galois group Gal(E/Q) is of cardinality 6. Now up to isomor-
phism there are only two groups of order 6. These are Z/6Z and S3. Thus, if
we can show that the Galois group is not abelian, then we will get that the
Galois group is isomorphic to S3. Consider the tower of extensions

Q[ 3
√
5, ω] = Q[ 3

√
5][X]/(X2 +X + 1)

Q[ 3
√
5] = Q[X]/(X3 − 5)

Q

There are three embeddings of Q[ 3
√
5] into Q̄. These are given by

σi(
3
√
5) = ωi

3
√
5 i = 0, 1, 2 .

For each σi we have

σi(X
2 +X + 1) = X2 +X + 1

since the coefficients are inQ. Thus, each σi can be extended to an embedding
of Q[ 3

√
5, ω] → Q̄ be defining

σij(ω) = ωj j = 1, 2 .

Thus, we have constructed all the six embeddings of E → Q̄. Precisely these
are given by

σij(
3
√
5) = ωi

3
√
5 σij(ω) = ωj .
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Let us check that σ02 ◦ σ11 ̸= σ11 ◦ σ02 which will prove that the group is not
abelian.

σ02 ◦ σ11( 3
√
5) = σ02(ω

3
√
5)

= σ02(ω)σ02(
3
√
5)

= ω2 3
√
5

σ11 ◦ σ02( 3
√
5) = σ11(

3
√
5)

= ω
3
√
5 .

This shows that σ02 ◦ σ11 ̸= σ11 ◦ σ02. This proves that the Galois group is
forced to be S3.

7.3.2. An explicit isomorphism. Let us number the elements

θi = ωi−1 3
√
5 i = 1, 2, 3 .

The Galois group permutes the elements of the set {θ1, θ2, θ3}, since they
are roots of the equation X3 − 5 = 0. This means that there is a group
homomorphism

Φ : Gal(E/Q) → S3 .

We need to compute explicitly what this group homomorphism is. To do that
we simply apply the elements of the Galois group on this set and describe
them as permutations. One checks easily that σ11(θi) = θi+1. This shows
that

Φ(σ11) = (123) .

Next let us check what the element σ12 does.

σ12(
3
√
5) = ω

3
√
5

σ2
12(

3
√
5) = σ12(ω

3
√
5)

= ω2ω
3
√
5

=
3
√
5 .

Thus, σ12(θ1) = θ2 and σ12(θ2) = θ1. This computation shows that

Φ(σ12) = (12) .

Thus, the image of Φ contains both (123) and (12). Since these generate the
group S3, it follows that Φ is a surjection. Since both groups have the same
size, which is 6, it follows that Φ is an isomorphism.
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7.3.3. Galois correspondence The table of subgroups of S3 is as follows.

S3

{e, (123), (123)2}

hhhhhhhhhhhhhhhhhhhhhh
{(12)}

wwwwwwwww
{(13)}

GGGGGGGGG

{(23)}

TTTTTTTTTTTTTTTTTTT

{e}

jjjjjjjjjjjjjjjjjjj

xxxxxxxxx

GGGGGGGG

VVVVVVVVVVVVVVVVVVVVVV

Let us first apply the isomorphism Φ−1 to the above table and rewrite this
table in terms of the σij.

1. One checks that Φ(σ21) = (132) = (123)2.

2. Similarly, Φ(σ02) = (23).

3. The only element remaining is σ22 and this forces that Φ(σ22) = (13).

Thus, applying Φ−1 to the above table we get the table.

{σij}

{σ01 = id, σ11, σ21}

gggggggggggggggggggggggg
{σ12}

rrrrrrrrrr
{σ22}

LLLLLLLLLL

{σ02}

TTTTTTTTTTTTTTTTTTTTT

{σ01 = id}

iiiiiiiiiiiiiiiiii

rrrrrrrrrr

LLLLLLLLLL

WWWWWWWWWWWWWWWWWWWWW

Instead of computing the invariants explicitly, we will be more clever in
writing down the table of subfields.

1. Notice that there is only one subgroup H ⊂ Gal(E/Q) of order 3. This
means that there is only one subfield Q ⊂ F = EH ⊂ E such that
[E : F ] = #H = 3, that is, [F : Q] = 2. But we know such a subfield,
namely, Q[ω].

2. Similarly, there are 3 subfield such that [F : Q] = 3. We can write
down 3 such subfields, namely, Q[ 3

√
5],Q[ω 3

√
5],Q[ω2 3

√
5]. But are these
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distinct? Clearly, the first cannot be equal to the other two since the
latter two contain elements which are not in R. It is not possible that
Q[ω 3

√
5] = Q[ω2 3

√
5] or else we will have that ω ∈ Q[ω 3

√
5] which will

mean that Q[ω 3
√
5] = Q[ω, 3

√
5] which is not possible. It only remains to

correctly associate the three subfields to the three subgroups of order
2.

3. Since Φ(σ02) = (23), it follows that σ02 leaves θ1 fixed, that is,

σ02(
3
√
5) =

3
√
5 .

This shows that Q[ 3
√
5] ⊂ E⟨σ02⟩ which implies that Q[ 3

√
5] = E⟨σ02⟩.

4. Since Φ(σ22) = (13), it follows that σ22 leaves θ2 fixed, that is,

σ22(ω
3
√
5) = ω

3
√
5 .

This shows that Q[ω 3
√
5] ⊂ E⟨σ22⟩ which implies that Q[ω 3

√
5] = E⟨σ22⟩.

5. Now it is forced that Q[ω2 3
√
5] = E⟨σ12⟩.

Thus, it follows that the corresponding table of subfields is given by

Q

Q[ω]

iiiiiiiiiiiiiiiiiiiiiiiii Q[ω2 3
√
5]

qqqqqqqqqqq

Q[ω 3
√
5]

LLLLLLLLLLL

Q[ 3
√
5]

UUUUUUUUUUUUUUUUUUUUUUUU

Q[ 3
√
5, ω]

iiiiiiiiiiiiiiiiiiii

rrrrrrrrrr

LLLLLLLLLL

UUUUUUUUUUUUUUUUUUUUU

7.3.4. Another example. Let us now compute Gal(Q[ 4
√
2, i]/Q). That

this is a Galois extension can be shown by arguing in the same manner as
in the previous example. This is left to the reader. As before we will first
compute the isomorphism class of the group.

We claim that the polynomial X2 + 1 is irreducible over Q[ 4
√
2]. This

being a degree 2 polynomial, if it factors, then its roots lie in Q[ 4
√
2]. The

roots are ±i and these are not in R. Thus, they cannot be in Q[ 4
√
2] ⊂ R.



72 CHAPTER 7. GALOIS CORRESPONDENCE

Let E := Q[ 4
√
2, i]. This shows that [E : Q] = 8. We claim that Gal(E/Q) is

not abelian. Consider the tower of extensions

Q[ 4
√
2, i] = Q[ 4

√
2][X]/(X2 + 1)

Q[ 4
√
2] = Q[X]/(X4 − 2)

Q

There are four embeddings of Q[ 4
√
2] into Q̄. These are given by

σr(
4
√
2) = ωr

4
√
2 r = 0, 1, 2, 3 .

For each σr we have
σr(X

2 +X + 1) = X2 + 1

since the coefficients are in Q. Thus, each σr can be extended to an embed-
ding of Q[ 4

√
2, i] → Q̄ be defining

σrs(i) = is s = 1, 3 .

Thus, we have constructed all the eight embeddings of E → Q̄. Precisely
these are given by

σrs(
4
√
2) = ir

4
√
2 σrs(i) = is .

Let us check that σ03 ◦ σ11 ̸= σ11 ◦ σ03 which will prove that the group is not
abelian.

σ03 ◦ σ11( 4
√
2) = σ03(i

4
√
2)

= σ03(i)σ03(
4
√
2)

= i3
4
√
2

σ11 ◦ σ03( 4
√
2) = σ11(

4
√
2)

= i
4
√
2 .

This shows that σ03 ◦ σ11 ̸= σ11 ◦ σ03. Thus, the Galois group is not abelian.
Consider the restriction map

ϕ : Gal(E/Q) → Gal(Q[i]/Q) .
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This map is surjective (why?) and the kernel contains σr1 (why?). Notice that
the kernel is forced to be of cardinality 4. Also notice that the cyclic subgroup
generated by σ11 is of cardinality 4. This proves that the kernel is precisely
{σ01, σ11, σ21, σ31}. Now consider the element σ03. It is checked easily that
σ2
03 = Id. It is also clear that ϕ(σ03) is the generator of Gal(Q[i]/Q).

Consider the following general statement from group theory. Let ϕ : G→
H be a surjective homomorphism of groups and let N be the kernel . (This
is often written as: Let

1 → N → G
ϕ−→ H → 1

be a short exact sequence of groups.) Assume that there is a subgroupM ⊂ G
such that the restriction of ϕ to M is an isomorphism M

∼−→ H. Then every
element of G can be written uniquely as nm where n ∈ N and m ∈ M . In
this case we say that G is the semi-direct product of N and M . The ”semi”
is because although G is a product of N and M as sets, but it may not be
a product as groups. If further, elements of M and N commute with each
other, then G is a direct product of M and N as groups.

Now we return to our example. Show that Gal(E/Q) is a semi direct
product of ⟨σ03⟩ (group of order 2) and ⟨σ11⟩ (cyclic group of order 4). Sup-
pose σ03 were to commute with σ11, then it will also commute with all powers
of σ11, which would mean that Gal(E/Q) is the direct product of 2 cyclic
groups, and so is abelian. But we know that Gal(E/Q) is not abelian. Thus,
σ03σ11σ

−1
03 ̸= σ11. This forces that (why?)

σ03σ11σ
−1
03 = σ31 .

Thus, the group Gal(E/Q) is isomorphic to D8. Here we have used the
convention that D2n is the unique group (up to isomorphism) of size 2n
which has the following properties

1. A cyclic subgroup Hn of size n

2. A cyclic subgroup H2 of size 2

3. If r is a generator of Hn and f is a generator of H2 then rf = fr−1.
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7.4 C is algebraically closed

As an application of the above correspondence, let us show that C is alge-
braically closed. We need the following two easy observations, the proofs of
which are left to the reader.

Lemma 7.4.1. (1) Every odd degree polynomial in R[X] has a root.

(2) Every α ∈ C has a square root. In particular, this means that C has no
extensions of degree 2.

Theorem 7.4.2. C is algebraically closed.

Proof. Let us first show that any finite extension of R has degree a power
of 2. Let R ⊂ K ⊂ R̄ be a finite extension. Since the characteristic is 0,
we know that K is a separable finite extension, and so by Proposition 4.3.3
there is an element α ∈ K such that K = R[α]. Let α = α1, α2, . . . , αd
denote the conjugates of α. Then E := R[α1, . . . , αd] is a normal extension
of R by Proposition 6.1.3. Clearly, E is a finite Galois extension of R. Let
G := Gal(E/R) and write #G = 2rm where m is odd. Let H be a 2-Sylow
subgroup of G and consider the extensions

R ⊂ EH ⊂ E .

The degree of the extension [E : EH ] = 2r and so the degree [EH : R] = m.
Now if we write EH = R[β], then this shows that the irreducible polynomial
of β over R has odd degree. Because of the first observation in the preceding
Lemma, the only irreducible polynomials of odd degree are of degree 1. This
forces that β ∈ R and EH = R. This proves the claim that every finite
extension of R has degree a power of 2.

The following is an exercise in group theory. Let G be a group whose order
is pr. Then there is a filtration by normal subgroups

G1 ⊂ G2 ⊂ . . . ⊂ Gr

such that each Gi has cardinality p
i. One may show this by first showing that

a p-group has non-trivial center, then proceed by induction on the cardinality
of G. In particular, this applies in our case. Consider the extension

R ⊂ EGr−1 ⊂ EGr−2 ⊂ E .
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The degree [E : EGr−1 ] = #Gr−1 = 2r−1. This shows that [EGr−1 : R] = 2. If
we write EGr−1 = R[β] then we get that β satisfies an irreducible quadratic
polynomial X2 + aX + b ∈ R[X]. Thus,

C ∼= R[X]/(X2 + aX + b) ∼= EGr−1 .

But now note that the degree of the extension [EGr−2 : EGr−1 ] = 2. But
this contradicts assertion (2) in the above Lemma, which says that C has
no extensions of degree 2. From this we conclude that #G ⩽ 2, that is,
[E : R] ⩽ 2. In particular, this also shows that [K : R] ⩽ 2.

Assume that C is not algebraically closed. Then it has a finite extension
K such that [K : C] ⩾ 2. But then [K : R] ⩾ 4, which contradicts the
above.

7.5 Infinite extensions

In this section we will show that the Galois correspondence, as stated above,
is not true for infinite Galois extensions. Let E ⊂ K be an algebraic exten-
sion. By Gal(K/E) we shall mean the group of automorphisms of K which
are identity on E.

Consider the group homomorphism Z → Gal(F̄p/Fp) which sends 1 7→ Fr.
We claim that this map is an inclusion. If not, then there is an n > 0 such
that Frn = Id on F̄p. But this will mean that the elements of F̄p satisfy the
equation ap

n
= a. This is not possible since we know that this equation has

only finitely many roots and no finite field is algebraically closed. It is also
clear that

F̄⟨Fr⟩
p = Fp .

This is because if an element of F̄p is fixed by the Frobenius iff it satisfies the
equation ap = a, that is, a ∈ Fp. Thus, if we can prove that there is a proper
inclusion

⟨Fr⟩ ⫋ Gal(F̄p/Fp) ,

then this will clearly violate the Galois correspondence as we will have

Fp ⊂ F̄Gal(F̄p/Fp)
p ⊂ F̄⟨Fr⟩

p = Fp .

This will mean that the invariants under two distinct subgroups are the same.
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Let rn := 2n. Consider the tower of extensions

Fp ⊂ Fpr1 ⊂ Fpr2 . . . ⊂ Fprn ⊂ . . .

Let

E :=
( ∞⋃
i=1

Fprn
)
⊂ F̄p .

If σ : E → F̄p is an embedding, then the image of σ is

σ(E) = σ
( ∞⋃
i=1

Fprn
)
=
( ∞⋃
i=1

σ(Fprn )
)
= σ

( ∞⋃
i=1

Fprn
)
= E .

Thus, E is normal. (In fact, writing any extension of Fp as a union of finite
extensions, the same proof shows that every extension of Fp is a normal
extension.)

The group Gal(F̄p/Fp) is generated by the Frobenius iff the homomor-
phism Z → Gal(F̄p/Fp) is surjective. Let us assume that this map is sur-
jective. The map Gal(F̄p/Fp) → Gal(E/Fp) is surjective. Thus, the map
Z → Gal(E/Fp) will be surjective. We will now obtain a contradiction to
this.

We have the following commutative diagram when m|n are integers

Z/nZ ∼ //

��

Gal(Fpn/Fp)

��
Z/mZ ∼ // Gal(Fpm/Fp)

We know that Gal(Fprn/Fp) is cyclic of order rn and generated by the Frobe-
nius. In particular, we have commutative diagrams:

Z/2nZ ∼ //

��

Gal(Fprn/Fp)

��
Z/2n−1Z ∼ // Gal(Fprn−1/Fp)

If we have an automorphism σ : E → E then we get automorphisms σn :
Fprn → Fprn such that σn+1|Fprn

= σn. Conversely, suppose we have a family
of such automorphisms σn, then it is easily checked that these will define
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an automorphism of E, since we can define σ on Fprn by σn. The condition
σn+1|Fprn

= σn ensures that this is well defined. Thus, using the isomorphism
of Galois groups above, we see that elements of Gal(E/Fp) are in bijection
with elements

S := {(a1, a2, . . .) ∈
∏
n⩾1

Z/2nZ | an+1 = anmod 2n} .

The Frobenius automorphism corresponds to the element (1, 1, 1, . . .). The
subgroup generated by this consists of elements (n, n, n, . . .), for some n ∈ Z.
Consider the following element

a2k = 1 + 22 + 24 + . . .+ 22k−2

a2k+1 = 1 + 22 + 24 + . . .+ 22k

It is easily checked that this sequence defines an element in S. We claim that
there is no n ∈ Z such that this is equal to (n, n, n, . . .). Suppose there is
n > 0 such that (a1, a2, a3, . . .) = (n, n, n, . . .). Choose k very large so that
n < 22k−2. Then we get

a2k = 1 + 22 + 24 + . . .+ 22k−2 = n mod 22k .

Viewing a2k as an integer, it is easily seen that n < a2k < 22k. Thus, such an
equality is not possible. Next assume that there is a positive n > 0 such that
(a1, a2, a3, . . .) = (−n,−n,−n, . . .). Choose k very large so that n < 22k−2.
Then we get that

a2k = 1 + 22 + 24 + . . .+ 22k−2 = 22k − n mod 22k .

This gives that

n = 22k − (1 + 22 + 24 + . . .+ 22k−2) mod 22k .

That is,

n =
22k+1 + 1

3
= b2k mod 22k .

