MA-414 (Galois Theory) Tutorial-5

March 15, 2023

Notation and definitions: If F is a subfield of a field E, then the field extension $F \subseteq E$ is usually denoted by E / F. For any polynomial $f(X) \in F[X]$, we denote by $f^{\prime}(X)$ its formal derivative $D_{F}(f(X)) \in F[X]$. Two non-zero non-unit polynomials $f(X), g(X) \in F[X]$ are said to be relatively prime if they have no common divisor in $F[X]$ except for units of $F[X]$. A field F is said to be perfect if all algebraic field extensions of F are separable over F.

1. Let F be a field of characteristic $p>0$. Show that for any integer $n \geq 0$, $F^{p^{n}}:=\left\{a^{p^{n}} \mid a \in F\right\}$ is a subfield of F.
2. Let $E=\mathbb{F}_{p}(X)$. Show that the polynomial $T^{p}-X \in E[T]$ is irreducible. Let E_{1} denote the field $E[T] /\left(T^{p}-X\right)$. Let \bar{E} denote an algebraic closure of E and fix an embedding $\phi: E \subset \bar{E}$. Compute cardinality of the set $\operatorname{Hom}_{\phi}\left(E_{1}, \bar{E}\right)$.
3. Let F be a field of characteristic $p>0$. Let $\alpha \in F$. Show that the polynomial $T^{p}-\alpha \in F[T]$ is irreducible iff it does not have a root in F.
4. Let F be a field of characteristic $p>0$. Let α be an element in F which does not have a $p^{\text {th }}$ root in F.
(a) Show that the polynomial $T^{p}-\alpha \in F[T]$ is irreducible.
(b) Let α_{1} be a root of this polynomial in \bar{F}. Consider the field $F_{1}:=F\left[\alpha_{1}\right] \subset$ \bar{F}. Show that $\left(F_{1}\right)^{p} \subset F$.
(c) Show that the polynomial $T^{p}-\alpha_{1} \in F_{1}[T]$ is irreducible.
5. Use exercises 3 and 4 to show that there is an algebraic extension L / E with $[L: E]=\infty$ and $[L: E]_{s}=1$.
6. Let F be a finite field of characteristic $p>0$. Show that $F=F^{p}$.
7. Let $F \subset K \subset E$ be tower of field extensions. Let $\alpha \in E$ be separable over F. Show that α is separable over K.
8. Let F be a perfect field. Let $F \subset E$ be an algebraic extension. Show E is perfect.
9. Let $F:=\mathbb{Z} /(2)$, and let $\alpha \in \bar{F}$ be a root of the polynomial $f(t)=t^{4}+t^{2}+1 \in$ $F[t]$. Determine if α is separable over F or not.
10. Let E / F be a field extension. Let $f(X) \in F[X]$ and $\alpha \in E$. Show that $(X-\alpha)^{2} \mid f(X)$ if and only if $(X-\alpha) \mid f(X)$ and $(X-\alpha) \mid D_{F}(f(X))$.
11. Show that two polynomials in $F[X]$ are relatively prime iff they are relatively prime in $\bar{F}[X]$.
12. Let F be a field and $f(X) \in F[X]$. Show that $f(X)$ has no repeated roots if and only if $f(X)$ and $D_{F}(f(X))$ are relatively prime in $\bar{F}[X]$. Shows that $f(X)$ has repeated roots iff $f(X)$ and $D_{F}(f(X))$ are not relatively prime.
13. Let F be a field of characteristic $p>0$. Show that $X \in F(X)$ is inseparable over $F\left(X^{p}\right)$.
14. Let F be a field of characteristic $p>0$. Show that F is perfect if and only if $F=F^{p}$.
15. Let F be a field of characteristic $p>0$. Show that $\bigcap_{n=0}^{\infty} F^{p^{n}}$ is the largest perfect subfield of F.
16. Let E / F be a finite degree field extension and $\operatorname{char}(F)=p>0$. If p does not divide $[E: F]$, show that E / F is separable.
17. Let F be a field of characteristic $p>0$, and let $f(X)=X^{p}-a \in F[X]$. Show that either $f(X)$ is irreducible in $F[X]$ or $f(X)=(X-\alpha)^{p}$, for some $\alpha \in F$.
18. Let F be a field of characteristic $p>0$. Let $f(X) \in F[X]$ be an irreducible polynomial. Show that there exists an irreducible separable polynomial $g(X) \in$ $F[X]$ and an integer $n \geq 0$ such that $f(X)=g\left(X^{p^{n}}\right)$. Show that all roots of $f(X)$ have the same multiplicity p^{n}.
19. Let F be a field of characteristic $p>0$. Let $\alpha \in \overline{F(X)}$ be a root of $p(Y):=$ $Y^{2 p}+X Y^{p}+X \in F(X)[Y]$. Show that α is inseparable over $F(X)$. (Hint: Use Eisenstein's irreducibility criterion to conclude that $p(Y)$ is irreducible.)
20. Let F be a field of characteristic $p>0$. Consider the field $E:=F(X, Y)$ and its extensions $E_{1}:=E[T] /\left(T^{p}-X\right)$ and $E_{2}:=E_{1}[S] /\left(S^{p}-Y\right)$. In particular, show that both E_{1} and E_{2} are fields. Show that $\left[E_{2}: E\right]=p^{2}$. Show that for any $\alpha \in E_{2}$, one has $\alpha^{p} \in E$. Use this to conclude that there is no $\alpha \in E_{2}$ such that $E_{2}=E[\alpha]$.
21. Let F be a field of characteristic 0 , and $f(X) \in F[X]$. Let

$$
h(X):=\operatorname{gcd}\left(f(X), f^{\prime}(X)\right) .
$$

Show that both $g(X):=f(X) / h(X)$ and $f(X)$ have the same roots and $g(X)$ has no repeated root.
22. Let F be a field of characteristic $p>0$. Let α be a root of $X^{p}-a \in F[X]$. Let $E=F(\alpha)$. Find the separable degree and inseparable degree of E over F.
23. Let $p>0$ be a prime number. Let $F=\mathbb{F}_{p}(X, Y)$ be the field of fractions of the polynomial ring $\mathbb{F}_{p}[X, Y]$. Let $E=F(\sqrt[p]{X}, \sqrt[p]{Y})$. Find the separable degree and inseparable degree of E over F.

