MA-414 (Galois Theory) Tutorial-3

March 15, 2023

Notation: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E / F.

1. Let E be a field. Show that $E(X)(Y)$ is isomorphic to $E(S, T)$.
2. Find the degree of the field extension $\mathbb{Q}(\sqrt{3}, \sqrt{5}) / \mathbb{Q}$.
3. If α is transcendental over \mathbb{Q}, show that $\alpha+\sqrt{2} \in \mathbb{C}$ is transcendental over \mathbb{Q}.
4. Let E / F be a field extension such that $[E: F]=5$. Show that there is no proper intermediate field for the extension $F \subset E$.
5. Let F be any field and let α be a root of some polynomial $f(t) \in F[t]$. If $[F(\alpha): F]$ is odd, then show that $F(\alpha)=F\left(\alpha^{2}\right)$. (Hint: Consider the tower of field extensions $F \subseteq F\left(\alpha^{2}\right) \subseteq F(\alpha)$.)
6. Let E / F be a field extension of degree 3 . If $\alpha \in E$ such that $\alpha \notin F$, show that $E=F(\alpha)$.
7. Prove that any algebraically closed field is infinite. (Hint: If F is a finite field, then look at the polynomial $f(t)=1+\prod_{\alpha \in F}(t-\alpha) \in F[t]$.)
8. Let F be a field and $f(t) \in F[t]$ a polynomial such that $f(\alpha)=0$ for all $\alpha \in F$. Is it true that $f(t)=0$ in $F[t]$? (Hint: Take $F=\mathbb{Z} /(2)$ and $f(t)=t^{2}+t \in F[t]$.)
9. Determine the monic irreducible polynomial of $1+i, 2+\sqrt{3}, 1+\sqrt[3]{2}+\sqrt[3]{4}$.
10. Find the degrees of the field extensions $\mathbb{Q}(\sqrt{2+\sqrt{3}}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt{3+2 \sqrt{2}}) / \mathbb{Q}$.
11. Let F be a field of characteristic $\neq 2$. Let $\alpha, \beta \in F$ such that both $X^{2}-\alpha$ and $X^{2}-\beta$ has no roots in F. Show that
(a) $[F(\sqrt{\alpha}, \sqrt{\beta}): F]=4$ if $X^{2}-\alpha \beta$ has no root in F, and
(b) $[F(\sqrt{\alpha}, \sqrt{\beta}): F]=2$, otherwise.