Again, if we view b2k as an integer, then it is easily checked that b2k < 22k.
So for k very large we will have n < b2k < 22k. But then an equality as above
is not possible. This proves that Z → Gal(E/Fp) is not surjective. Thus,
Z → Gal(F̄p/Fp) is not surjective. Thus,

⟨Fr⟩ ⫋ Gal(F̄p/Fp) .
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This shows that the Galois correspondence between subgroups and sub-
fields breaks down for infinite extensions. However, one can define a topology
on the group Gal(K/E). Then there is a correspondence between the closed
subgroups of Gal(K/E) and the subfields of K. We will not prove this in
this course.



Chapter 8

Groups occurring as Galois
groups

In this chapter we will see examples of groups which can occur as Galois
groups. In fact, the inverse Galois problem asks if every finite group can
occur as the Galois group of an extension of Q. This is an unsolved problem.

8.1 Finite groups as Galois groups

Let G be a finite group of cardinality n. Then there is an inclusion G→ Sn
which is defined as follows. First choose an ordering on the elements of G.
For any g ∈ G, left multiplication by g, denoted mg defines a permutation
of G. This homomorphism is an inclusion since if mg acts as the identity on
G, then g = mg(e) = e.

Proposition 8.1.1. Let G be any finite group. Then there is a field extension
E ⊂ K such that Gal(K/E) = G.

Proof. First we embed G ⊂ Sn as described above. Now let

K = Q(X1, X2, . . . , Xn)

and let Sn act on K be permuting the variables. This defines a homomor-
phism Sn → Aut(K). Obviously the kernel of this homomorphism is trivial
since only the identity element gives rise to the trivial automorphism. Thus,
this makesG ⊂ Sn ⊂ Aut(K) a subgroup of Aut(K). Now we apply Theorem
7.1.6.

79
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8.2 S4 as Galois group over Q

In the previous section we saw that given any group G, we can find a field E
(which depends on G) and a Galois extensionK such that Gal(K/E) = G. In
the next few sections we shall see examples of groups which can be obtained
as Galois groups over Q.

In the previous chapter we saw that Gal(Q[ 3
√
5, e2πi/3]/Q) ∼= S3. In the

proof we used the following Lemma.

Lemma 8.2.1. Let K/E be a Galois extension. Let p(X) ∈ E[X] be a
polynomial of degree n whose roots are in K. There is an action of the
Galois group on the roots of p(X), which defines a homomorphism

ρ : Gal(K/E) → Sn .

If K is generated over E by the roots of p(X) then this homomorphism is
also injective.

Proof. An element of the Galois group permutes the roots of p(X). This
permutation defines a group homomorphism. If K is generated over E by
these roots, it follows that if σ ∈ Gal(K/E) fixes the roots, then it fixes every
element of K. Thus, the homomorphism is injective.

Inside the symmetric group we have the subgroup An ⊂ Sn consisting of
the even permutations. Equivalently, this is the kernel of the sign homomor-
phism

sgn : Sn → {±1} .

It is a natural question to ask when the image of the homomorphism in
Lemma 8.2.1 lands in An. This can be seen using the discriminant of the
polynomial.

Definition 8.2.2. Let α1, . . . , αn in K denote the roots of p(X). The dis-
criminant of p(X) is defined as

∆(p(X)) :=
∏
i<j

(αi − αj)
2 .

Lemma 8.2.3. ∆(p(X)) ∈ E.
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Proof. It suffices to show that ∆(p(X)) is fixed by all elements in Gal(K/E).
Let σ ∈ Gal(K/E). Then

σ(∆(p(X))) =
∏
i<j

(αρ(σ)(i) − αρ(σ)(j))
2

=
(∏
i<j

(αρ(σ)(i) − αρ(σ)(j))
)2

=
(
sgn(ρ(σ))

∏
i<j

(αi − αj)
)2

=
∏
i<j

(αi − αj)
2

= ∆(p(X)) .

This proves the Lemma.

Proposition 8.2.4. The image of ρ is contained in An iff ∆(p(X)) is a
square in E.

Proof. Let α :=
∏

i<j(αi − αj). Then ∆(p(X)) = α2.

Assume that the image of ρ is contained in An. It follows that

σ(α) = sgn(ρ(σ))α = α .

Thus, α ∈ E. Thus, the discriminant, which is α2, is a square in E.

Conversely, assume ∆(p(X)) is a square in E. Then there is a β ∈ E
such that ∆(p(X)) = β2. On the other hand, since ∆(p(X)) = α2, it follows
that α = ±β, that is, α ∈ E. It follows that for all σ ∈ Gal(K/E) we have
σ(α) = α, that is, sgn(ρ(σ)) = 1. Thus, the image of ρ is in An.

Remark 8.2.5. Recall the Fundamental Theorem of Symmetric Polynomi-
als. Let A be a commutative ring and let R := A[X1, . . . , Xn] denote the
polynomial ring in n variables. The group Sn acts on R by permuting the
indeterminates {Xi}. Consider the ring R[T ]. Define a polynomial θi ∈ R by
setting (−1)iθi to be the coefficient of T n−i in (T −X1) . . . (T −Xn). Each θi
is invariant under the action of Sn. The Fundamental Theorem of Symmetric
Polynomials says that the set of polynomials which are invariant under Sn
are precisely those which are in the image of the ring homomorphism

A[Y1, . . . , Yn] → A[X1, . . . , Xn] Yi 7→ θi .
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Since the discriminant is invariant under Sn, it follows easily that it is a
polynomial in the coefficients of p(X). Let us mention two special cases
which we shall use:

� If p(X) = X3 + aX + b then ∆(p(X)) = −4a3 − 27b2,

� If p(X) = X4 + aX + b then ∆(p(X)) = −27a4 + 256b3.

Remark 8.2.6. Let p(X) ∈ Q[X] be a degree 4 polynomial with distinct
roots α1, α2, α3, α4. Consider the following set

S := {α1α2 + α3α4, α1α3 + α2α4, α1α4 + α2α3} .

It is clear that any permutation of the αi permutes the set S. Thus, the
polynomial

r(X) := (X − (α1α2 + α3α4))(X − (α1α3 + α2α4))(X − (α1α4 + α2α3))

has coefficients which are invariant under Gal(Q̄/Q) and so are in Q. More-
over, one checks that

� (α1α2 + α3α4)− (α1α3 + α2α4) = (α1 − α4)(α2 − α3)

� (α1α2 + α3α4)− (α1α4 + α2α3) = (α1 − α3)(α2 − α4)

� (α1α3 + α2α4)− (α1α4 + α2α3) = (α1 − α2)(α3 − α4)

The above equalities show that ∆(p(X)) = ∆(r(X)). The polynomial r(X)
is called the resolvent cubic of p(X). The coefficients of r(X) are symmetric
polynomials in the αi and so polynomials in the coefficients of p(X). If
p(X) = X4 + aX + b then r(X) = X3 − 4bX − a2.

Proposition 8.2.7. Let K be the extension of Q obtained by adjoining all
the roots of the polynomial p(X) := X4 −X − 1. Then Gal(K/Q) ∼= S4.

Proof. By the previous lemma, there is an injective group homomorphism
G := Gal(K/Q) → S4. We will show that the cardinality of G is divisible
by 12, the image of this homomorphism is not contained in A4, and the only
subgroup of S4 of index 2 is A4. From these it follows that the cardinality of
G has to be 24, and so the embedding has to be an isomorphism.



8.2. S4 AS GALOIS GROUP OVER Q 83

To show that p(X) is irreducible it suffices to show that it is irreducible
after reducing mod 2. Let p̄(X) denote the reduction mod 2. We claim p̄
does not have a root in F2. Note that F2 ⊂ F4 and every element of F4 is a
root of the equation X4 −X = 0. Thus, p̄ evaluates to −1 for every element
of F4 and so also every element of F2. This shows that p̄ has no roots in F2.
Thus, it cannot factor into a linear polynomial times a degree 3 polynomial.
Suppose it factors as p̄(X) = h(X)g(X) where h(X) and g(X) have degree
2 and are irreducible. Since h(X) has degree 2, it follows that if α is a root
of h(X) then α ∈ F4. But this shows that p̄(X) has a root in F4, which we
saw is not possible. This proves that p̄(X) is irreducible and so p(X) is also
irreducible.

Since p(X) is irreducible, it follows that 4 | #G. Consider the resolvent
cubic r(X). The roots of r(X) are contained in K. Let K1 be the normal
extension of Q obatined by adjoining the roots of r(X) to Q. Then Q ⊂
K1 ⊂ K and so we have a surjective group homomorphism G→ Gal(K1/Q).
By Remark 8.2.6 the polynomial r(X) = X3 + 4X − 1. It can be checked
that when we go modulo 7, this polynomial has no roots, and so r(X) is
irreducible modulo 7, and so also in Z[X]. Thus, 3 divides [K1 : Q]. This
shows that [K1 : Q] = 3 or 6. Consider the homomorphism Gal(K1/Q) → S3.
In S3 there is a unique subgroup of order 3, which is A3. If Gal(K1/Q) has
cardinality 3, then the image is forced to be this unique subgroup. The
discriminant of r(X) is −4.43 − 27 which is not a square in Q. Thus, the
image is not contained in A3, which shows that Gal(K1/Q) ∼= S3 and so has
cardinality 6. Since there is a surjective homomorphism G → Gal(K1/Q) it
follows that 6 | #G. As 4 | #G, it follows that 12 | #G. Thus, #G = 12 or
24.

Next we claim that S4 has only one subgroup of order 12, which is A4.
Let H be a subgroup of S4 of order 12. Then H is a normal subgroup and
S4/H is abelian, which shows that the commutator subgroup [S4, S4] ⊂ H.
We claim that A4 ⊂ [S4, S4]. For σ ∈ S4 we have

σ(a, b)σ−1(a, b) = (σ(a), σ(b))(a, b) .

Choose σ such that σ(a) = a and σ(b) = c. Then

σ(a, b)σ−1(a, b) = (a, c)(a, b) = (a, b, c) .

This shows that A4 ⊂ [S4, S4] ⊂ H. Due to cardinality reasons we get that
A4 = H. This proves the uniqueness.
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If #G = 12 then the image of G would be contained in A4. This would
imply that the discriminant of p(X) is a perfect square in Q. But we already
saw that ∆(p(X)) = ∆(r(X)) = −4.43 − 27, which is not a square. Thus,
#G = 24, which shows that G ∼= S4. This completes the proof of the
Proposition.

8.3 Sp as Galois group over Q

Throughout this section p > 0 will be a prime. We will need the following
Lemma about Sp.

Lemma 8.3.1. (1) An element of Sp of order p is a p-cycle.

(2) Let {3, . . . , n} = {a3, . . . , an}. The elements (1, 2) and (1, 2, a3, . . . , an)
generate the group Sn.

Proof. Left as exercises. For the second part use the fact that (1, 2) and
(1, 2, . . . , n) generate Sn.

Theorem 8.3.2. Let f(X) ∈ Q[X] be an irreducible polynomial of degree
p. Assume that f(X) has exactly p − 2 real roots and two roots in C \ R.
Let K denote the field obtained by adjoining roots of f(X) to Q. Then
Gal(K/Q) ∼= Sp.

Proof. Let G denote the Galois group Gal(K/Q). Then G embeds into Sp as
the group permuting the roots of f(X). Let H denote the image of G. Let
α be a root of f(X). Since [Q(α) : Q] = p divides [K : Q], it follows that p
divides #G. It follows that p divides #H and so H contains an element of
order p. By Lemma 8.3.1 it follows that H contains a p-cycle, let us call it
β.

Let α1, α2, . . . , αp denote the distinct roots of f(X). Choose α1 and α2

to be the roots which are in C \ R. Then complex conjugation defines an
automorphism of K over Q which fixes the roots α3, . . . , αp. Thus, complex
conjugation is represented by the permutation (1, 2). We may write β =
(1, i2, i3, . . . , ip). There is an i with 0 < i < p such that βi = (1, 2, j3, . . . , jp).
Lemma 8.3.1 shows that (1, 2) and βi generate Sp.
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Thus, in order to show that Sp occurs as a Galois group over Q, it suffices
to construct a polynomial as in the preceding Theorem. We do this next.
For later use we shall need the following Lemma.

Lemma 8.3.3. Let p be a prime. Consider the polynomial p(X) = Xp−X+λ
for some λ ̸= 0 in Fp[X]. This polynomial is irreducible.

Proof. Observe that if α is a root of this in F̄p then α + 1 is also a solution.
Using this repeatedly we see that the set of all roots is given by

{α, α + 1, . . . , α + (p− 1)} .

Let Fr(α) = α + i since Fr(α) is a root of p(X). Assume this polynomial
factors as h(X)g(X) and let α be a root of h(X). Then Frj(α) is a root of
h(X) for all j. Since p is prime, the set

{Frj(α)} = {α, α + 1, . . . , α + (p− 1)} .

This is a contradiction since deg(h(X)) < deg(p(X)).

Lemma 8.3.4. There exists a polynomial f(X) ∈ Q[X] of degree p which is
irreducible and which has exactly p− 2 roots in R and two roots in C \ R.

Proof. Let

f(X) := λ+

p−1
2∏

i=− p−1
2

(X − i) λ ∈ Q .

Let λ = a
b
where a, b ∈ Z and p ∤ ab. Irreducibility of f(X) can be proved

after going modulo p (after clearing denominators), whence it suffices to
show,

Xp −X + λ̄ , λ̄ ̸= 0

is irreducible. This is the content of the preceding Lemma. Thus, to apply
Theorem 8.3.2, we only need to choose λ so that f(T ) has exactly p− 2 real
roots. The idea behind the proof is explained by taking a look at the graph
of f(X). When p = 7 the graph of f(X) looks like:



86 CHAPTER 8. GROUPS OCCURRING AS GALOIS GROUPS

−3 −2 −1 0 321

t2t1t0

The graph of f(X) + λ looks like

−3 −2 −1 0 321

t2t1

t0

Thus, f(X) has two less real roots than f(X). We now proceed with the
detailed proof.

Consider the polynomial

g(X) := (X − n)(X − n+ 1) . . . (X − 1)X(X + 1) . . . (X + n) .

g(X + 1) = (X − n+ 1) . . . (X − 1)X(X + 1) . . . (X + n)(X + 1 + n)

Thus,

(8.3.5) g(X+1)+g(X) = (X−n+1) . . . (X−1)X(X+1) . . . (X+n)(2X+1) .

For every interval (i, i+1), where i ∈ {0, 1, . . . , n− 1}, the polynomial g(X)
attains local maxima or a local minima at a unique point ti ∈ (i, i+ 1). We
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claim that

(8.3.6) 0 < |g(t0)| < |g(t1)| < . . . < |g(tn−1)| .

Note that the signs of g(ti) and g(ti+1) are different. Thus, in order to show
that |g(ti)| < |g(ti+1)| it suffices to show that g(ti) + g(ti+1) is nonzero and
has the same sign as g(ti + 1), which has the same sign as g(ti+1). This will
show that |g(ti)| < |g(ti+1)|, which shows that |g(ti)| < |g(ti+1)| ⩽ |g(ti+1)|.

The sign of g(t0) is (−1)n. Thus, g(ti) has sign (−1)i+n. Putting X = ti
in (8.3.5) we get

g(ti + 1) + g(ti) = (ti − n+ 1) . . . (ti − 1)ti(ti + 1) . . . (ti + n)(2ti + 1) .

The above is clearly nonzero since ti ∈ (i, i+1). The only terms in the above
which are negative are (ti− i− 1), (ti− i− 2), . . . , (ti−n+1). Thus, the sign
is (−1)n−i−1 = (−1)i+n+1, which is the sign of g(ti+1). This proves the claim
(8.3.6).

Let λ be a rational number such that |g(t0)| < λ < |g(t1)| such that p does
not divide the numerator or denominator of λ. This can be easily achieved
as follows. First choose λ = a/b such that |g(t0)| < λ < |g(t1)|. Then
consider λ′ = (pja + 1)/(pjb + 1). Clearly, p does not divide the numerator
or denominator of λ′ and the difference λ − λ′ can be made very small by
choosing j large. Note g(X) has degree 2n+1 and exactly 2n+1 real roots.
It is easily seen that g(X) + λ has exactly 2n− 1 real roots.

Applying the above discussion by taking n = (p − 1)/2, we see that we
may choose λ so that f(X) + λ is irreducible and has exactly p− 2 roots in
R.

Corollary 8.3.7. There exists a Galois extension K/Q with Galois group
Sp.

8.4 Composite of fields

In this section we will develop some results which we will use in the next
section.

Definition 8.4.1. Let E,F ⊂ K be fields. The smallest subfield which con-
tains E and F shall be denoted by EF . It is often referred to as the com-
positum of E and F .
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Remark 8.4.2. Let us make a remark about the field EF . First consider
the collection R ⊂ K which contains elements of the following kind:

R := {α ∈ K |α =
n∑
i=1

aibi ai ∈ E, bi ∈ F} .

