MA-414 (Galois Theory) Tutorial-3

March 15, 2023

Notation: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E/F.

- 1. Let E be a field. Show that E(X)(Y) is isomorphic to E(S,T).
- 2. Find the degree of the field extension $\mathbb{Q}(\sqrt{3},\sqrt{5})/\mathbb{Q}$.
- 3. If α is transcendental over \mathbb{Q} , show that $\alpha + \sqrt{2} \in \mathbb{C}$ is transcendental over \mathbb{Q} .
- 4. Let E/F be a field extension such that [E:F] = 5. Show that there is no proper intermediate field for the extension $F \subset E$.
- 5. Let F be any field and let α be a root of some polynomial $f(t) \in F[t]$. If $[F(\alpha) : F]$ is odd, then show that $F(\alpha) = F(\alpha^2)$. (Hint: Consider the tower of field extensions $F \subseteq F(\alpha^2) \subseteq F(\alpha)$.)
- 6. Let E/F be a field extension of degree 3. If $\alpha \in E$ such that $\alpha \notin F$, show that $E = F(\alpha)$.
- 7. Prove that any algebraically closed field is infinite. (Hint: If F is a finite field, then look at the **polynomial** $f(t) = 1 + \prod_{\alpha \in F} (t \alpha) \in F[t]$.)
- 8. Let F be a field and $f(t) \in F[t]$ a polynomial such that $f(\alpha) = 0$ for all $\alpha \in F$. Is it true that f(t) = 0 in F[t]? (Hint: Take $F = \mathbb{Z}/(2)$ and $f(t) = t^2 + t \in F[t]$.)
- 9. Determine the monic irreducible polynomial of 1 + i, $2 + \sqrt{3}$, $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 10. Find the degrees of the field extensions $\mathbb{Q}(\sqrt{2+\sqrt{3}})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{3+2\sqrt{2}})/\mathbb{Q}$.
- 11. Let F be a field of characteristic $\neq 2$. Let $\alpha, \beta \in F$ such that both $X^2 \alpha$ and $X^2 - \beta$ has no roots in F. Show that
 - (a) $[F(\sqrt{\alpha}, \sqrt{\beta}) : F] = 4$ if $X^2 \alpha\beta$ has no root in F, and
 - (b) $[F(\sqrt{\alpha}, \sqrt{\beta}) : F] = 2$, otherwise.