MA-414 (Galois Theory) Tutorial-1

January 31, 2023

- 1. Show that any field contains either \mathbb{Q} or $\mathbb{Z}/(p)$, for some prime number p, as the smallest subfield. Show that the characteristic of a finite field is a prime number.
- 2. For any integer n, show that \sqrt{n} is algebraic over \mathbb{Q} .
- 3. For any prime number p, show that the polynomial $x^2 p$ has no solution in \mathbb{Q} .
- 4. For any two prime numbers p and q, show that $\sqrt{p} + \sqrt{q}$ is algebraic over \mathbb{Q} .
- 5. If $\alpha \in \mathbb{C}$ is transcendental over \mathbb{Q} , show that for any integer $n \geq 1$, the number α^n is transcendental over \mathbb{Q} .
- 6. Let $f : [0,1] \to \mathbb{R}$ be a non-constant continuous function. Show that the set $f([0,1]) := \{f(a) : a \in [0,1]\}$ contains a number transcendental over \mathbb{Q} .
- 7. Let $\alpha \in \mathbb{C}$ be a root of the equation $X^2 + 2 = 0$. Show that

$$\mathbb{Q}[\alpha] := \{a + \alpha b : a, b \in \mathbb{Q}\}\$$

is a field.

8. Show that the field described in Section 1.2 of the notes is the smallest subfield of K containing all the α_i .

For the next three questions, let F be a field and $f(t) \in F[t]$ be a nonzero polynomial. Show the following:

9. For any $a \in F$, there is a polynomial $g(t) \in F[t]$ such that

$$f(t) = g(t)(t-a) + f(a)$$

- 10. For $a \in F$, we have f(a) = 0 if and only if t a divides f(t) in F[t].
- 11. The polynomial f(t) can have at most $\deg(f(t))$ number of roots.

- 12. Let E, K be fields and let $\phi : E \to K$ be a ring homomorphism. Show that ϕ has to injective. Recall that our rings will always contain 0,1 and $1 \neq 0$ and a ring homomorphism always sends 1 to 1.
- 13. Let R be an integral domain and let K be its field of fractions. Let F be a field. Show that there is a bijective correspondence between the following two sets: {Injective ring homomorphisms $\phi : R \to F$ } and {Field homomorphisms $\psi : K \to F$ }.