It is obvious that R is a subring of K which contains both E and F . This
follows trivially since sums and products of elements of R are in R. In fact,
it is obvious that it is the smallest subring of K which contains both E and
F . Now let

T := {a
b
| a, b ∈ R, b ̸= 0}

be the quotient field of R. Then it is clear that T is a field and that it is the
smallest subfield of K which contains both E and F .

Consider the following diagram of field extensions.

E

L
LM

M

K

Proposition 8.4.3. (1) If L is algebraic over E then LM is algebraic over
M .

(2) If L is algebraic and separable over E then LM is algebraic and separable
over M .

(3) If L is algebraic and normal over E then LM is algebraic and normal
over M .

Proof. (1) By the description of the field LM given in Remark 8.4.2, and
using the Proposition 2.2.3, it suffices to show that every element of the type∑n

i=1 aibi with ai ∈ L, bi ∈M is separable over M . Since ai is algebraic over
E, it follows that it is algebraic over M . Since bi ∈ M , it is obviously alge-
braic over M . Thus, aibi is algebraic over M . Again applying Proposition
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2.2.3 we see that
∑n

i=1 aibi is algebraic over M . This completes the proof of
(1).

(2) The proof of (2) is identical to the proof of (1), except that one uses
Proposition 4.3.5.

(3) Fix an algebraically closed field K1 which contains all the fields. Let
ϕ : LM → K1 be a homomorphism which is the identity when restricted to
M . Since L is normal, for every a ∈ L it follows that ϕ(a) ∈ L. Thus, from
Remark 8.4.2 it follows that the image of ϕ lands in LM . This shows that
LM is normal. This proves (3).

Theorem 8.4.4. Assume that L/E is a finite Galois extension. Then LM/M
is a finite Galois extension and the natural restriction map

Gal(LM/M) → Gal(L/E)

is an inclusion with image isomorphic to Gal(L/(L ∩M)).

Proof. Suppose we are given ϕ ∈ Gal(LM/M) then we may restrict this to
L. Since ϕ is the identity on M and E ⊂M , it follows that ϕ is the identity
on E. Since L is normal over E, it follows that ϕ|L ∈ Gal(L/E). Thus we
get a map Gal(LM/M) → Gal(L/E). Suppose ϕ is in the kernel of this map,
then this means that ϕ is the identity on L. But since ϕ is the identity on
M , using Remark 8.4.2 it follows that ϕ is identity on LM . This shows that
Gal(LM/M) → Gal(L/E) is an inclusion. Since ϕ is the identity on M , it
follows that ϕ|L is the identity on L ∩M . Thus, the image of the restriction
map is contained in Gal(L/(L ∩M)).

Finally we want to show that the image of the above homomorphism is
precisely Gal(L/L∩M). Using the Galois correspondence between subgroups
and subfields, it suffices to show that LGal(LM/M) = L ∩M . It is clear that
L ∩ M ⊂ LGal(LM/M). Conversely, α ∈ L is left fixed by all elements of
Gal(LM/M), then it is in M (by the Galois correspondence for LM/M).
Thus, α ∈ L ∩M . This completes the proof of the Theorem.

Theorem 8.4.5. Assume that both L and M are finite Galois extensions of
E. Then LM is a finite Galois extension of E and we have a commutative
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diagram

1 // Gal(L/(L ∩M))

��

// Gal(LM/E) //
� _

��

Gal(M/E) // 1

1 // Gal(L/E) // Gal(L/E)×Gal(M/E) // Gal(M/E) // 1

in which the middle vertical arrow is an inclusion. In particular, if L∩M = E
then we see that the middle arrow is an isomorphism.

Proof. The exactness of the top row follows easily using the previous theorem
and the fact that every element in Gal(M/E) can be extended to an element
of Gal(LM/E). The exactness of the bottom row is obvious. The middle
vertical arrow is an inclusion can be seen by using the description of LM in
Remark 8.4.2. If L ∩M = E, then by looking at the cardinality we see that
the middle vertical arrow is an isomorphism.

8.5 Cyclotomic extensions

Let ζn := e2πi/n ∈ C. This is clearly algebraic over Q since it satisfies the
equation Xn − 1 = 0. We first claim that the extension Q[ζn] is a normal
extension of Q. If ϕ : Q[ζn] → Q̄ then ϕ(ζn) is forced to be a solution of
Xn − 1 = 0. But all solutions of this equation are powers of ζn. Thus,
ϕ(ζn) ∈ Q[ζn]. This shows that ϕ(Q[ζn]) ⊂ Q[ζn], which proves that Q[ζn] is
a normal, and hence Galois, extension of Q.

We will need the following Lemma.

Lemma 8.5.1 (Gauss). Let f(X) ∈ Z[X] be a monic polynomial. Suppose
that f(X) = g(X)h(X), where g(X), h(X) ∈ Q[X] and both are monic. Then
g(X), h(X) ∈ Z[X].

Proof. Let l ∈ Z be the smallest positive integer such that lg(X) ∈ Z[X].
Let us assume that l > 1. We claim that the gcd of the coefficients of
lg(X) is 1, or else, if this gcd is d, then the positive integer l/d would have
worked. Similarly, define t ∈ Z to be the smallest positive integer such that
th(X) ∈ Z[X]. Then we have

ltf(X) = (lg(X)) · (th(X)) .
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If lt > 1, let p be a prime which divides lt. Then going modulo p the LHS is
0. However, since the gcd of the coefficients of lg(X) is 1, it follows that p
does not divide all the coefficients, and so lg(X) ̸= 0 in Z/pZ[X]. Similarly,
th(X) ̸= 0 in Z/pZ[X]. But as Z/pZ[X] is an integral domain, the product
of two nonzero elements cannot become 0. Thus, we get a contradiction.
Thus, l = t = 1 and this proves the lemma.

Our aim in this section is to find Gal(Q[ζn]/Q). We begin by finding the
irreducible polynomial of ζn over Q. Consider the polynomial

Φn(X) =
∏

gcd(i,n)=1

(X − ζ in) .

Theorem 8.5.2. Φn(X) ∈ Q[X] and is the irreducible polynomial of ζn over
Q.

Proof. Apriori, the coefficients of this polynomial are in Q[ζn]. To show that
the coefficients are in Q, it suffices to show that for every ϕ ∈ Gal(Q[ζn]/Q)
the coefficients are left invariant by ϕ. Then by the Galois correspondence
it will follow that the coefficients are in Q. We claim that for any such
automorphism ϕ we have ϕ(ζn) = ζ ln where gcd(l, n) = 1. If not then ϕ(ζn)
would satisfy an equation Xm − 1 = 0 where m < n and m divides n.
Applying ϕ−1 we see that this would mean that ζn also satisfies this equation,
which is impossible. If i is such that gcd(i, n) = 1 then gcd(il, n) = 1. Since
ϕ(ζ in) = ζ iln , it follows that ϕ permutes the set of roots of Φn(X). From this
it is clear that when we apply ϕ to the coefficients of Φn(X) then these are
left invariant.

Now Xn − 1 =
∏n−1

i=0 (X − ζ in). Since Φn(X) divides Xn − 1, it follows
using Gauss’ Lemma 8.5.1 that Φn(X) ∈ Z[X]. Obviously, from the def-
inition, Φn(X) is monic. Let us assume that Φn(X) = f(X)g(X) where
f(X), g(X) ∈ Q[X] are monic and f(X) is the irreducible polynomial of ζn
over Q. Then again using Gauss’ Lemma 8.5.1 we see that f(X), g(X) are
monic polynomials in Z[X]. If ζ in is a root of Φn(X), and p is a prime not
dividing n, then clearly ζ ipn is a root of ϕn(X). Every i which is coprime to
n is a product of such primes. Thus, to show that Φn(X) is irreducible, it
suffices to show that if θ is a root of f(X), then θp is a root of f(X), for
every p not dividing n.

So let us assume that θ is a root of f(X) and θp is a root of g(X). This
means that θ is a root of g(Xp), and since f(X) is the irreducible polynomial
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of θ, this implies that f(X) divides g(Xp). Now we go mod p. We have

g(Xp) = g(X)
p
.

This is because the coefficients mod p lie in Fp and every element in Fp
satisfies ap = a. Thus, f(X) divides g(X)

p
. Let δ be a root of f(X) in F̄p.

Then this shows that X − δ divides f(X) and g(X).

Now since f(X)g(X) divides Xn − 1, this also happens mod p, and this
shows that (X − δ)2 divides Xn − 1 in F̄p[X]. But this means that δ is a
root of Xn− 1 and also a root of DF̄p

(Xn− 1) = nXn−1, using Lemma 5.1.1.
Since δ is a root of Xn − 1, clearly, δ ̸= 0. The only root of DF̄p

(Xn − 1) is
0. This is a contradiction.

Corollary 8.5.3. [Q[ζn] : Q] = φ(n).

Theorem 8.5.4. There is a natural map (Z/nZ)× ∼−→ Gal(Q[ζn]/Q) which
is an isomorphism.

Proof. Given an i ∈ (Z/nZ)× we define an element ϕi ∈ Gal(Q[ζn]/Q) by
defining ϕi(ζn) = ζ in. Clearly, this defines a homomorphism from Q[ζn] →
Q[ζn] since ζ

i
n is a root of Φn(X). It is also clear that distinct elements

of (Z/nZ)× give rise to distinct automorphisms. Further, it is clear that
this map is a homomorphism of groups. By comparing cardinalities of both
groups we see that this is an isomorphism.

8.6 Abelian groups as Galois groups over Q

In this section we will show that every abelian group can be obtained as a
Galois group of a finite extension of Q. By the structure theorem for finite
abelian groups, we know that

G ∼=
r⊕
i=1

Gi ,

where each Gi is a finite cyclic group. Recall Dirichlet’s Theorem on primes
in an arithmetic progression.
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Theorem 8.6.1 (Dirichlet). Let a, b ∈ Z be coprime. Then the arithmetic
progression

{a+ kb | k ∈ Z}

contains infinitely many primes.

In particular, given any integer n, we see that there are infinitely many
primes in the arithmetic progression 1 + kn. For each i, let ni denote the
cardinality of the group Gi above. Choose distinct primes pi such that

ni|(pi − 1) .

Since (Z/piZ)× is a cyclic group of order (pi − 1), it follows that there is a
surjective quotient

(Z/piZ)× ↠ Gi .

Thus, there is a surjection

r⊕
i=1

(Z/piZ)× ↠
r⊕
i=1

Gi .

By the Chinese Remainder Theorem,
⊕r

i=1(Z/piZ)× ∼= (Z/nZ)×, where n =∏r
i=1 pi, with pi as above. This shows that there is a surjection

Gal(Q[ζn]/Q) ↠ G .

If H denotes the kernel, then by the Galois correspondence we have

Gal(Q[ζn]
H/Q) ∼= G .

Thus we have proved that

Theorem 8.6.2. Every finite abelian group is the Galois group of an exten-
sion of Q.

8.7 Kronecker-Weber Theorem

In the previous section we saw that every finite abelian group G is the Galois
group Gal(K/Q) for some K, where K is a subfield of a cyclotomic extension
of Q. The following theorem is a converse to this.
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Theorem 8.7.1 (Kronecker-Weber). Let K/Q be a Galois extension such
that Gal(K/Q) is abelian. Then K can be embedded into a cyclotomic exten-
sion of Q.

The proof of this very interesting theorem is beyond the scope of this
course.



Chapter 9

Norm and Trace

9.1 Norm

Let E ⊂ F be a finite extension. Then F is a finite dimensional vector space
over E and for any element a ∈ F we have the F -linear map ma : F → F ,
which is simply x 7→ ax. Since it is F -linear, it is also E-linear.

Definition 9.1.1. Define NF/E : F× → E× as follows. For a ∈ F define
NF/E(a) = det(ma).

Clearly NF/E(a) = 0 iff a = 0. This is because if a ̸= 0, then the inverse
of ma is ma−1 . It is also clear that NF/E(ab) = NF/E(a)NF/E(b).

Let us see an example before we proceed. Consider the extension Q ⊂
Q[ 3

√
2]. Let us compute N( 3

√
2). Since the determinant of a linear map can

be computed using any basis, we may choose the basis {1, 3
√
2, 3
√
4} for Q[ 3

√
2]

over Q. In this basis, the matrix of m 3√2 is (we write elements of Q[ 3
√
2] as

column vectors using the above basis) 0 0 2
1 0 0
0 1 0


Computing the determinant of this matrix we get N( 3

√
2) = 2. As an exercise

the reader may compute N( 3
√
2− 1).

Lemma 9.1.2. If a ∈ E then NF/E = a[F :E].

95
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Proof. Let α1, α2, . . . , αn be a basis for F/E. Clearly n = [F : E]. Then in
this basis it is clear that the matrix for ma is diag(a, a, . . . , a). The lemma
now follows easily.

Lemma 9.1.3. Let E ⊂ Ē and α ∈ Ē. Let p(X) = Xn+an−1X
n−1+ . . .+a0

denote the monic irreducible polynomial of α over E. Let F = E[α]. Then
NF/E(α) = (−1)na0.

Proof. The proof is a straightforward generalization of the above example.
Clearly {1, α, . . . , αn−1} is a basis for F over E. Writing elements of F as
column vectors in this basis we see that the matrix mα is given by

0 0 . . . −a0
1 0 . . . −a1
0 1 . . . −a2
...
0 . . . 1 −an−1


The determinant of this matrix is clearly (−1)na0. This proves the lemma.

Lemma 9.1.4. Let characteristic of E be 0. Let E ⊂ Ē and α ∈ Ē. Let
F = E[α]. Then NF/E(α) =

∏
σ∈HomE(F,Ē) σ(α).

Proof. Let p(X) ∈ E[X] denote the monic irreducible polynomial of α = α1.
Let α1, α2, . . . , αn denote the roots of p(X). Since we are in characteristic 0,
p(X) has no repeated roots. Thus, over Ē we have

p(X) =
n∏
i=1

(X − αi) .

Since F = E[α] ∼= E[X]/(p(X)), the embeddings σ are in bijective corre-
spondence with the roots of p(X). Indeed, σ is completely determined by
where it sends α = α1. Thus, we may define σi to be that embedding which
sends α1 7→ αi. Now it is clear that∏

σ∈HomE(F,Ē)

σ(α) =
n∏
i=1

αi = (−1)na0 = NF/E(α) .

This completes the proof of the lemma.
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Lemma 9.1.5. Let characteristic of E be p > 0. Let E ⊂ Ē and α ∈ Ē. Let

F = E[α]. Then NF/E(α) =
(∏

σ∈HomE(F,Ē) σ(α)
)[F :E]i

.

Proof. Let p(X) ∈ E[X] denote the monic irreducible polynomial of α = α1.
Find the largest r ≥ 0 such that p(X) = f(Xpr). Then f(X) is a separable
polynomial. Let β1, β2, . . . , βn denote the roots of f(X). Thus, over Ē we
have

f(X) =
n∏
i=1

(X − βi) ,

and so

p(X) =
n∏
i=1

(X − αi)
pr ,

where αi is the unique prth root of βi. Since F = E[α] ∼= E[X]/(p(X)), the
embeddings σ are in bijective correspondence with the distinct roots of p(X).
Indeed, σ is completely determined by where it sends α = α1. Thus, we may
define σi to be that embedding which sends α1 7→ αi. Now it is clear that( ∏

σ∈HomE(F,Ē)

σ(α)
)pr

=
( n∏
i=1

αi

)pr
= (−1)na0 = NF/E(α) .

To complete the proof the lemma it suffices to show that [F : E]i = pr.
Since f(X) is irreducible and separable, and f(αp

r
) = 0, it follows that αp

r

is separable over E. Thus, it follows that E[αp
r
] is separable over E. Now it

is clear that E[α] is a purely inseparable extension of E[αp
r
]. It now follows

from Theorem 4.4.2 that the [F : E[αp
r
]] = pr. Now it follows from Theorem

4.4.6 that [F : E]i = pr.

Lemma 9.1.6. Let E ⊂ K be a finite extension. Let α ∈ K and define
F := E[α]. Then NK/E(α) = NF/E(α)

[K:F ].

Proof. Let {k1, k2, . . . , kr} be a basis for K over F . Note {1, α, α2, . . . , αn−1}
is a basis for F over E. Then {αikj} is a basis for K over E. Let us compute
the matrix for mα in this basis. Since mα takes F to itself, it follows that it
takes the subspace Fkj ⊂ K to itself. Thus, writing

K =
r⊕
j=1

Fkj .
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it follows that the matrix of mα is block diagonal, with each block being the
matrix of mα restricted to F . It follows that the determinant is NF/E(α)

r.
This completes the proof of the lemma.

Lemma 9.1.7. Let E ⊂ K be a finite extension. Let α ∈ K. Then

NK/E(α) =
(∏

σ∈HomE(K,Ē) σ(α)
)[K:E]i

.

