# MA-414 (Galois Theory) Tutorial-4 

March 15, 2023

Notation: If $F$ is a subfield of a field $E$, then the field extension $F \subseteq E$ is usually denoted by $E / F$.

1. Let $E / F$ be a field extension. Let $K, L$ be subfields of $E$ containing $F$. If $[K: F]=p$, for some prime number $p(>0)$, show that either $K \cap L=F$ or $K \subset L$.
2. Let $F$ be an algebraically closed field. Let $R$ be an integral domain containing $F$. If $R$ is a finite dimensional vector space over $F$, show that $R=F$.
3. Let $E / F$ be an algebraic extension. If $F$ is algebraically closed, show that $E=F$.
4. Let $\omega=e^{2 \pi i / 3}$. Find all field homomorphisms from $\mathbb{Q}[\sqrt[3]{2}, \omega \sqrt[3]{2}] \rightarrow \overline{\mathbb{Q}}$.
5. Let $f(X)=X^{2}+2 X-1$ and $g(X)=X^{2}-2$. Show that $\mathbb{Q}[X] /(f(X))$ is isomorphic to $\mathbb{Q}[X] /(g(X))$.
6. Let $p(X) \in \mathbb{Q}[X]$ be a non-zero irreducible polynomial. Let $\alpha, \beta \in \mathbb{C}$ be two distinct numbers such that $p(\alpha)=0=p(\beta)$. Show that $\mathbb{Q}(\alpha) \cong \mathbb{Q}(\beta)$.
7. Let $F$ be a field and $F(X)$ the field of fractions of the polynomial ring $F[X]$. Show that $F(X)$ is not algebraically closed.
8. Let $f(X)=X^{4}-X^{2}-6 \in \mathbb{Q}[X]$. Let $E \subseteq \mathbb{C}$ be the smallest subfield of $\mathbb{C}$ containing $\mathbb{Q}$ and all roots of $f(X)$. Find the degree of the field extension $E / \mathbb{Q}$.
9. Let $f(X)=X^{p}-1 \in \mathbb{Q}[X]$, where $p(>0)$ is a prime number. Let $E \subseteq \mathbb{C}$ be the smallest subfield of $\mathbb{C}$ containing $\mathbb{Q}$ and all roots of $f(X)$. Show that $[E: \mathbb{Q}]=p-1$.
10. Let $F$ be a field, and $f(X) \in F[X]$ a polynomial of degree $n$. Fix an algebraic closure $\bar{F}$ of $F$. Let $E \subseteq \bar{F}$ be the smallest subfield containing $F$ and all roots of $f(X)$. Show that $[E: F] \leq n$ !.
11. Fix an algebraic closure $\bar{F}$ of a field $F$. Let $f(X) \in F[X]$. For $a, b \in F \backslash\{0\}$, let $g(X)=f(a X+b) \in F[X]$. Let $E_{f}$ (respectively, $E_{g}$ ) be the smallest subfield of $\bar{F}$ containing $F$ and all roots of $f(X)$ (respectively, $g(X)$ ). Show that $E_{f}=E_{g}$.
12. Let $E \subset K$ be an algebraic extension. Let $R$ be a ring such that $E \subset R \subset K$. Show that $R$ is a field.
13. Show that $[\overline{\mathbb{Q}}: \mathbb{Q}]=\infty$.
14. Show that $[L: E]_{s} \leqslant[L: E]$.
15. Let $\omega=e^{2 \pi i / 3}$ and let $\beta=\omega \sqrt[3]{2}$. Let $K=\mathbb{Q}(\beta)$. Show that the equation $x_{1}^{2}+\ldots+x_{7}^{2}=-1$ has no solution with $x_{i} \in K$.
16. Let $a$ be a positive rational number that is not a square in $\mathbb{Q}$. Prove that $\sqrt[4]{a}$ has degree 4 over $\mathbb{Q}$.
17. Let $\alpha \in \overline{\mathbb{Q}}$ be such that for all automorphisms $\sigma: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}$ we have $\sigma(\alpha)=\alpha$. Show that $\alpha \in \mathbb{Q}$.
18. Let $f(X) \in F[X]$ be an irreducible polynomial of degree $n$, and let $E$ be a field extension of $F$ with $[E: F]=m$. If $\operatorname{gcd}(m, n)=1$, show that $f(X)$ is irreducible over $E$.
19. Let $E$ be a field. Let $\alpha, \beta \in \bar{E}$ be such that $[E[\alpha]: E]=n$ and $[E[\beta]: E]=m$ are coprime. Show that $[E[\alpha, \beta]: E]=n m$.
20. Let $\zeta:=e^{2 \pi i / 5}$. Let $\phi: \mathbb{Q}(\sqrt[5]{2}, \zeta) \rightarrow \overline{\mathbb{Q}}$ be a homomorphism. Show that the image is contained in $\mathbb{Q}(\sqrt[5]{2}, \zeta)$.
21. Let $p$ be a primes. Let $\Phi_{p}(X)=1+X+\ldots+X^{p-1} \in \mathbb{Q}[X]$. Let $0<i<p$. Show that $\Phi_{p}(X)$ divides $\Phi_{p}\left(X^{i}\right)$.
