MA-414 (Galois Theory) Tutorial-5

March 15, 2023

Notation and definitions: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E/F. For any polynomial $f(X) \in F[X]$, we denote by f'(X) its formal derivative $D_F(f(X)) \in F[X]$. Two non-zero non-unit polynomials $f(X), g(X) \in F[X]$ are said to be **relatively prime** if they have no common divisor in F[X] except for units of F[X]. A field F is said to be **perfect** if all algebraic field extensions of F are separable over F.

- 1. Let F be a field of characteristic p > 0. Show that for any integer $n \ge 0$, $F^{p^n} := \{a^{p^n} \mid a \in F\}$ is a subfield of F.
- 2. Let $E = \mathbb{F}_p(X)$. Show that the polynomial $T^p X \in E[T]$ is irreducible. Let E_1 denote the field $E[T]/(T^p X)$. Let \overline{E} denote an algebraic closure of E and fix an embedding $\phi : E \subset \overline{E}$. Compute cardinality of the set $\operatorname{Hom}_{\phi}(E_1, \overline{E})$.
- 3. Let F be a field of characteristic p > 0. Let $\alpha \in F$. Show that the polynomial $T^p \alpha \in F[T]$ is irreducible iff it does not have a root in F.
- 4. Let F be a field of characteristic p > 0. Let α be an element in F which does not have a p^{th} root in F.
 - (a) Show that the polynomial $T^p \alpha \in F[T]$ is irreducible.
 - (b) Let α_1 be a root of this polynomial in \overline{F} . Consider the field $F_1 := F[\alpha_1] \subset \overline{F}$. Show that $(F_1)^p \subset F$.
 - (c) Show that the polynomial $T^p \alpha_1 \in F_1[T]$ is irreducible.
- 5. Use exercises 3 and 4 to show that there is an algebraic extension L/E with $[L:E] = \infty$ and $[L:E]_s = 1$.
- 6. Let F be a finite field of characteristic p > 0. Show that $F = F^p$.
- 7. Let $F \subset K \subset E$ be tower of field extensions. Let $\alpha \in E$ be separable over F. Show that α is separable over K.
- 8. Let F be a perfect field. Let $F \subset E$ be an algebraic extension. Show E is perfect.
- 9. Let $F := \mathbb{Z}/(2)$, and let $\alpha \in \overline{F}$ be a root of the polynomial $f(t) = t^4 + t^2 + 1 \in F[t]$. Determine if α is separable over F or not.

- 10. Let E/F be a field extension. Let $f(X) \in F[X]$ and $\alpha \in E$. Show that $(X \alpha)^2 \mid f(X)$ if and only if $(X \alpha) \mid f(X)$ and $(X \alpha) \mid D_F(f(X))$.
- 11. Show that two polynomials in F[X] are relatively prime iff they are relatively prime in $\overline{F}[X]$.
- 12. Let F be a field and $f(X) \in F[X]$. Show that f(X) has no repeated roots if and only if f(X) and $D_F(f(X))$ are relatively prime in $\overline{F}[X]$. Shows that f(X) has repeated roots iff f(X) and $D_F(f(X))$ are not relatively prime.
- 13. Let F be a field of characteristic p > 0. Show that $X \in F(X)$ is inseparable over $F(X^p)$.
- 14. Let F be a field of characteristic p > 0. Show that F is perfect if and only if $F = F^p$.
- 15. Let F be a field of characteristic p > 0. Show that $\bigcap_{n=0}^{\infty} F^{p^n}$ is the largest perfect subfield of F.
- 16. Let E/F be a finite degree field extension and char(F) = p > 0. If p does not divide [E:F], show that E/F is separable.
- 17. Let F be a field of characteristic p > 0, and let $f(X) = X^p a \in F[X]$. Show that either f(X) is irreducible in F[X] or $f(X) = (X \alpha)^p$, for some $\alpha \in F$.
- 18. Let F be a field of characteristic p > 0. Let $f(X) \in F[X]$ be an irreducible polynomial. Show that there exists an irreducible separable polynomial $g(X) \in F[X]$ and an integer $n \ge 0$ such that $f(X) = g(X^{p^n})$. Show that all roots of f(X) have the same multiplicity p^n .
- 19. Let F be a field of characteristic p > 0. Let $\alpha \in \overline{F(X)}$ be a root of $p(Y) := Y^{2p} + XY^p + X \in F(X)[Y]$. Show that α is inseparable over F(X). (Hint: Use Eisenstein's irreducibility criterion to conclude that p(Y) is irreducible.)
- 20. Let F be a field of characteristic p > 0. Consider the field E := F(X, Y) and its extensions $E_1 := E[T]/(T^p - X)$ and $E_2 := E_1[S]/(S^p - Y)$. In particular, show that both E_1 and E_2 are fields. Show that $[E_2 : E] = p^2$. Show that for any $\alpha \in E_2$, one has $\alpha^p \in E$. Use this to conclude that there is no $\alpha \in E_2$ such that $E_2 = E[\alpha]$.
- 21. Let F be a field of characteristic 0, and $f(X) \in F[X]$. Let

$$h(X) := \gcd(f(X), f'(X))$$

Show that both g(X) := f(X)/h(X) and f(X) have the same roots and g(X) has no repeated root.

- 22. Let F be a field of characteristic p > 0. Let α be a root of $X^p a \in F[X]$. Let $E = F(\alpha)$. Find the separable degree and inseparable degree of E over F.
- 23. Let p > 0 be a prime number. Let $F = \mathbb{F}_p(X, Y)$ be the field of fractions of the polynomial ring $\mathbb{F}_p[X, Y]$. Let $E = F(\sqrt[p]{X}, \sqrt[p]{Y})$. Find the separable degree and inseparable degree of E over F.