Proof. Let F denote E[α]. Let σ1, σ2, . . . , σr be the elements of the set
HomE(F, Ē). Each of these may be lifted to σij ∈ HomE(K, Ē), where
1 ⩽ j ⩽ [K : F ]s. Note that since σij|F = σi, it follows that σij(α) = σi(α).
Then the RHS becomes( ∏

σ∈HomE(K,Ē)

σ(α)
)[K:E]i

=
( ∏
σ∈HomE(F,Ē)

σ(α)
)[K:F ]s[K:E]i

=
( ∏
σ∈HomE(F,Ē)

σ(α)
)[F :E]i[K:F ]s[K:F ]i

= NF/E(α)
[K:F ]

= NK/E(α)

For the third equality we have used Lemma 9.1.5 and for the fourth we have
used Lemma 9.1.6.

Theorem 9.1.8. Let E ⊂ F ⊂ K be finite extensions. Then

NF/E ◦NK/F = NK/E .

Proof. We will use the previous Lemma. Let σ = σ1, σ2, . . . , σr be the ele-
ments of the set HomE(F, Ē). Here σ : F ⊂ Ē is a fixed embedding, using
which we view F as sitting inside Ē.

Recall the main result of section 3.3. It says that the action of Gal(Ē/E)
on the set HomE(F, Ē) is transitive. There exist elements σ̃i ∈ Gal(Ē/E)
such that σ̃i ◦ σ = σi.

Let us first extend σ to τ1, τ2, . . . , τl ∈ Homσ(K, Ē). Recall that this
means that the τj : K → Ē and their restriction to F is equal to σ.

K
τj // Ē

F
σ //

?�

OO

Ē
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Here l = [K : F ]s.

We emphasize that in all the above Lemmas, for example, in Lemma
9.1.7, we had fixed an embedding i : E ⊂ Ē, and when we write

NK/E(α) =
( ∏
σ∈HomE(K,Ē)

σ(α)
)[K:E]i

,

we mean

i(NK/E(α)) =
( ∏
σ∈HomE(K,Ē)

σ(α)
)[K:E]i

.

Keeping this in mind, it is clear that for α ∈ K,(∏
j

τj(α)
)[K:F ]i

= σ(NK/F (α)) .

We will use this later.

Consider the elements σ̃i ◦ τj : K → Ē.

K
τj // Ē

σ̃i // Ē

F
σ //

?�

OO

Ē
σ̃i // Ē

These are elements of HomE(K, Ē). We claim that these are all distinct. On
the contrary assume σ̃i ◦ τj = σ̃a ◦ τb. The τi’s when restricted to F are equal
to σ. This shows that σ̃i = σ̃a, that is, i = a. Since σ̃i is an isomorphism,
as proved in Corollary 3.1.6, it follows that τj = τb. We also know that
[K : E]s = [K : F ]s[F : E]s = lr. This proves that the set HomE(K, Ē)
contains precisely the collection σ̃i ◦ τj. Then

NK/E(α) =
(∏

i,j

σ̃iτj(α)
)[K:E]i

=
(∏

i

σ̃i

(∏
j

τj(α)
)[K:F ]i)[F :E]i

=
(∏

i

σ̃i(σ(NK/F (α)))
)[F :E]i

=
(∏

i

σi(NK/F (α))
)[F :E]i

= NF/E(NK/F (α))
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This proves the theorem.

9.2 Trace

Definition 9.2.1. Define TrF/E : F → E as follows. For a ∈ F define
TrF/E(a) = Trace(ma).

It is clear that TrF/E(a+ b) = TrF/E(a) + TrF/E(b).

Let us compute trace in the same example that we took earlier. Consider
the extension Q ⊂ Q[ 3

√
2]. Let us compute N( 3

√
2). We choose the basis

{1, 3
√
2, 3
√
4} for Q[ 3

√
2] over Q. In this basis, the matrix of m 3√2 is (we write

elements of Q[ 3
√
2] as column vectors using the above basis) 0 0 2

1 0 0
0 1 0


Computing the trace of this matrix we get Tr( 3

√
2) = 0. As an exercise the

reader may compute Tr( 3
√
2− 1).

Lemma 9.2.2. If a ∈ E then TrF/E = [F : E]a.

Proof. Let α1, α2, . . . , αn be a basis for F/E. Clearly n = [F : E]. Then in
this basis it is clear that the matrix for ma is diag(a, a, . . . , a). The lemma
now follows easily.

Lemma 9.2.3. Let E ⊂ Ē and α ∈ Ē. Let p(X) = Xn+an−1X
n−1+ . . .+a0

denote the monic irreducible polynomial of α over E. Let F = E[α]. Then
TrF/E(α) = −an−1.

Proof. The proof is a straightforward generalization of the above example.
Clearly {1, α, . . . , αn−1} is a basis for F over E. Writing elements of F as
column vectors in this basis we see that the matrix mα is given by

0 0 . . . −a0
1 0 . . . −a1
0 1 . . . −a2
...
0 . . . 1 −an−1
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The trace of this matrix is clearly −an−1. This proves the lemma.

Lemma 9.2.4. Let characteristic of E be 0. Let E ⊂ Ē and α ∈ Ē. Let
F = E[α]. Then TrF/E(α) =

∑
σ∈HomE(F,Ē) σ(α).

Proof. Let p(X) ∈ E[X] denote the monic irreducible polynomial of α = α1.
Let α1, α2, . . . , αn denote the roots of p(X). Since we are in characteristic 0,
p(X) has no repeated roots. Thus, over Ē we have

p(X) =
n∏
i=1

(X − αi) .

Since F = E[α] ∼= E[X]/(p(X)), the embeddings σ are in bijective corre-
spondence with the roots of p(X). Indeed, σ is completely determined by
where it sends α = α1. Thus, we may define σi to be that embedding which
sends α1 7→ αi. Now it is clear that

∑
σ∈HomE(F,Ē)

σ(α) =
n∑
i=1

αi = −an−1 = TrF/E(α) .

This completes the proof of the lemma.

Lemma 9.2.5. Let characteristic of E be p > 0. Let E ⊂ Ē and α ∈ Ē. Let

F = E[α]. Then TrF/E(α) = [F : E]i

(∑
σ∈HomE(F,Ē) σ(α)

)
. In particular, if

[F : E]i > 1 then the trace is 0.

Proof. Let p(X) ∈ E[X] denote the monic irreducible polynomial of α = α1.
Find the largest r ≥ 0 such that p(X) = f(Xpr). Then f(X) is a separable
polynomial. Let β1, β2, . . . , βn denote the roots of f(X). Thus, over Ē we
have

f(X) =
n∏
i=1

(X − βi) ,

and so

p(X) =
n∏
i=1

(X − αi)
pr ,

where αi is the unique prth root of βi. Since F = E[α] ∼= E[X]/(p(X)),
the embeddings σ are in bijective correspondence with the distinct roots of
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p(X). Indeed, σ is completely determined by where it sends α = α1. Thus,
we may define σi to be that embedding which sends α1 7→ αi. In the proof
of Lemma 9.1.5 we proved that [F : E]i = pr. If r > 0 then by Lemma 9.2.3
we see that TrF/E(α) = 0. On the other hand since [F : E]i = pr we see that

[F : E]i

( ∑
σ∈HomE(F,Ē)

σ(α)
)
= 0 .

Thus, if r > 0 then the lemma is proved. Now consider the case when r = 0.
Then ( ∑

σ∈HomE(F,Ē)

σ(α)
)
=
( n∑
i=1

αi

)
= −an−1 = TrF/E(α) .

This completes the proof of the lemma.

Lemma 9.2.6. Let E ⊂ K be a finite extension. Let α ∈ K and define
F := E[α]. Then TrK/E(α) = [K : F ]TrF/E(α).

Proof. Let {k1, k2, . . . , kr} be a basis for K over F . Note {1, α, α2, . . . , αn−1}
is a basis for F over E. Then {αikj} is a basis for K over E. Let us compute
the matrix for mα in this basis. Since mα takes F to itself, it follows that it
takes the subspace Fkj ⊂ K to itself. Thus, writing

K =
r⊕
j=1

Fkj .

it follows that the matrix of mα is block diagonal, with each block being the
matrix of mα restricted to F . It follows that the trace is [K : F ]TrF/E(α).
This completes the proof of the lemma.

Lemma 9.2.7. Let E ⊂ K be a finite extension. Let α ∈ K. Then

TrK/E(α) = [K : E]i

(∑
σ∈HomE(K,Ē) σ(α)

)
.

Proof. Let F denote E[α]. Let σ1, σ2, . . . , σr be the elements of the set
HomE(F, Ē). Each of these may be lifted to σij ∈ HomE(K, Ē), where
1 ⩽ j ⩽ [K : F ]s. Note that since σij|F = σi, it follows that σij(α) = σi(α).
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Then the RHS becomes

[K : E]i

( ∑
σ∈HomE(K,Ē)

σ(α)
)
= [K : F ]s[K : E]i

( ∑
σ∈HomE(F,Ē)

σ(α)
)

= [F : E]i[K : F ]s[K : F ]i

( ∑
σ∈HomE(F,Ē)

σ(α)
)

= [K : F ]TrF/E(α)

= TrK/E(α)

For the third equality we have used Lemma 9.2.5 and for the fourth we have
used Lemma 9.2.6.

Theorem 9.2.8. Let E ⊂ F ⊂ K be finite extensions. Then

TrF/E ◦ TrK/F = TrK/E .

Proof. We will use the previous Lemma. Let σ1, σ2, . . . , σr be the elements of
the set HomE(F, Ē). Let us first extend these to σ̃i : Ē → Ē. Let τ1, τ2, . . . , τl
be the elements of the set HomF (K, Ē). Consider the maps σ̃i ◦ τj : K → Ē.
These are elements of HomE(K, Ē). We saw in the proof of Theorem 9.1.8
that the set HomE(K, Ē) is precisely the collection σ̃i ◦ τj.

Then

TrK/E(α) = [K : E]i

(∑
i,j

σ̃iτj(α)
)

= [F : E]i

(∑
i

σ̃i

(
[K : F ]i

∑
j

τj(α)
))

= [F : E]i

(∑
i

σ̃i(TrK/F (α))
)

= [F : E]i

(∑
i

σi(TrK/F (α))
)

= TrF/E(TrK/F (α))

This proves the theorem.

9.3 Linear independence of characters

Let G be a group and let L be a field. A character of G (in L) is a group
homomorphism χ : G → L×. Given a character of G we may consider it as
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a map from χ : G→ L, that is, as an element of Maps(G,L). For any set S,
the set Maps(S, L) has an obvious L-vector space structure, the one coming
from L. This is given as follows. Let f : S → K and let a ∈ L. Then

(a · f)(g) := af(g) .

In particular, this means that Maps(G,L) is a L-vector space.

Proposition 9.3.1. Let χ1, χ2, . . . , χn be characters of G in L. Then these
are linearly independent as elements of Maps(G,L).

Proof. Let us assume that this is not the case. Thus, there is a linear depen-
dence

a1χ1 + a2χ2 + . . .+ anχn = 0

in Maps(G,L). Let us choose the linear dependence which contains the least
number of characters and renumber the characters and write

a1χ1 + a2χ2 + . . .+ arχr = 0

for an r which is the smallest possible. By choice ai ̸= 0 for all i. Since
χ1 ̸= χ2, there is h ∈ G such that χ1(h) ̸= χ2(h). Evaluating the above at g
and hg we get

a1χ1(g) + a2χ2(g) + . . .+ arχr(g) = 0

a1χ1(h)χ1(g) + a2χ2(h)χ2(g) + . . .+ arχr(h)χr(g) = 0

Multiplying the first equation with χ1(h) and subtracting we get that

r∑
i=2

ai(χi(h)− χ1(h))χi(g) = 0

for all g ∈ G. The coefficient when i = 2 is clearly nonzero and so this is a
non-trivial relation among a smaller number of characters,

r∑
i=2

ai(χi(h)− χ1(h))χi = 0 .

This proves the proposition.
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We will use the above Proposition and Lemma 9.2.7 to deduce the fol-
lowing.

Theorem 9.3.2. Let E ⊂ K be a finite separable extension. Then the pairing
K ×K → E given by

(x, y) 7→ TrK/E(xy)

is non-degenerate.

Proof. Let us assume that this is not the case. Then there is y ∈ K such
that y ̸= 0 and TrK/E(xy) = 0 for all x ∈ K. Since [K : E]i = 1, by Lemma
9.2.7 it follows that TrK/E(xy) =

∑n
i=1 σi(xy). Here σi are the elements of

HomE(K, Ē). Thus, for all x ∈ K we have

n∑
i=1

σi(y)σi(x) = 0 .

But σi : K
× → Ē× is a group homomorphism. The above equation shows

that the characters σ1, . . . , σn are linearly dependent. This contradicts the
previous proposition by taking G = K× and L = Ē.

9.4 Algebraic Integers

There is a very rich and interesting theory of algebraic integers, which we will
not go into. For our purposes it will suffice to show that the set of algebraic
integers is a subring of Q̄. The aim of this section is to give an application
of Theorem 9.3.2.

Definition 9.4.1. An element α ∈ Q̄ is called an algebraic integer if there
is a monic polynomial g(X) ∈ Z[X] such that g(α) = 0.

Lemma 9.4.2. If α is an algebraic integer then the monic irreducible poly-
nomial of α over Q has coefficients in Z.

Proof. Let p(X) denote the monic irreducible polynomial of α over Q. Then
we may write g(X) = p(X)h(X), where h(X) ∈ Q[X] is monic. Let a > 0
be an integer such that ap(X) ∈ Z[X] and ah(X) ∈ Z[X]. Then

a2g(X) = (ap(X))(ah(X)) .
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Comparing content, recall Definition 1.4.1, we get

a2 = cont(ap)cont(ah) .

Since p(X) is monic, it follows that ap has leading coefficient a. Thus,
cont(ap) = gcd(a, . . .) ⩽ a. Similarly, cont(ah) ⩽ a. It follows easily that
cont(ap) = cont(ah) = a. Since ap(X)/(cont(ap)) ∈ Z[X], it follows that
p(X) ∈ Z[X].

Corollary 9.4.3. Let α be an algebraic integer. Let p(X) denote its monic
irreducible polynomial. The subring Z[α] ⊂ Q̄ is isomorphic to Z[X]/(p(X)).

Proof. Consider the ring homomorphism Z[X] → Q̄ which sends X 7→ α.
The image is clearly Z[α]. The kernel contains (p(X)). If h(X) ∈ Z[X] and
h(α) = 0 then h(X) = p(X)q(X) for some q(X) ∈ Q[X]. It is easily checked
that q(X) ∈ Z[X]. Thus, it follows that h(X) ∈ (p(X)) ⊂ Z[X]. Thus, the
kernel is precisely (p(X)). This proves the Corollary.

Corollary 9.4.4. If α is an algebraic integer then Z[α] ⊂ Q̄ is a free Z
module of finite rank equal to degree of the irreducible polynomial of α over
Z.

Proof. If p(X) ∈ Z[X] denotes the monic irreducible polynomial of α then
Z[α] ∼= Z[X]/(p(X)). Clearly the ring Z[X]/(p(X)) is a free Z module with
basis 1, X, . . . , Xd−1, where d = deg(p(X)).

Proposition 9.4.5. Let α ∈ Q̄ be such that Z[α] ⊂ Q̄ is a finitely generated
Z module. Then α is an algebraic integer.

Proof. Consider the set {1, α, α2, . . . , }. These generate Z[α] as a Z module.
Thus, finitely many of these, say {1, α, . . . , αn} will generate Z[α] as a Z
module. Writing αn+1 in terms of these gives a monic polynomial g(X) ∈
Z[X] of degree n+ 1 such that g(α) = 0.

Proposition 9.4.6. If α, β are algebraic integers then Z[α, β] ⊂ Q is a
finitely generated Z module.

Proof. The subring Z[α, β] is a quotient of Z[X, Y ]/(p(X), q(Y )), where p(X)
denotes the monic irreducible polynomial of α and q(Y ) denotes the monic
irreducible polynomial of β. The ring Z[X, Y ]/(p(X), q(Y )) is finitely gen-
erated as a Z module (by elements of the type X iY j, 0 ⩽ i ⩽ deg(p(X))
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0 ⩽ j ⩽ deg(q(Y ))). Since quotient of a finitely generated module is a
finitely generated module, the Proposition follows.

Corollary 9.4.7. If α, β are algebraic then so are α± β, αβ.

Proof. If γ ∈ Z[α, β] then Z[γ] ⊂ Z[α, β]. Since submodule of a finitely gen-
erated Z module is finitely generated, it follows that Z[γ] is finitely generated
and so γ is an algebraic integer. Apply this to γ = α± β, αβ.

Lemma 9.4.8. If α ∈ Q is an algebraic integer, then α ∈ Z.

Proof. Left as an exercise.

Let K be a finite extension of Q and let OK ⊂ K denote the set of
algebraic integers in K. By Corollary 9.4.7 it follows that this is a subring.
Moreover, this subring contains the integers. This is often represented in the
diagram

OK
// K

Z //

OO

Q

OO

Theorem 9.4.9. OK is a free Z-module of rank n = [K : Q].

