MA-414 (Galois Theory) Tutorial-2

January 31, 2023

Notation: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E/F.

- 1. If F is a subfield of a field E, show that E is a vector space over F. Conclude that [E:F] = 1 if and only if E = F.
- 2. Let F be a finite field. Show that the number of elements of F is of the form p^n , for some prime number p and some integer $n \ge 1$. (Hint: Use the above exercise and the fact that F has a subfield isomorphic to $\mathbb{Z}/(p)$, for some prime number p. (recall Ex.1 from Tutorial 1))
- 3. Find all roots of the polynomial $f(t) = x^p 1 \in F[t]$, where $F = \mathbb{Z}/(p)$, for some prime number p.
- 4. Show that $[\mathbb{C} : \mathbb{R}] = 2$.
- 5. Let F be a field of characteristic 0. Let p > 0 be a prime number. Show that any ring homomorphism $f : \mathbb{Z}/p\mathbb{Z} \to F$ must be a zero map.
- 6. Let E/F be a field extension and $\alpha \in E$ is algebraic over F. Show that for any polynomial $f(t) \in F[t], f(\alpha) \in E$ is algebraic over F.
- 7. Consider the subfield $F(X^2) \subset F(X)$. Is X algebraic over $F(X^2)$?
- 8. Find the degree of the field extension $\mathbb{Q}(\sqrt[3]{5})/\mathbb{Q}$.
- 9. Let p, q be distinct positive primes. Show that the polynomial $X^2 p$ does not have a root in $\mathbb{Q}[\sqrt{q}]$.
- 10. Show that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} . (Hint: Compute the inverse of $\sqrt{2}+\sqrt{3}$.)
- 11. Show that the degree of the field extension $\mathbb{C}/\mathbb{Q}(\sqrt{-1})$ is infinite.