MA-414 (Galois Theory) Tutorial-4

March 15, 2023

Notation: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E/F.

- 1. Let E/F be a field extension. Let K, L be subfields of E containing F. If [K:F] = p, for some prime number p(>0), show that either $K \cap L = F$ or $K \subset L$.
- 2. Let F be an algebraically closed field. Let R be an integral domain containing F. If R is a finite dimensional vector space over F, show that R = F.
- 3. Let E/F be an algebraic extension. If F is algebraically closed, show that E = F.
- 4. Let $\omega = e^{2\pi i/3}$. Find all field homomorphisms from $\mathbb{Q}[\sqrt[3]{2}, \omega\sqrt[3]{2}] \to \overline{\mathbb{Q}}$.
- 5. Let $f(X) = X^2 + 2X 1$ and $g(X) = X^2 2$. Show that $\mathbb{Q}[X]/(f(X))$ is isomorphic to $\mathbb{Q}[X]/(g(X))$.
- 6. Let $p(X) \in \mathbb{Q}[X]$ be a non-zero irreducible polynomial. Let $\alpha, \beta \in \mathbb{C}$ be two distinct numbers such that $p(\alpha) = 0 = p(\beta)$. Show that $\mathbb{Q}(\alpha) \cong \mathbb{Q}(\beta)$.
- 7. Let F be a field and F(X) the field of fractions of the polynomial ring F[X]. Show that F(X) is not algebraically closed.
- 8. Let $f(X) = X^4 X^2 6 \in \mathbb{Q}[X]$. Let $E \subseteq \mathbb{C}$ be the smallest subfield of \mathbb{C} containing \mathbb{Q} and all roots of f(X). Find the degree of the field extension E/\mathbb{Q} .
- 9. Let $f(X) = X^p 1 \in \mathbb{Q}[X]$, where p(>0) is a prime number. Let $E \subseteq \mathbb{C}$ be the smallest subfield of \mathbb{C} containing \mathbb{Q} and all roots of f(X). Show that $[E:\mathbb{Q}] = p 1$.
- 10. Let F be a field, and $f(X) \in F[X]$ a polynomial of degree n. Fix an algebraic closure \overline{F} of F. Let $E \subseteq \overline{F}$ be the smallest subfield containing F and all roots of f(X). Show that $[E:F] \leq n!$.
- 11. Fix an algebraic closure \overline{F} of a field F. Let $f(X) \in F[X]$. For $a, b \in F \setminus \{0\}$, let $g(X) = f(aX + b) \in F[X]$. Let E_f (respectively, E_g) be the smallest subfield of \overline{F} containing F and all roots of f(X) (respectively, g(X)). Show that $E_f = E_g$.

- 12. Let $E \subset K$ be an algebraic extension. Let R be a ring such that $E \subset R \subset K$. Show that R is a field.
- 13. Show that $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.
- 14. Show that $[L:E]_s \leq [L:E]$.
- 15. Let $\omega = e^{2\pi i/3}$ and let $\beta = \omega \sqrt[3]{2}$. Let $K = \mathbb{Q}(\beta)$. Show that the equation $x_1^2 + \ldots + x_7^2 = -1$ has no solution with $x_i \in K$.
- 16. Let a be a positive rational number that is not a square in \mathbb{Q} . Prove that $\sqrt[4]{a}$ has degree 4 over \mathbb{Q} .
- 17. Let $\alpha \in \overline{\mathbb{Q}}$ be such that for all automorphisms $\sigma : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ we have $\sigma(\alpha) = \alpha$. Show that $\alpha \in \mathbb{Q}$.
- 18. Let $f(X) \in F[X]$ be an irreducible polynomial of degree n, and let E be a field extension of F with [E : F] = m. If gcd(m, n) = 1, show that f(X) is irreducible over E.
- 19. Let *E* be a field. Let $\alpha, \beta \in \overline{E}$ be such that $[E[\alpha] : E] = n$ and $[E[\beta] : E] = m$ are coprime. Show that $[E[\alpha, \beta] : E] = nm$.
- 20. Let $\zeta := e^{2\pi i/5}$. Let $\phi : \mathbb{Q}(\sqrt[5]{2}, \zeta) \to \overline{\mathbb{Q}}$ be a homomorphism. Show that the image is contained in $\mathbb{Q}(\sqrt[5]{2}, \zeta)$.
- 21. Let p be a primes. Let $\Phi_p(X) = 1 + X + \ldots + X^{p-1} \in \mathbb{Q}[X]$. Let 0 < i < p. Show that $\Phi_p(X)$ divides $\Phi_p(X^i)$.