Proof. Let {α1, . . . , αn} ⊂ K be a Q-basis for K. For any α ∈ K, it is easily
checked that there is a b ∈ Z such that bα ∈ OK . Thus, multiplying by a
suitable b ∈ Z, we may assume that {α1, . . . , αn} ⊂ OK forms a Q-basis for
K. Let B := ⟨TrK/Q(αiαj)⟩. Then B is an n× n matrix.

Consider the isomorphisms Qn ∼−→ K
∼−→ Qn given by

v 7→ x =
∑
i

viαi 7→ (TrK/Q(xα1), . . . , T rK/Q(xαn)) = vB .

If x ∈ OK , the combining Lemma 9.2.3 and Lemma 9.2.6 we see that

(TrK/Q(xα1), . . . , T rK/Q(xαn)) = vB ∈ Zn .

Thus, we get that v = Cw
det(B)

for some w ∈ Zn and a matrix C which has
integer coefficients. In other words, every element of OK can be represented
as

x =

∑
i viαi

det(B)
.
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Thus, under the isomorphism Qn ∼−→ K given by v 7→
∑

i viαi, OK is con-
tained in the image of the finitely generated Z-submodule 1

det(B)
Zn. Thus,

OK is contained in a finitely generated Z-module and so is a finitely gen-
erated submodule. It is clear that OK is torsion free. It follows from the
structure theorem of finitely generated abelian groups that OK is a finitely
generated and free submodule.

If the rank of this module is strictly less than n, then it would follow that
there is a Z-linear relation among the αi, which would imply that there is
a Q-linear relation among the αi, which is a contradiction. Thus, it follows
that the rank of OK is n.



Chapter 10

Lindemann-Weierstrass
Theorem

The main result of this chapter is the Lindemann-Weierstrass Theorem. First
we shall prove that π is transcendental over Q, as this will be used in the
proof of the Lindemann-Weierstrass Theorem.

10.1 Transcendence of π

The transcendence of π was proved by Carl Louis Ferdinand von Lindemann
in 1882.

We begin with a preliminary result we will need. Let f(X) ∈ C[X] be
a polynomial. If f(X) =

∑n
i=0 aiX

i then denote by f̄(X) the polynomial∑n
i=0 |ai|X i. For λ ∈ C define an integral

(10.1.1) I(λ) := I(λ, f) = λeλ
∫ 1

0

e−uλf(uλ) du .

We shall need two properties of I(λ). Note that

d(e−uλf(uλ)) = −λe−uλf(uλ)du+ λe−uλf (1)(uλ)du .

Integrating both sides from 0 to 1 we get

e−λf(λ)− f(0) + λ

∫ 1

0

e−uλf(uλ)du = λ

∫ 1

0

e−uλf (1)(uλ)du .

109



110 CHAPTER 10. LINDEMANN-WEIERSTRASS THEOREM

This yields

f(λ)− eλf(0) + I(λ, f) = I(λ, f (1)) .

Inductively, we get f (k)(λ) − eλf (k)(0) + I(λ, f (k)) = I(λ, f (k+1)). Adding
these we see that

(10.1.2) I(λ) = eλ
n∑
i=0

f (i)(0)−
n∑
i=0

f (i)(λ)

We also have the estimate

|I(t)| ⩽
∣∣∣∣λeλ ∫ 1

0

e−uλf(uλ) du

∣∣∣∣(10.1.3)

⩽ |λ|
∫ 1

0

e|(1−u)λ||f(uλ)|du

⩽ |λ|e|λ|
∫ 1

0

|f(uλ)|du

⩽ |λ|e|λ|
∫ 1

0

f̄(|uλ|)du

⩽ |λ|e|λ|f̄(|λ|) .

Theorem 10.1.4. π is transcendental over Q.

Proof. Let us assume that π is algebraic over Q. Then so is iπ. Let θ = θ1 :=
iπ. Let g(X) ∈ Q[X] be the monic irreducible polynomial of θ over Q. Let r
be the degree of g(X). If b > 0 is an integer such that bg(X) ∈ Z[X], then it
is easy to check that the monic irreducible polynomial of bθ has coefficients
in Z. In fact, this polynomial is precisely brg(X/b). This shows that bθ is an
algebraic integer. Let θ1, θ2, . . . , θr be the distinct roots of g(X).

Since eiπ = −1, it follows that eθ1 + 1 = 0. Thus, we get

(10.1.5) (eθ1 + 1)(eθ2 + 1) . . . (eθr + 1) = 0 .

Multiplying out the LHS, we see that the LHS is a sum of terms of the type
eϕ, where each

ϕ = ϵ1θ1 + . . .+ ϵrθr, ϵi ∈ {0, 1} .
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Thus, we have 2r possible expressions as above. Some of these may be 0. Let
us assume that ϕ1, . . . , ϕn are nonzero and the remaining 2r − n are 0. Let
q := 2n − r. Then (10.1.5) becomes

(10.1.6) q + eϕ1 + . . .+ eϕn = 0 .

It is possible that ϕi = ϕj, or e
ϕi = eϕj , for some i ̸= j.

Let p be a prime (we will choose p precisely later). Consider the polyno-
mial

g(Y ) = Y p−1(Y − bϕ1)
p . . . (Y − bϕn)

p .

Notice that if σ ∈ Gal(Q̄/Q) then σ permutes the θi and so also the ϕi. This
shows that the polynomial g(X) has coefficients in Q. The bθi are algebraic
integers since they satisfy a monic polynomial in Z[X]. By Corollary 9.4.7 it
follows that bϕi are algebraic integers. Again, since the coefficients of g(X)
are polynomials in bϕi, it follows that the coefficients are algebraic integers.
By Lemma 9.4.8 it follows that the coefficients are in Z and so g(X) ∈ Z[X].
Let

f(X) = g(bX) .

Let m := (n+ 1)p− 1. Then f(X) has degree m.

Define, using definition (10.1.1) with f(X), the integrals I and

J := I(ϕ1) + . . .+ I(ϕn) .

Using (10.1.2) we get
(10.1.7)

J = −q
m∑
i=0

f (i)(0)−
n∑
j=1

m∑
i=0

f (i)(ϕj) = −q
m∑
i=0

f (i)(0)−
m∑
i=0

n∑
j=1

f (i)(ϕj) .

Note that f (i)(X) = big(i)(bX). Note that f (i)(ϕj) = 0 if i < p. If i ⩾ p then
g(i)(X) is a polynomial with integer coefficients such that every coefficient is
divisible by p!. Let us write g(i)(X) = p!gi(X) with gi(X) ∈ Z[X]. Thus,
f (i)(X) = bip!gi(bX) Then

n∑
j=1

f (i)(ϕj) = bip!
n∑
j=1

gi(bϕj) .

Again note that in the RHS
∑n

j=1 gi(bϕj) is invariant under the action of

Gal(Q̄/Q). Thus, it is in Q and is also an algebraic integer. Thus, it is in Z.
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It follows that if i ⩾ p then
∑n

j=1 f
(i)(ϕj) is an integer which is divisible by

p!. Thus, it follows that
m∑
i=0

n∑
j=1

f (i)(ϕj)

is an integer which is divisible by p!.

Next let us look at the term
∑m

i=0 f
(i)(0). Again, it is clear that if i < p−1

then f (i)(0) = 0. If i ⩾ p then f (i)(0) is an integer divisible by p!. For i = p−1
we have

f (p−1)(0) = bp−1g(p−1)(0) = bp−1(−1)n(p− 1)!(bϕ1 . . . bϕn)
p .

As before, it follows that (bϕ1 . . . bϕn) ∈ Z. It follows that f (p−1)(0) is an
integer which is divisible by (p− 1)!, but not by p if p is chosen larger than
(bϕ1 . . . bϕn). Thus, it follows that if p is chosen very large then (p − 1)!
divides q

∑m
i=0 f

(i)(0), but not p. We conclude that if p ≫ 0 then J is not
divisible by p but it is divisible by (p− 1)!. This shows that |J | ⩾ (p− 1)!.

Next let use use (10.1.3) to estimate the absolute value of J .

|J | ⩽
n∑
i=1

|I(ϕi)|

⩽
n∑
i=1

|ϕi|e|ϕi|f̄(|ϕi|)

Note that

f̄(|λ|) ⩽ bnp|λ|p−1(|λ|+ |ϕ1|)p . . . (|λ|+ |ϕn|)p .

If µ = max{|ϕi|} then

f̄(|ϕi|) ⩽ (2b)npµp−1µnp .

Thus, we get that

(p− 1)! ⩽ |J | ⩽ nµeµ(2b)npµp−1µp
2

= neµ(2b)npµnp+p .

This gives a contradiction when p ≫ 0 (by Sterling’s formula, after taking
log, the LHS is of order (p− 1) log (p− 1), while the RHS is of order p log c
for some constant c). This shows that π is transcendental over Q.
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10.2 Lindemann-Weierstrass Theorem

Recall the Fundamental Theorem of Symmetric Polynomials, see Remark
8.2.5. Let F be a field and let A := F [X1, . . . , Xn] denote the polynomial
ring in n variables. Let R be the ring A[Y1, . . . , Yn]. For σ ∈ Sn, we have
an automorphism of R, defined as identity on A and which sends Yi to Yσ(i).
We denote this automorphism by σ̃.

Lemma 10.2.1. Consider the product g :=
∏

σ∈Sn
(X1Yσ(1) + . . .+XnYσ(n)).

For a monomial M in the Yi, say Y j1
1 Y j2

2 . . . Y jn
n , let aM ∈ A denote the

coefficient of M in the above product. Then aM = aσ̃(M).

Proof. Let Si(Y ) denote the ith elementary symmetric polynomial in the Yi.
By the Fundamental Theorem on symmetric polynomials, it follows that the
product g is a sum of elements of the type

α := aS1(Y )j1S2(Y )j2 . . . Sn(Y )jn ,

where a ∈ A and ji ⩾ 0 are integers. If M is a monomial in the Yi which
appears in the above expression, then so does σ̃(M) and clearly both these
have the same coefficient, which will be some integer times a. Since g is a sum
of elements of the above type, we may write it as a finite sum g =

∑
j αj. The

given monomial M , if it appears in αj, with coefficient aM,j then σ̃(M) also
appears in αj with coefficient aM,j. As the coefficient of M in g is

∑
j aM,j,

the Lemma follows.

10.2.2. Lexicographic order on C. Define a total order on C as follows. Let
α ̸= β ∈ C. We say α > β if one of the following two holds

� Re(α) > Re(β), or

� Re(α) = Re(β) and Im(α) > Im(β).

It is clear that this defines a total order on C. Moreover, the following Lemma
is clear.

Lemma 10.2.3. If α1 > β1 and α2 > β2 then α1 + α2 > β1 + β2.

The first step in the proof of the Lindemann-Weierstrass Theorem is the
following reduction.
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Lemma 10.2.4. Let α1, α2, . . . , αn be distinct algebraic integers. Suppose
eαi are linearly dependent over Q̄, that is, there is a relation

∑n
i=1 βie

αi =
0, where βi ∈ Q̄ and βi ̸= 0. Then there exist distinct algebraic integers
α′
1, . . . , α

′
m such that eα

′
i are linearly dependent over Q.

Proof. Let K be a finite Galois extension containing all the βi. Consider
the ring R := K[X1, X2, . . . , Xn]. For every σ ∈ Gal(K/Q) we have an
automorphism σ̃ of R which acts on the coefficients by σ and sends Xi to Xi.
Consider product

(10.2.5) g(X1, . . . , Xn) :=
∏

σ∈Gal(K/Q)

σ̃(β1X1 + . . .+ βnXn) .

Clearly, this product is an element in Q[X1, . . . , Xn]. This is obviously a
nonzero polynomial and so we may write it as

g(X) :=
∑

a∈(Z⩾0)n

γaX
a , γa ∈ Q .

Here a = (a1, . . . , an) and X
a = Xa1

1 . . . Xan
n . Moreover,

∑
ai = [K : Q] =: r.

Let I denote the set of such indices a which can appear in the above sum.

The evaluation g(eα1 , . . . , eαn) is 0 since one of the terms in the product
(10.2.5) evaluates to 0. Note that the monomial Xa evaluates to e

∑
aiαi .

Thus, we get an equation

(10.2.6)
∑
a∈I

γae
∑
aiαi = 0 .

It is tempting to conclude that this gives the relation we are looking for.
However, we still need to check that this is a nontrivial relation. For example,
we could have an expression of the type

γ1M1 + γ2M2 + . . .+ γ5M5 ,

where the γi ∈ Q and Mi are monomials Xa. Let Θ denote the evaluation
map, which sends Xi 7→ eαi . Then it may happen that Θ(M1) = Θ(M2) and
Θ(M3) = Θ(M4) = Θ(M5) and γ1 + γ2 = 0 and γ3 + γ4 + γ5 = 0. Then
after evaluating we do not get a nontrivial relation. We need to show that
after evaluation, such a cancellation of the coefficients does not happen. For
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example, this will be the case if we can show that γ1 ̸= 0 and Θ(M1) ̸= Θ(Mi)
for i ̸= 1.

We claim that if
∑
aiαi ̸=

∑
biαi then e

∑
aiαi ̸= e

∑
biαi . If not, then we

will have that
∑

j αj(aj − bj) = 2iπn for some nonzero integer n. But this
would imply that π is algebraic over Q. This proves the claim.

We are now ready to prove the Lemma. Consider the evaluation of
(10.2.5) ∏

σ∈Gal(K/Q)

(σ(β1)e
α1 + . . .+ σ(βn)e

αn) .

Let α1 be the largest among the αi in the lexicographic order. Then the coef-
ficient of erα1 is nonzero. Moreover, rα1 >

∑
aiαi for every a ̸= (r, 0, . . . , 0).

From the preceding para it follows that the value erα1 occurs only once in
the expression (10.2.6) and it appears with a nonzero coefficient. This is the
relation we are looking for.

The next step in the proof is the following reduction.

Lemma 10.2.7. Let α1, α2, . . . , αn be distinct algebraic integers. Suppose eαi

are linearly dependent over Q. Then there exists a set of distinct algebraic
integers {α′

1, . . . , α
′
m}, which is left invariant by Gal(Q̄/Q), and a relation∑m

i=1 γie
α′
i = 0 such that if α′

i and α
′
j are conjugates then γi = γj.

Proof. Again, we shall use a certain polynomial and evaluate it to get our
result.

First, we can enlarge the set of αi (by adding conjugates) and assume
that the set α1, α2, . . . , αn is invariant under Gal(Q̄/Q). Then eαi are linearly
dependent over Q. Let

∑
βie

αi = 0 be such a relation. Some of the βi may
be 0 now.

Consider the ring Q[X1, . . . , Xn, Y1, . . . , Yn]. Let g denote the polynomial
in the Lemma 10.2.1, that is,

g =
∏
σ∈Sn

(X1Yσ(1) + . . .+XnYσ(n)) .

Then g can be written as a sum of monomials in Yi,

(10.2.8) g =
∑

M=Y
j1
1 Y

j2
2 ...Y jn

n

aMY
j1
1 Y j2

2 . . . Y jn
n aM ∈ Q[X1, . . . , Xn] .
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Note that
∑
ji = n!. We evaluate g by putting Xi 7→ βi and Yi 7→ eαi . Let

us denote this evaluation map by Θ : Q[X1, . . . , Xn, Y1, . . . , Yn] → C.
Since one of the elements in the product, namely,

∑
βie

αi = 0, it follows
that the evaluation is 0. We claim that Θ(g) is the relation we are looking
for. We need to check that this is a nontrivial relation and it has the property
mentioned in the statement of the Lemma.

First we check that this is a nontrivial relation. The evaluation Θ(g) is
the product

(10.2.9)
∏
σ∈Sn

(β1e
ασ(1) + . . .+ βne

ασ(n)) .

When we open this out, this is a sum of terms, where each term looks like

βe
∑

σ ασ(lσ) , β ∈ Q .

For each σ ∈ Sn, consider the expression

Nσ := β1e
ασ(1) + . . .+ βne

ασ(n) .

Then Θ(g) is the product of Nσ as σ varies. In Nσ, consider the set T of those
i for which the coefficient of eαi in Nσ (that is, βσ−1(i)) is nonzero. There is
a unique jσ (which depends on σ) such that βσ−1(i) is nonzero and for which
ασ(j) is largest in the lexicographic order in the set {αi | i ∈ T}. Let us write
the product of these eαjσ , as σ varies, as eδ. Then δ =

∑
σ αjσ .

If eδ
′
is another term with nonzero coefficient which appears when we

open out (10.2.9), then δ′ =
∑

σ αlσ . For each σ, we have αjσ > αlσ in the
lexicographic order. In view of Lemma 10.2.3, it follows that δ > δ′. In
particular, δ ̸= δ′. It follows that eδ ̸= eδ

′
or else we get that π is algebraic

over Q, as both δ and δ′ are algebraic over Q. It follows that the coefficient
of eδ cannot get cancelled off. Thus, the relation is a nontrivial one.

