MA-414 (Galois Theory) Tutorial-1

January 31, 2023

1. Show that any field contains either \mathbb{Q} or $\mathbb{Z} /(p)$, for some prime number p, as the smallest subfield. Show that the characteristic of a finite field is a prime number.
2. For any integer n, show that \sqrt{n} is algebraic over \mathbb{Q}.
3. For any prime number p, show that the polynomial $x^{2}-p$ has no solution in \mathbb{Q}.
4. For any two prime numbers p and q, show that $\sqrt{p}+\sqrt{q}$ is algebraic over \mathbb{Q}.
5. If $\alpha \in \mathbb{C}$ is transcendental over \mathbb{Q}, show that for any integer $n \geq 1$, the number α^{n} is transcendental over \mathbb{Q}.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a non-constant continuous function. Show that the set $f([0,1]):=\{f(a): a \in[0,1]\}$ contains a number transcendental over \mathbb{Q}.
7. Let $\alpha \in \mathbb{C}$ be a root of the equation $X^{2}+2=0$. Show that

$$
\mathbb{Q}[\alpha]:=\{a+\alpha b: a, b \in \mathbb{Q}\}
$$

is a field.
8. Show that the field described in Section 1.2 of the notes is the smallest subfield of K containing all the α_{i}.

For the next three questions, let F be a field and $f(t) \in F[t]$ be a nonzero polynomial. Show the following:
9. For any $a \in F$, there is a polynomial $g(t) \in F[t]$ such that

$$
f(t)=g(t)(t-a)+f(a) .
$$

10. For $a \in F$, we have $f(a)=0$ if and only if $t-a$ divides $f(t)$ in $F[t]$.
11. The polynomial $f(t)$ can have at most $\operatorname{deg}(f(t))$ number of roots.
12. Let E, K be fields and let $\phi: E \rightarrow K$ be a ring homomorphism. Show that ϕ has to injective. Recall that our rings will always contain 0,1 and $1 \neq 0$ and a ring homomorphism always sends 1 to 1 .
13. Let R be an integral domain and let K be its field of fractions. Let F be a field. Show that there is a bijective correspondence between the following two sets: $\{$ Injective ring homomorphisms $\phi: R \rightarrow F\}$ and \{Field homomorphisms ψ : $K \rightarrow F\}$.