Finally we have to show that this relation satisfies that property stated in
the Lemma. Observe that every term eδ

′
appears as Θ(M) for some monomial

M . The coefficient of eδ
′
is ∑

Θ(M)=eδ′

Θ(aM) .



10.2. LINDEMANN-WEIERSTRASS THEOREM 117

Let σ ∈ Gal(Q̄/Q). Then σ defines a permutation of the αi, which also we
denote by σ. Let M = Y j1

1 . . . Y jn
n . Then Θ(M) = e

∑
jiαi . Note that

Θ(σ̃(M)) = Θ(Y j1
σ(1) . . . Y

jn
σ(n))

= e
∑
jiασ(i)

= eσ(e
∑

jiαi ) .

Using this one easily checks that Θ(M) = eδ
′
iff Θ(σ̃(M)) = eσ(δ

′). By
Lemma 10.2.1 the coefficient of σ̃(M) in (10.2.8) is aσ̃(M) = aM . Thus, the
coefficient of eσ(δ

′) is ∑
Θ(M)=eσ(δ′)

Θ(aM) =
∑

Θ(N)=eδ′

Θ(aσ̃(N))

=
∑

Θ(N)=eδ′

Θ(aN)

This shows that the coefficients of eδ
′
and eσ(δ

′) are the same. This completes
the proof of the Lemma.

We are now ready to prove the Lindemann-Weierstrass Theorem.

Theorem 10.2.10 (Lindemann-Weierstrass). Let α1, . . . , αn be distinct ele-
ments in Q̄. Then eα1 , . . . , eαn are linearly independent over Q̄.

Proof. Let us assume that these are linearly dependent over Q̄. Applying
Lemma 10.2.4 and Lemma 10.2.7 we may assume that there are distinct
elements α1, . . . , αn ∈ Q̄ such that this collection is left invariant under
Gal(Q̄/Q) and there is a nontrivial relation

∑
i βiαi, with βi ∈ Q, such that

if αi and αj are conjugates then βi = βj. We renumber the αi so that
α1, α2, . . . , αn1 are conjugates, αn1+1, αn1+2, . . . , αn2 are conjugates, and so
on. Thus,

βni+1 = βn1+2 = . . . = βni+1
.

Let
ρ : Gal(Q̄/Q) → Aut(α1, . . . , αn) ∼= Sn

denote the permutation representation. Thus,

(10.2.11) βk = βρ(σ)(k) .
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Let b be a positive integer such that bβi are integers and bαi are algebraic
integers. Define, for a prime p (to be made precise later)

gi(X) :=
(Y − bα1)

p . . . (Y − bαn)
p

(Y − bαi)
.

Let
fi(X) := gi(bX) ∈ Q̄[X] .

Recall that for σ ∈ Gal(Q̄/Q) we have the automorphism σ̃ : Q̄[X] → Q̄[X].
Then σ̃(fi(X)) = fρ(σ)(i)(X).

Recall the definition of I from (10.1.1). For λ ∈ C, let Ii(λ) = I(λ, fi).
Let

Ji := β1Ii(α1) + β2Ii(α2) + . . .+ βnIi(αn) .

Using (10.1.2) we have that

Ji =
n∑
k=1

βkIi(αk)

=
n∑
k=1

βk

(
eαk

np−1∑
l=0

f
(l)
i (0)−

np−1∑
l=0

f
(l)
i (αk)

)

= −
n∑
k=1

βk

np−1∑
l=0

f
(l)
i (αk)

= −
np−1∑
l=0

n∑
k=1

βkf
(l)
i (αk) .

Note that if σ ∈ Gal(Q̄/Q) then using (10.2.11) we get

σ(Ji) = −
np−1∑
l=0

n∑
k=1

βkσ(f
(l)
i (αk))(10.2.12)

= −
np−1∑
l=0

n∑
k=1

βkf
(l)
ρ(σ)(i)(αρ(σ)(k))

= −
np−1∑
l=0

n∑
k=1

βρ(σ)(k)f
(l)
ρ(σ)(i)(αρ(σ)(k))

= Jρ(σ)(i) .
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Next observe that if l < p−1 then g
(l)
i (bαk) = 0. This shows that if l < p−1

then f
(l)
i (bαk) = 0. If l ⩾ p then g

(l)
i (bαk) = p!δ, where δ is an algebraic

integer. Thus, if l ⩾ p then f
(l)
i (αk) = blg

(l)
i (bαk) = blp!δ. Similarly, if

l = p− 1 then f
(p−1)
i (αk) = bp−1g

(p−1)
i (bαk) = 0 if k ̸= i and

f
(p−1)
i (αi) = bp−1g

(p−1)
i (bαi) = bp−1(p− 1)!

∏
k ̸=i

(bαk − bαi) ̸= 0 .

Combining these observations, we may write

Ji = −
np−1∑
l=0

n∑
k=1

βkf
(l)
i (αk) = −

np−1∑
l=p−1

n∑
k=1

βkf
(l)
i (αk)

= βif
(p−1)
i (αi)−

np−1∑
l=p

n∑
k=1

βkf
(l)
i (αk)

= βib
p−1g

(p−1)
i (bαi)−

np−1∑
l=p

n∑
k=1

βkb
lg

(l)
i (bαk)

= (p− 1)!δi,1 + p!δi,2 ,

where δi,1 = bp−1
∏

k ̸=i(bαk− bαi) ̸= 0 and δi,2 are algebraic integers. Further
note that

σ(βif
(p−1)
i (αi)) = βρ(σ)(i)f

(p−1)
ρ(σ)(i)(αρ(σ)(i)) .

This shows that (p − 1)!δi,1 = (p − 1)!δρ(σ)(i),1. As this equality holds in Q̄,
we get that δi,1 = δρ(σ)(i),1. Using (10.2.12) we get δi,2 = δρ(σ)(i),2.

Now consider the product

n∏
i=1

Ji = (p− 1)!n
n∏
i=1

(δi,1 + pδi,2) .

The product in the RHS is invariant under the Galois group and also an
algebraic integer. Thus, it is an integer. It follows that

∏n
i=1 Ji is an integer.

Again, using similar arguments, it is easily checked that

n∏
i=1

(δi,1 + pδi,2)−
n∏
i=1

δi,1
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is an integer which is divisible by p. Thus, we get that

n∏
i=1

Ji = (p− 1)!n

(
n∏
i=1

δi,1 + pδ̃2

)
.

Note that if p≫ 0 then p does not divide

n∏
i=1

δi,1 =
n∏
i=1

(
bp−1

∏
k ̸=i

(bαk − bαi)

)
.

It follows that p does not divide
∏n

i=1 Ji and so
∏n

i=1 Ji ̸= 0. Thus, we get
using (10.1.3)

(p− 1)! ⩽ |J | ⩽ maxi|Ji|n ⩽ maxi,j|nβjIi(αj)|n ⩽ ccp1 .

Here c, c1 are constants independent of p. This gives a contradiction when
p≫ 0. This completes the proof of the Theorem.



Chapter 11

The Agrawal-Kayal-Saxena
Algorithm

In this chapter we give a detailed exposition of the result of Agrawal, Kayal
and Saxena. The reader who is not familiar with this result may find the
following wiki article interesting.
https://en.wikipedia.org/wiki/AKS_primality_test

The proof uses results which we have seen in these notes. The last three
sections of this chapter have been written keeping in mind people who have
had no exposure to complexity theory. In particular, the bound on time com-
plexity for A-K-S which we demonstrate is far from optimal. The last two
sections briefly explain the class of problems P and NP. Both these sections
are very informal. The reader interested in a rigorous exposition using ter-
minology which is standard amongst computer scientists must consult other
references. The original paper can be found here:
https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

This chapter was written in collaboration with Aryaman Maithani. I thank
him for his interest and enthusiasm. I also thank Swayam Shashank Chube
for some interesting discussions.

11.1 Preliminaries

Lemma 11.1.1. For N ⩾ 7, LCM(N) ⩾ 2N .
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Proof. For ease of notation denote by ln := LCM(n). For 1 ⩽ m ⩽ n,
consider the following integral

Im,n =

∫ 1

0

xm−1(1− x)n−mdx .

A direct computation yields

Im,n =

∫ 1

0

xm−1(1− x)n−mdx

=

∫ 1

0

xm−1

(
n−m∑
r=0

n−mCr(−1)rxr

)
dx

=
n−m∑
r=0

(−1)r n−mCr

∫ 1

0

xm+r−1dx

=
n−m∑
r=0

(−1)r n−mCr
1

m+ r

Note that m + r divides ln for all 0 ⩽ r ⩽ n − m and so Im,n · ln ∈ N.
Let kn,m := Im,nln. On the other hand, one may evaluate the integral using
integration by parts repeatedly to obtain

Im,n =

∫ 1

0

xm−1(1− x)n−mdx

=
m− 1

n−m+ 1

∫ 1

0

xm−2(1− x)n−m+1dx

...

=
(m− 1)(m− 2) · · · 1

(n−m+ 1)(n−m+ 2) · · · (n− 1)

∫ 1

0

(1− x)n−1dx

=
(n−m)!(m− 1)!

(n− 1)!
· 1
n

=
(n−m)!(m− 1)!

(n− 1)!
· m
n

· 1

m

=
1

m · nCm
.
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From the above we get that

kn,mm · nCm = Im,nlnm · nCm = ln .

This shows that (m · nCm)|ln for all 1 ⩽ m ⩽ n. In particular, (n · 2nCn)|l2n
and ((n+1)· 2n+1Cn+1)|l2n+1. But note that (n+1)· 2n+1Cn+1 = (2n+1)· 2nCn,
and so this shows that ((2n + 1) · 2nCn)|l2n+1. Since l2n|l2n+1, we see that
both (2n+1) · 2nCn and n · 2nCn divide l2n+1. As (n, 2n+1) = 1, we deduce
that (n(2n+ 1) · 2nCn)|l2n+1. Thus,

l2n+1 ⩾ n(2n+ 1) · 2nCn .

Now note that 2nCn is larger than each of the 2n + 1 terms in the binomial
expansion of (1 + 1)2n. Thus, (2n + 1) · 2nCn ⩾ (1 + 1)2n = 22n. Thus, we
get that

l2n+1 ⩾ n22n .

If n ⩾ 2 then we have

l2n+1 ⩾ 2 · 22n = 22n+1 .

Moreover, if n ⩾ 4, then we have

l2n+2 ⩾ l2n+1 ⩾ n22n ⩾ 4 · 22n = 22n+2 .

Thus, for N ⩾ 9, we have lN ⩾ 2N . For N = 7, 8 one can verify that
l8 = 840 > 28 and l7 = 420 > 27. This proves the lemma.

Lemma 11.1.2. Let n ⩾ 2. There is an r > 0 such that

(i) (r, n) = 1,

(ii) or(n) > log2(n), and

(iii) r ⩽ max{3, ⌈log5(n)⌉}. (Define B := ⌈log5(n)⌉)

Proof. When n = 2: r = 3 satisfies all conditions. Assume that n > 2. Let
r0 be the smallest positive integer which does not divide

N0 := n⌊log(B)⌋ ·
⌊log2(n)⌋∏
i=1

(ni − 1) .
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Step 1. We claim that r0 has to be a prime power. If not, let us assume
that r0 = ab where (a, b) = 1. Then since both a, b < r0 it follows that both
of them divide N0. But since they are coprime it follows that their product,
that is, r0 divides N0. Thus, r0 has to be a prime power.

Step 2. Let us first consider the case when r0 ⩾ 8. In this case r0 − 1 ⩾ 7
and so LCM(r0 − 1) divides N0. Now, note the following estimate:

N0 = n⌊logB⌋ ·
⌊log2 n⌋∏
i=1

(ni − 1) < n⌊logB⌋+ 1
2
logn ·(log2 n−1) ⩽ nlog4 n ⩽ 2log

5 n ⩽ 2B.

Using this and the above lemma on LCM, we see that 2r0−1 < 2B. This shows
that r0 ⩽ B. From the previous step we may write r0 = pa. We next show
that p does not divide n. Contrary to this assume that p divides n. Then
this means that p⌊log(B)⌋ divides n⌊log(B)⌋. But as r0 = pa does not divide
N0, it follows that a > ⌊log(B)⌋. On the other hand, taking logarithm of
r0 = pa ⩽ B one sees that a ⩽ ⌊log(B)⌋. This gives a contradiction. Thus, p
does not divide n. It follows r0 and n are coprime. Thus, if r0 ⩾ 8, then the
lemma follows by taking r = r0.

Step 3. Consider the case when r0 ⩽ 7. Clearly, 2 divides N0. Thus,
the only possibilities for r0 are r0 = 3, 4, 5, 7. If r0 ∈ {3, 5, 7} then again,
since B > 10, all three assertions in the lemma follow by taking r = r0. We
claim r = 4 is not possible. Since n > 2, we have ⌊log2(n)⌋ ⩾ 2. If n is odd,
then 4 divides N0. If n is even then 4 divides N0 since ⌊log(B)⌋ ⩾ 3. This
completes the proof of the lemma.

Lemma 11.1.3. Let n ∈ N and q be a prime factor of n. Suppose k is the
largest natural number such that qk|n. Then qk ∤ nCq.

Proof. Write n = qkm where m ∈ N such that q ∤ m.

nCq =
n(n− 1) · · · (n− (q − 1))

q(q − 1) · · · 1

= qk−1m
(n− 1)(n− 2) · · · (n− (q − 1))

(q − 1)(q − 2) · · · 1
.

Note that q ∤ m. Moreover, no term of n−1, n−2, . . . , n− (q−1) is divisible
by q as they are the q − 1 terms between the successive multiples n− q and
n of q. Thus, qk ∤ nCq.
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Lemma 11.1.4. Let a ∈ Z, n ∈ N, n ⩾ 2 and (a, n) = 1. Then n is prime if
and only if

(X + a)n = Xn + a modn.

The above equality is to be interpreted as the equality of two elements of
(Z/nZ)[X].

Proof. Suppose n is prime. We show that the equality holds. Indeed, we
have (X + a)n = Xn + an in (Z/nZ)[X]. Moreover, (a, n) = 1 tells us that
an−1 = 1 and hence, an = a, as desired.

Conversely, suppose that n is composite. Consider a prime factor q of n.
Let k be the largest natural number such that qk|n. Then by Lemma 11.1.3,
qk does not divide nCq. Further, since (a, n) = 1 it follows that q does not
divide a and so qk is coprime to an−q. However, note that the coefficient of
Xq in (X + a)n −Xn − a is nCq a

n−q. This shows that (X + a)n −Xn − a is
not the zero polynomial of (Z/nZ)[X] and thus we are done.

11.2 The Algorithm

Input: integer n > 1

1. If (n = ab for some a ∈ N>1 and some b > 1), output COMPOSITE.

2. Find the smallest r such that (r, n) = 1 and or(n) > log2 n.
3. If 1 < (a, n) < n for some a ⩽ r, output COMPOSITE.

4. If n ⩽ r, output PRIME.

5. For a = 1 to ⌊
√
ϕ(r) log n⌋ do

if (X + a)n ̸= Xn + a (mod Xr − 1, n), output COMPOSITE.

6. Output PRIME.

Proposition 11.2.1. The above algorithm terminates in finitely many steps.
It necessarily outputs exactly one of “COMPOSITE” or “PRIME”.

Proof. From Lemma 11.1.2, it follows that Step 2 terminates in finitely many
steps. All the other steps terminate in finitely many steps. The second
assertion is clear. Thus, the proposition follows.
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11.3 Proof of Correctness

Next we will show that if the algorithm outputs COMPOSITE then n is com-
posite and if it outputs PRIME then n is prime.

11.3.1. Some easy preliminaries.

Lemma 11.3.2. If the algorithm outputs COMPOSITE, then n is composite.

Proof. Suppose the algorithm outputs COMPOSITE. This is possible only in
Steps 1, 3, and 5. If this happens in Step 1 then clearly n is composite as
n = ab for some a, b ∈ N and b > 1. If this happens in Step 3 then clearly n
is composite as it has a divisor strictly between 1 and itself. If this happens
in Step 5 then n is composite by Lemma 11.1.4.

Lemma 11.3.3. If the algorithm returns PRIME in Step 4, then n is prime.

Proof. Suppose n is not prime. Let p < n be a prime factor of n. Then
since n ⩽ r we have p ⩽ r and 1 < (p, n) = p < n. But then Step 3
would have returned COMPOSITE and the algorithm would have terminated,
a contradiction.

For the rest of this section n > 1 is such that the algorithm
returns PRIME in Step 6. In particular, this implies that the algo-
rithm did not terminate in Steps 3, 4 or 5.

Remark 11.3.4. Since or(n) > 1, there exists a prime divisor p of n such
that or(p) > 1.

Lemma 11.3.5. p > r.

Proof. Indeed, if p ⩽ r, then the algorithm would have terminated in Step 3
or 4.

Lemma 11.3.6. (n, r) = 1.

Proof. Assume that (n, r) > 1. Consider a = r in Step 3. As the algorithm
did not terminate by Step 3, we must have that (r, n) ⩾ n. This gives us that
(r, n) = n or n | r. However, this means that n ⩽ r and thus, the algorithm
would terminate at Step 4.
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11.3.7. Digression.

Thus, (n, r) = 1 and hence, (p, r) = 1. This shows that p, n ∈ (Z/rZ)×.
Let l := ⌊

√
ϕ(r) log n⌋.

We fix p, r, and l for the rest of the section.

Step 5 of the equation verified l equations and did not output COMPOSITE,
thus we must have the following:

(X + a)n = Xn + a (modXr − 1, n)

for all 0 ⩽ a ⩽ l. (Step 5 didn’t check for a = 0 but it is obviously satisfied.)
As p|n, the above implies:

(11.3.8) (X + a)n = Xn + a (modXr − 1, p)

for all 0 ⩽ a ⩽ l. This is same as saying that Xr−1 divides (X+a)n−Xn−a
in Fp[X] for every a in the range 0 ⩽ a ⩽ l. By Lemma 11.1.4, we have that

(X + a)p = Xp + a (modXr − 1, p)

for all 0 ⩽ a ⩽ l.

Lemma 11.3.9.

(X + a)
n
p = X

n
p + a (modXr − 1, p)

for all 0 ⩽ a ⩽ l.

Proof. Let g(X) = (X+a)
n
p −X

n
p −a and f(X) = Xr−1 in the ring Fp[X].

We wish to show that f(X) divides g(X) in Fp[X]. Since (p, r) = 1, applying
Lemma 5.1.1 we see that f(X) is separable. However, note that

g(X)p = (X + a)n −Xn − a .

By (11.3.8) we see that f(X) divides g(X)p. As f(X) is separable, this forces
that f(X) divides g(X).

Observing this property leads to the following definition.



128 CHAPTER 11. THE AGRAWAL-KAYAL-SAXENA ALGORITHM

Definition 11.3.10. For a polynomial g(X) and a natural number m, we
say that m is introspective for g(X) if

g(X)m = g(Xm) (modXr − 1, p).

Remark 11.3.11. Thus, from the previous observations, it is clear that both
n
p
and p are introspective for X + a when 0 ⩽ a ⩽ l.

We now show two closure properties.

Lemma 11.3.12. If m and m′ are introspective numbers for g(X), then so
is m ·m′.

Proof. As before denote by f(X) = Xr−1 ∈ Fp[X]. By hypothesis, f(X) di-
vides g(X)m−g(Xm). This implies that f(Xm′

) divides g(Xm′
)m−g(Xmm′

).

g(Xm′
)m − g(Xmm′

) = [g(Xm′
)− g(X)m

′
+ g(X)m

′
]m − g(Xmm′

)

= g(X)mm
′ − g(Xmm′

) + (g(Xm′
)− g(X)m

′
)h(X)

Since f(X) divides f(Xm′
) which divides the LHS, and since f(X) divides

g(Xm′
) − g(X)m

′
by assumption, it follows that f(X) divides g(X)mm

′ −
g(Xmm′

). This proves that mm′ is introspective for g(X).

Lemma 11.3.13. If m is introspective for g(X) and h(X), then it also in-
trospective for g(X)h(X).

Proof. As m is introspective for g(X) and h(X), we have that

(g(X))m(h(X))m = g(Xm)h(Xm) (modXr − 1, p).

Thus, with the above two lemmas and Remark 11.3.11, we see the follow-
ing.

Lemma 11.3.14. Every number in the set

I =

{(
n

p

)i
· pj
∣∣∣ i, j ⩾ 0

}
is introspective for every polynomial in the set

P =

{
l∏

a=0

(X + a)ea ∈ Z[X]
∣∣∣ ea ⩾ 0

}
.
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We now define two groups based on these sets. Define Ir as the set of all
residues of I modulo r, that is,

Ir := {αmod r |α ∈ I} .

Lemma 11.3.15. Ir is a subgroup of (Z/rZ)×.

Proof. This is obvious since (r, n) = (r, p) = 1.

Corollary 11.3.16. Define t to be the cardinality of the group Ir. Note that
n ∈ Ir. Then t ⩾ or(n) > log2n (recall this from Lemma 11.1.2).

The first group we wanted to define is the group Ir above. Now we define
the second group. Recall the rth cyclotomic polynomial Φr(X) ∈ Z[X].
Since this divides f(X) = Xr − 1, and f(X) is separable over Fp, it follows
that Φr(X) is separable over Fp. Let Fp ⊂ K ⊂ F̄p denote the field which
contains all the roots of f(X). Then K is a finite field and so K× is a cyclic
group. In particular, this shows that the group of rth roots of 1 in F̄p is
a cyclic group with r distinct elements (since this set is precisely the set of
roots of f(X)). Let us denote this set by µr ⊂ F̄×

p . There are precisely ϕ(r)
many primitive elements in this group (elements which generate the group),
which follows from elementary group theory.

Each element of µr is forced to be a root of Φr(X) ∈ Fp[X], which can be
seen as follows. Reducing the equality

Xr − 1 =
∏
d|r

Φd(X)

modulo p we see that if a primitive rth root is a root of Φd(X) for some
d < r, then it will be a root of Xd − 1, contradicting the fact that it was
primitive. Since the degree of Φr(X) is ϕ(r), it follows that the set of roots
of Φr(X) in F̄p is precisely µr.

Let us analyse how Φr(X) factors over Fp. Write

Φr(X) =
s∏
i=1

hi(X) ,

where the hi(X) are irreducible over Fp.



130 CHAPTER 11. THE AGRAWAL-KAYAL-SAXENA ALGORITHM

Lemma 11.3.17. All the hi(X) have the same degree. This degree is equal
to the order or(p).

Proof. Let θ1 be a primitive rth root of 1 in F̄p which is a root of h1(X).
Then Fp[X]/(h1(X)) ∼= Fp[θ1]. But any two primitive rth roots of 1 are
powers of each other. Thus, if θ2 is another such, which is a root of h2(X),
then

Fp[X]/(h1(X)) ∼= Fp[θ1] = Fp[θ2] ∼= Fp[X]/(h2(X)) .

This proves the claim that all the hi(X) have the same degree. Note that
Fp[θ1]/Fp is a finite separable and normal extension. To compute its extension
degree, by the Galois correspondence, it suffices to compute the cardinality
of Aut(Fp[θ1]/Fp) = ⟨Fr⟩. That is, the degree of the extension is the smallest
power k of the Frobenius such that Frk = Id on Fp[θ1]. But this happens iff
Frk(θ1) = θ1 since the Frobenius is the identity on Fp. Thus, the degree of
the extension is the smallest k such that

θp
k−1

1 = 1 .

Since θ1 is a primitive rth root of 1, this is the smallest k such that r | pk−1,
that is, or(p). Thus, the degree of each hi(X) is precisely or(p).

Let us fix h1(X) and denote it by h(X). Let G be the set of residues
modulo h(X) of the elements in P (see Lemma 11.3.14), that is,

G := {α (modh(X), p) |α ∈ P} .

Thus, we may view elements of G as elements in the field F = Fp[X]/(h(X)).
In the group (Z/rZ)× the order of n is or(n) > log2(n) (recall from Lemma
11.1.2 that r was chosen so that this happens). Thus,

log2(n) < or(n) ⩽ ϕ(r) < r , which implies that, log(n) <
√
r .

From this we get that l = ⌊
√
ϕ(r)log(n)⌋ <

√
rlog(n) < r. Since p > r (see

Lemma 11.3.5) it follows that l < p.

Let x denote the image of X in F . It follows (as l < p) that in the field
F the elements x, x+ 1, . . . , x+ l are all distinct. Also we have (recall from
Remark 11.3.4) 1 < or(p) = deg(h(X)). From this it follows that x+a ̸= 0 in
the field F for a ∈ Fp. Thus, the elements x, x+1, . . . , x+ l are in F×. Since
every element of G is a product of these elements, it clearly follows that G is
a subgroup of the multiplicative group F×. Recall that t is the cardinality
of the group Ir. Note that since Ir ⊂ (Z/rZ)×, one has t ⩽ ϕ(r).
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Lemma 11.3.18. |G| ≥ t+lCt−1.

Proof. Let x ∈ F denote the image of X. Since h(X) divides Φr(X), it
follows that x is a primitive rth root of 1 in F̄p.

If f(X) and g(X) are elements of P , both of degree < t, then we claim
that their images in G are distinct. Assume that this is not the case. Then
there are two polynomials f(X), g(X), both of degree < t in P such that
their images in G are the same. That is, their images in F = Fp[X]/(h(X))
are the same.

Consider the polynomial q(Y ) = f(Y ) − g(Y ) ∈ F [Y ]. Clearly, x is a
root of q(Y ). We claim that q(xm) = 0 for m ∈ I. Note that since m is
introspective for f(X), we have that f(X)m− f(Xm) = 0 in Fp[X]/(Xr− 1)
and so also in Fp[X]/(h(X)). Similarly for g(X). This shows that f(xm) =
f(x)m = g(x)m = g(xm) in F . Thus, xm is a root of q(Y ) for every m ∈ I.

The xm are distinct for m distinct in Z/rZ and so for m distinct in Ir
(this is because x is a primitive rth root of unity). Since the cardinality of Ir
is t, it follows that q(Y ) has at least t roots. But the degree of q(Y ) < t. This
forces that q(Y ) is identically 0 in F [Y ]. If we write f(X) =

∏l
a=0(X + a)ea

and g(X) =
∏l

a=0(X + a)da then we get that

l∏
a=0

(Y + a)ea =
l∏

a=0

(Y + a)da ∈ F [Y ] .

Since l < p, as we saw above, all the Y + a are distinct linear factors. It
follows that f(Y ) = g(Y ), that is, f(X) = g(X), a contradiction. This
proves the claim that if f(X) and g(X) are elements of P , both of degree
< t, then their images in G are distinct.

The number of elements in P of degree < t corresponds to the number of
solutions of

e0 + e1 + . . .+ el < t

with ei ⩾ 0. It is standard to see that the number of solutions to this is
t+lCt−1. This proves the lemma.

Lemma 11.3.19. If n is not a power of p then |G| ⩽ n
√
t.

Proof. If n is not a power of p then there is a prime q ̸= p and k > 0 such
that qk | (n/p) and qk+1 ∤ (n/p). Consider the set

Î = {(n/p)ipj | 0 ⩽ i, j ⩽ ⌊
√
t⌋} .
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By looking at the powers of p and q that divide element of Î, it follows that
all the elements are distinct. Thus, Î has exactly (⌊

√
t⌋ + 1)2 > t elements.

Since |Ir| = t it follows that two of these are equal in Ir. Let these be m1

and m2, with m1 > m2. Then we have (since r | (m1 −m2))

Xm1 = Xm2 (modXr − 1) .

In particular, this means that in the field F , xm1 = xm2 . Let

q(Y ) = Y m1 − Y m2 ∈ F [Y ] .

We claim that all the elements of G are roots of q(Y ). Let f(x) ∈ G, where
f(X) ∈ P . We need to show that f(x)m1 = f(x)m2 . As we saw in the
previous lemma, f(x)m1 = f(xm1) = f(xm2) = f(x)m2 . This proves that
claim. Thus,

|G| ⩽ deg(q(Y )) = m1 ⩽ (n/p)⌊
√
t⌋p⌊

√
t⌋ ⩽ n

√
t .

This completes the proof of the Lemma.

11.3.20. Completing the proof of correctness.

We will need the following two simple lemmas in the proof.

Lemma 11.3.21. Let a, b, c, d ∈ N with a ⩾ b and c ⩾ d. Further assume
that a− c ⩾ b− d. Then aCc ⩾ bCd .

Proof. Repeatedly apply the following simple observations

bCd ⩽
b+1Cd and bCd ⩽

b+1Cd+1.

Thus,
bCd ⩽

b+c−dCd+c−d =
b+c−dCc ⩽

aCc .

Lemma 11.3.22. If n > 1, then 2n+1 < 2n+1Cn.

Proof. Note that it is certainly true for n = 2. We may assume n ⩾ 3 and
hence, we have 2n−1 ⩾ n + 1. We now note that 2n+1Cr ⩽ 2n+1Cn for all
r ∈ {0, . . . , 2n+ 1} and the inequality is strict for r = 0. This gives,

22n+1 = (1 + 1)2n+1

= 2n+1C0 + · · ·+ 2n+1C2n+1

< (2n+ 2) · 2n+1Cn
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Thus,

22n

n+ 1
< 2n+1Cn

⇐⇒ 2n−1

n+ 1
· 2n+1 < 2n+1Cn

=⇒ 2n+1 < 2n+1Cn (∵ 2n−1 ⩾ n+ 1)

Lemma 11.3.23. If the algorithm returns PRIME in step 6 then n is prime.

Proof. Let us assume that n is not a prime power. Thus, n > 3. Then by
Lemma 11.3.19 we see that |G| ⩽ n

√
t. We will show that |G| > n

√
t which

gives a contradiction. Recall the following facts which have been proved
earlier.

(a) t > log2(n), see Corollary 11.3.16. This shows that t >
√
tlog(n). Since

t is an integer we get t > ⌊
√
tlog(n)⌋, that is, t − 1 ⩾ ⌊

√
tlog(n)⌋. It

follows that t+ l ⩾ l + 1 + ⌊
√
tlog(n)⌋.

(b) ϕ(r) ⩾ t, since Ir ⊂ (Z/rZ)×. Recall that l = ⌊
√
ϕ(r)log(n)⌋. Thus, we

get l ⩾ ⌊
√
tlog(n)⌋.

By Lemma 11.3.18 we have that

|G| ⩾ t+lCt−1

(Using (a) and Lemma 11.3.21)

⩾ l+1+⌊
√
t logn⌋C⌊

√
t logn⌋

(Using l = ⌊
√
ϕ(r) log n⌋ ⩾ ⌊

√
t log n⌋)

⩾ 2⌊
√
t logn⌋+1C⌊

√
t logn⌋

> 2⌊
√
t logn⌋+1

(Since ⌊
√
t log n⌋ ⩾ ⌊log2 n⌋ > 1 and Lemma 11.3.22)

⩾ n
√
t.
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This gives us a contradiction. (We have used that n > 3 to say that ⌊log2 n⌋ >
1)

Thus, we conclude that if the algorithm returns PRIME in step 6, then n
is a power of some prime. Writing n = pk for some prime p and k > 0, we
note that if k > 1, then Step 1 would have returned COMPOSITE. Thus, we
have k = 1 and hence, n is a prime.

This completes the proof of the correctness of the algorithm.

11.4 Complexity Analysis

11.4.1. Big-O Notation.

Definition 11.4.2. Let f, g : N → R+. We write g(n) = O(f(n)) if there
exist M ∈ R+ and n0 ∈ N such that

g(n) ⩽M · f(n) ∀n ⩾ n0.

Note that since we demand a certain behaviour only for n ≫ 0, we allow g
and f to be functions defined on all but finitely many natural numbers.

11.4.3. Black-boxes. We shall assume the following standard complexities
which may be easily verified by the reader:

1. Adding or subtracting two n−bit numbers takes O(n) bit operations.

2. Multiplying two n−bit numbers takes O(n2) bit operations.

3. Division of two n−bit numbers takes O(n2) bit operations.

11.4.4. Fast Exponentiation Algorithm. We describe a method which
computes akmodn. The idea is quite simple and is called “repeated squar-
ing”. The crux is that one may compute si = a2

i
modn, i ⩾ 0, by the

recursive formula

s0 = a modn; si = s2i−1 modn, for i ⩾ 1.
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Thus, to calculate a2
i
, i multiplications and divisions by n are sufficient.

Now it is not necessary that k is a power of 2. So more generally, let k =
b0 + 2b1 + 22b2 + . . .+ 2rbr be the binary representation of k. Then

ak = ab0+2⌊ k
2
⌋

= ab0(a2)⌊
k
2
⌋

It is clear that this sets up a recursive formula. The algorithm which imple-
ments the above is as follows:

Input: Integers a, k, n such that n > a > 1.
Algorithm:
1. integers u, s, c

2. u = k
3. s = a modn
4. c = 1
5. while(u ⩾ 1)
6. if(u is odd) c = (c·s) modn
7. s = s·s modn
8. u = ⌊u

2
⌋

9. return c

Inside the while loop, we are multiplying, dividing, adding, subtracting inte-
gers, each of which is ⩽ n2. Thus, the steps inside the while loop will take
O(log2(n)) steps. The loop itself runs at most log(k) + 1 times. It follows
that the above algorithm takes at most O(log2(n)log(k)) steps.

We will use the following modification of the above algorithm.

FEA-M(a,k,n):
Input: Integers a, k, n such that n > a, k ⩾ 1.
Algorithm:
1. integers u, s, c

2. u = k
3. s = a

4. c = 1
5. while((u ⩾ 1) and (c<n))
6. if(u is odd) c = (c·s)
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7. s = s·s
8. u = ⌊u

2
⌋

9. return c

Let l0 be the smallest integer such that n ⩽ al0 . Then it is clear that the
above algorithm returns min{ak, al0}. Since k ⩽ n, it is clear that this algo-
rithm takes at most O(log3(n)) steps.

11.4.5. Complexity of Step 1. In this step we test if n is a perfect power,
that is, if n = ab for some a, b ⩾ 2. It is clear that 2 ⩽ b ⩽ log n. The idea
of the test is as follows. For each such b, we may perform a binary search in
{1, . . . , n} for a number that satisfies ab = n. The computation of ab will be
done using FEA-M(a,b,n).

Input: Integer n ⩾ 2
Algorithm:
01. integers a, b, c, m

02. b = 2

03. while(2b ⩽ n)
04. a = 1, c = n

05. while(c − a ⩾ 2)
06. m = (a + c)/2
07. p = min{FEA-M(m,b,n), n + 1}
08. if(p = n) return ‘perfect power’

09. if(p < n) a = m

10. else c = m

11. b = b + 1

12. return ‘not a perfect power’

We now analyse the above algorithm. In steps 04 - 10, a binary search
is carried. The complexity of the instructions in steps 06 - 10 is O(log3(n)).
This is essentially the complexity of step 07. The while loop in step 05 runs
at most log(n) times. Further, the while loop in step 03 runs at most log(n)
times. We conclude that the complexity of the above algorithm is at most
log5(n).
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11.4.6. Complexity of Step 2. The following algorithm computes the gcd
of two integers a and n.

gcd(a,n):
Input: integers 1<a<=n

1. r=a

2. while(r ̸=0)
3. j = n-⌊n

r
⌋r

4. if j > r/2 then j = r-j

5. if j = 0 then return r

6. n=a and a=j

The instructions inside the while loop can take at most O(log2(n)) steps.
The number of times this while loop can run is log(a)+1 ⩽ log(n)+1. Thus,
computing gcd(a, n) will take at most O(log3(n)) many steps.

Step 2 may be achieved by the following algorithm

Input: integer n

01. r=2

02. while(r⩾2)

03. a = n mod r

04. if (gcd(r,n)=1)

05. b=1

06. while(1 ⩽ i ⩽ ⌊log2(n)⌋)
07. b=b*a

08. if (b=1 mod r) then i=-1

09. else i=i+1

10. if (i=⌊log2(n)⌋+1) return r

11. r=r+1

In this step we find an r such that or(n) > log2(n). By Lemma 11.1.2, we
may successively try out values of r till ⌈log5(n)⌉. The complexity of the
while loop at line 06 is O(log2(r)), which is O(log(n)). The while loop at line
06 runs at most log2(n) times and the outermost while loop runs at most
log5(n) times. Thus, there are at most O(log8(n)) steps in Step 2.

11.4.7. Complexity of Step 3. In this step we have

Input: integer r

1. for(2 ⩽ a ⩽ r)
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2. if (1 < gcd(a,n) < n) output ’COMPOSITE’

Clearly this step takes at most O(log3(n)log5(n)) since computing the gcd
takes O(log3(n)) many steps and the for loop runs at most log5(n)+1 times.
Thus, Step 3 takes at most O(log8(n)) many steps.

11.4.8. Complexity of Step 4. In this step, we compare n with another
number. As we only need to check at most ⌊log n⌋ + 1 bits, this step takes
O(log n) bit operations.

11.4.9. Complexity of Step 5. Let us make the following observations
on polynomial multiplication. Consider the ring Z/nZ[X] and let h(X) and
g(X) be two polynomials in this ring, whose degree is < r. To compute the
coefficient of X i in the product h(X)g(X), we need to compute

∑
s hsgi−s.

Computing the product takes O(log2(n)) steps and computing the sum will
take O(rlog2(n)) steps. The degree of the product is at most 2r and so
computing the product h(X)g(X) takes O(r2log2(n)) steps. Next we want
to go modulo Xr − 1. Since degree h(X)g(X) < 2r and we are simply
substituting Xr = 1, there will be at most r additions of coefficients in the
ring Z/nZ. This will take O(rlog(n)) steps. Thus, we conclude that for two
elements h(X), g(X) ∈ Z/nZ[X]/(Xr − 1), the product can be computed in
at most O(r2log2(n)) steps.

In step 6, we verify l = ⌊
√
ϕ(r) log n⌋ equations. Note that

l = ⌊
√
ϕ(r) log n⌋ ⩽ r1/2 log n ⩽ log4 n

Using the same idea of fast modular exponentiation, one sees that calculat-
ing (X + a)n requires O(log n) multiplications in the ring Z[X]/(Xr − 1, n).
Thus, computing (X + a)n requires at most O(r2log3(n)) steps. Checking
that the polynomials (X + a)n ̸= Xn+ a requires us to check if r coefficients
are equal. This is easily checked to be O(rlog(n)). This gives us that this
step requires O(lr2 log2 n) = O(log4 n log10 n log2 n) = O(log16 n) operations.

11.4.10. Conclusion. From the above analysis, it follows that the asymp-
totic time complexity of step 5 dominates that of all of the other steps. Thus,
it follows that the asymptotic time complexity of the algorithm is O(log16 n).
In particular, the algorithm can determine whether any given number is
prime or composite within polynomial time.
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11.5 Decision problems

The purpose of this section is to explain, by means of some examples, what
a decision problem is.

11.5.1. Finding gcd. Let 1 < a ⩽ n be two integers. Consider the following
question, which we denote P1(a, n):

Is there an integer f with 1 < f ⩽ a ⩽ n such that f divides a and n ?

11.5.2. Primality testing. Let n > 1 be an integer. Let P2(n) be the
question:

Is there an integer d such that 1 < d < n and d divides n ?

11.5.3. Subset Sum Problem. Let S ⊂ Z be a finite subset. The question
P3(S) is the following:

Does there exist T ⊂ S such that
∑
t∈T

t = 0?

A simple graph is a graph that does not have more than one edge between
any two vertices and no edge starts and ends at the same vertex. A graph
is said to be complete if any pair of vertices are connected by an edge. Let
G be a simple graph. A clique of size k is a complete subgraph of G with k
vertices.

11.5.4. Existence of Clique. Let G be a simple graph and let k > 3 be
an integer. Let EC(G, k) be the following question:

Does G contain a clique of size k?

11.5.5. Prime Factorization. Let n > 1 be an integer. Let P4(n) be the
following question:

What is the prime factorization of n?

Definition 11.5.6. A decision problem is a type of problem for which each
problem instance has answer a ‘YES’ or a ‘NO’.
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Note that when we say “a decision problem P”, we actually mean a family
of questions {P (I)} where I is a problem instance (input). Given a problem
instance I, we get a question P (I) which has an answer ‘YES’ or ‘NO’. For
example, P2(2996863034895 · 21290000 + 1) asks:

Is the integer 2996863034895 · 21290000 + 1 is composite?

Similarly, P2(2996863034895 · 21290000 − 1) asks:

Is the integer 2996863034895 · 21290000 − 1 is composite?

The answer to both these questions is ‘NO’, see

https://primes.utm.edu/top20/page.php?id=1

In the above examples, only (11.5.5) is not a decision problem.

11.6 NP and P

In this section we will informally describe the classes of problems NP and
P.

11.6.1. Problem instances. For a decision problem P let us denote by
I (P ) the set of all problem instances. For example, if we take P = P1 (see
(11.5.1)) then

I (P1) = {(a, n) ∈ Z× Z | 1 < a ⩽ n} .

Similarly, if we take P = P2 (see (11.5.2)) then

I (P2) = {n ∈ Z |n > 1} .

11.6.2. Admissible inputs to an algorithm. Given an algorithm A, there
is a set A (A) which consists of all possible “admissible” inputs to A. We are
simply emphasizing the trivial point that one cannot feed in anything into an
algorithm. In fact, when we specify an algorithm, part of the specification is
what all can go into it. For example, consider the following algorithm which
solves the problem P1(a, n) (11.5.1).

11.6.3. gcd-ineff(a,n):
Input: integers 1<a<=n

https://primes.utm.edu/top20/page.php?id=1


11.6. NP AND P 141

1. i=a

2. while(i≥2)

3. j = n-⌊n
i
⌋i + a-⌊a

i
⌋i

4. if j = 0 then return YES

5. i=i-1

6. return NO

This algorithm runs through numbers from a to 2. If it finds an integer
2 ⩽ i ⩽ a which divides both a and n, then it returns ‘YES’. Else it returns
‘NO’. For the algorithm gcd-ineff we have

A (gcd-ineff) = {(a, n) ∈ Z× Z | 1 < a ⩽ n} .

It does not make sense to give the input (banana, apple) to gcd-ineff.

We will now informally describe what it means for a problem P to be in
NP.

Definition 11.6.4. Assume that the following conditions are satisfied.

1. P is a decision problem,

2. There is an algorithm V (the “verifier”) and a surjective map

i : A (V) → I (P ) ,

3. There is a polynomial q[T ] ∈ Q[T ], which depends only on V, such that
the following holds: Let J ∈ A (V). The number of steps that V(J)
takes is ⩽ q(size of i(J)),

4. Given any I ∈ I (P ), the answer to P (I)=‘YES’ iff there is a J ∈
i−1(I) such that the output of V(J)=‘YES’.

If the above conditions are satisfied then we say that P is in NP.

Let us see some examples.

1. Let us check that the problem P1 (see (11.5.1)) is in NP. The input
to P1 is a pair of integers (a, n). The size of this input will be treated
as 2log(n) as we need at most 2log(n) bits to represent this pair of
integers. Consider the following algorithm.
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11.6.5. gcd-eff(a,n):
Input: integers 1<a<=n

1. r=a

2. while(r ̸=0)
3. j = n-⌊n

r
⌋r

4. if j > r/2 then j = r-j

5. if j = 0

6. if r=1 then return ‘NO’

7. if r>1 then return ‘YES’

8. n=a and a=j

Take V=gcd-eff. Then i : A (A) → I (P1) is the identity map. The
instructions inside the while loop can take at most O(log2(n)) steps,
see §11.4.3. The number of times this while loop can run is log(a)+1 ≤
log(n)+1. Thus, gcd-eff(a, n) will take at most O(log3(n)) many steps.
One easily checks that all the conditions for P1 to be in NP are satis-
fied.

We remark that if we were to take V =gcd-ineff, see 11.6.3, then we
cannot conclude that P1 is in NP. This is because this algorithm takes
O(nlog2(n)) many steps, and so is not in O(q(log(n))) for any polyno-
mial q.

2. One may show in a different way that P1 is in NP. Suppose we are
given three integers 1 < f ⩽ a ⩽ n. Consider the following algorithm.

11.6.6. div(f,a,n):
Input: integers 1<f≤a≤n

1. j = (n-⌊n
f
⌋f) + (a-⌊a

f
⌋f)

2. if j = 0 then return YES

3. return NO

We take the input size as 3log(n), since we need these many bits to
represent f, a, n. This algorithm takes O(log2(n)) many steps, see
§11.4.3. Take V =div. Then A (V) consists of triples (f, a, n) such
that 1 < f ⩽ a ⩽ n. The map i : A (V) → I (P1) is given by
(f, a, n) 7→ (a, n). The complexity of div(f,a,n) is O(log2(n)). One
easily checks that all the conditions for P1 to be in NP are satisfied.
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3. The problem P2 (see (11.5.2)) is in NP. Consider the following algo-
rithm.

11.6.7. divides(d,n):
Input: integers 1<d≤n

1. j = n-⌊n
d
⌋d

2. if j = 0 then return YES

3. return NO

Again, we take the input size to be log(n). Take V =divides. Then
A (V) consists of pairs (d, n) such that 1 < d ⩽ n. The set I (P2)
consists of integers n > 1. The map i : A (V) → I (P2) is given by
(d, n) 7→ n. This algorithm has complexity O(log2(n)), see §11.4.3. One
easily checks that all the conditions for P2 to be in NP are satisfied.

4. The reader will easily check that the problem P3 (Subset sum problem,
see (11.5.3)) is in NP.

5. Let us check that the Existence of Clique problem (see 11.5.4) is inNP.
Consider the following algorithm. Let V (G) denote the set of vertices
of G and let E(G) denote the set of edges in G.

11.6.8. EC(G,k,U):
Input: (G, k, U), U ⊂ V (G)
1. for 1 ⩽ i ⩽ k-1

2. for i+1 ⩽ j ⩽ k

3. if (ui, uj) /∈ E(G) return ‘NO’

4. return ‘YES’

There can be at most n2 edges in a graph with n vertices. An edge can
be represented by a pair of two integers, each integer corresponding
to a vertex. Thus, the input size in this example can be taken to
be O(n2log(n)). Take V=EC(G,k,U). Then A (V) consists of triples
(G, k, U) where U ⊂ V (G) and I (EC) consists of tuples (G, k). The
map i : A (V) → I (EC) is simply (G, k, U) 7→ (G, k). One easily
checks that all the conditions for EC to be in NP are satisfied.

Definition 11.6.9. A decision problem P is said to be in P if there is an
algorithm A with A (A) = I (P ) and a polynomial q such that for a given
instance I ∈ I (P ), A(I) gives an answer to the problem P (I) and A(I)
takes ⩽ q(size of I) many steps.

1. The problem P1 is in P, as is easily checked by taking A=gcd-eff.
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2. The problem P2 is in P is the content of the Theorem of Agarwal-
Kayal-Saxena.

3. It is not known if P3 (see (11.5.3)) is in P.

4. It is not known if EC (see (11.5.4)) is in P.

Prior to the Agrawal-Kayal-Saxena algorithm a “partial” result in this
direction was the Miller-Rabin primality test. The correctness of the Miller-
Rabin algorithm was however conditional on the truth of the Generalized
Riemann Hypothesis (this is the sense in which this result is “partial”).
Thus, if the Generalized Riemann Hypothesis (GRH) were true, then the
Miller-Rabin primality test solved the problem P2(n) and has complexity a
polynomial in log(n).

We remark that neither the Agrawal-Kayal-Saxena algorithm, nor the
Miller-Rabin primality test produce a proper factor of n. In this sense,
both are different from the algorithms that we saw above, gcd-eff(a, n),
gcd-ineff(a, n). We further remark that for the problem of explicitly find-
ing a prime factor of n, one does not expect to have an algorithm which has
complexity a polynomial in log(n). Indeed, one often hears that cryptosys-
tems are based on the hardness of this problem.

Proposition 11.6.10. P ⊆ NP.

Proof. Let P ∈ P. Then there is an algorithm A which solves P (I) in
q(size of I) steps. In this case A (A) = I (P ). Take i : A (A) → I (P )
to be the identity map. It is clear from the definition of NP that P is in
NP.

We may ask:

(11.6.11) Is P ̸= NP?

This is the famous unsolved “P vs NP” problem in computer science. It
is one of the original seven Millenium Prize Problems selected by the Clay
Mathematics Institute. A correct solution to any of these problems results in
a US $1 million prize being awarded to the solver. At the time of writing this,
only one of these seven has been solved. Interestingly, and controversially,
the solver declined the prize.
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Before we end we make the following remark. Often the class of problems
NP is informally described as,

(*) “NP is the class of problems which have efficient verifiers, that is, there
is a polynomial time algorithm that can verify if a given solution is correct.”

We wish to caution the reader that the above statement can be mislead-
ing. For example, one may conclude after reading the above statement, that
to prove a problem P is in NP, one has to do the following:

1. Produce an algorithm A1 whose inputs will be of the form (I, S), where
S is a “proposed solution” to P (I),

2. Produce a polynomial q such that the complexity ofA1(I, S) ⩽ q(size of I),

3. The output of A1(I, S)=‘YES’ iff S is indeed a solution to P (I).

We wish to warn the reader that the above interpretation of the sentence (*)
is not correct. Indeed, if we look at the proof of Proposition 11.6.10, then
we do not produce an algorithm which takes as inputs tuples (I, S), where S
is a “proposed solution”. Let us take another example. Recall the problem
P1(a, n) (see (11.5.1)):

Is there an integer f with 1 < f ⩽ a ⩽ n such that f divides a and n ?

Consider an algorithm A1=gcd-eff-modified which we define next. The inputs
to A1 are in the set

A (gcd-eff)× Z>1 = {(a, n, f) | 1 < a ⩽ n , f ∈ Z>1}
For (a, n, f) as above, we define

A1(a, n, f) = gcd-eff-modified(a, n, f) := gcd-eff(a, n).

Then we claim that the algorithm A1 satisfies all the conditions of Definition
11.6.4. However, it does not check if f divides a and n. In fact, if the output
of A1(a, n, f) is ‘YES’ then we cannot conclude that f divides a and n.

However, in almost all cases of problems which are in NP and not known
to be in P, the algorithm A which appears in the definition of NP, Defini-
tion 11.6.4, does indeed take as input tuples (I, S), where S is a “proposed
solution”, and tells us if S is a correct solution to P (I). This is indeed the
intuition behind Definition 11.6.4. The reader who is more curious may find
the information here interesting.

https://cs.stackexchange.com/questions/9556/what-is-the-definition-of-p-np-np-complete-and-np-hard
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