MA-414 (Galois Theory) Tutorial-6

March 30, 2023

Notation: For any prime number p > 0 and an integer n > 0, we denote by \mathbb{F}_{p^n} the finite field of order p^n .

- 1. Show that for any integer n > 0, there is an irreducible polynomial $f(X) \in \mathbb{F}_p[X]$ of degree n.
- 2. Let F be a finite field of characteristic p > 0. If $\alpha \in F$ be a root of a polynomial $f(X) \in \mathbb{F}_p[X]$, show that α^p is also a root of f(X).
- 3. Let F be a field such that $F^{\times} := F \setminus \{0\}$ is a cyclic group. Show that F is a finite field.
- 4. Let n, r be two positive integers such that r divides n. Then for any prime number p > 0, show that $X^{p^r} X$ divides $X^{p^n} X$.
- 5. Find the number of distinct irreducible polynomials of degree 3 over the field \mathbb{F}_3 .
- 6. Let F be a finite field. Show that the product of all non-zero elements of F is equal to -1 in F.
- 7. Show that every element of \mathbb{F}_p has exactly one p^{th} root.
- 8. Factorize $X^{16} X$ in $\mathbb{F}_4[X]$ and in $\mathbb{F}_8[X]$.
- 9. Show that the polynomial $X^{p^n} X$ factors over $\mathbb{F}_p[X]$ as the product of all monic irreducible polynomials of degree d, where d divides n.
- 10. Let $\alpha \in \overline{\mathbb{F}_p}$. If $E/\mathbb{F}_p(\alpha)$ is an algebraic field extension, determine if E is separable over \mathbb{F}_p or not.
- 11. Let F be a field of characteristic p > 0. Show that $f(X) = X^p X a \in F[X]$ is reducible over F if and only if f(X) has a root in F.
- 12. Let F be a subfield of \mathbb{C} such that F is not a subfield of \mathbb{R} . Show that F is a dense subset of \mathbb{C} in the standard topology.
- 13. Let F be a finite field. Show that, for each element $\alpha \in F$, there exists $\beta, \gamma \in F$ such that $\alpha = \beta^2 + \gamma^2$.

- 14. Let *E* be the unique finite field of order p^n . Show that for every $m \ge 1$ there is a unique extension K_m of *E* such that $[K_m : E] = m$. Show that $\operatorname{Aut}(K_m/E) = \langle Fr^n \rangle$. (HINT: Imitate what we did in class for n = 1)
- 15. Show that every element of $\operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, except for the identity map of $\overline{\mathbb{F}}_p$, has infinite order.
- 16. Let F be a field of characteristic p > 0. Let $\alpha \in \overline{F}$ and $\alpha \notin F^p$. Show that $X^{p^n} \alpha \in F[X]$ is irreducible, for all integer $n \ge 1$.
- 17. Let F be a field. Let $f(X) \in F[X]$ be a monic irreducible polynomial of degree at least 2 such that all of its roots (in an algebraic closure of F) are the same. Show that char(F) = p > 0, for some prime number p and $f(X) = X^{p^n} - \alpha$, for some integer $n \ge 1$ and $\alpha \in F$.
- 18. Let F be a field of characteristic p > 0. Let E/F be a finite degree field extension such that $p \nmid [E:F]$. Show that E is separable over F.
- 19. Let F be a field of characteristic p > 0. Show that $\alpha \in \overline{F}$ is separable over F if and only if $F(\alpha) = F(\alpha^{p^n})$, for all integer $n \ge 1$.
- 20. Let $f(X) \in F[X]$ be an irreducible polynomial of degree n > 0. If the characteristic of F does not divide n, show that f(X) has no multiple roots.
- 21. Let F be a field and let V be an F vector space. Let $V_i \subset V$ be finitely many proper subspaces. If $V = \bigcup_{i=1}^r V_i$, show that there is a subset $S \subset \{1, 2, \ldots, r\}$ such that
 - (a) $V = \bigcup_{j \in S} V_j$
 - (b) For $j \in S$, we have $V_j \not\subset \left(\bigcup_{l \in S \setminus j} V_l \right)$.

(We are simply finding a minimal collection whose union is V) So we may assume that $V = \bigcup_{i=1}^{r} V_i$ and the V_i satisfy the second property above. Let $v_1 \in V_1$ be such that $v_1 \notin \bigcup_{i \neq 1} V_i$. Similarly, let $v_2 \in V_2$ be such that $v_2 \notin \bigcup_{i \neq 2} V_i$. Show that for any *i* there is at most one $\lambda \in F$ such that $v_1 + \lambda v_2 \in V_i$. If F is infinite, show that V cannot be written as a finite union of proper subspaces.

- 22. Let F be a field of characteristic p > 0. Let $E = F(\sqrt[p]{\alpha}, \sqrt[p]{\beta})$, for some $\alpha, \beta \in F$, be such that $[E:F] = p^2$. Show that
 - (a) F is an infinite field,
 - (b) $E \neq F(\gamma)$ for any $\gamma \in E$, and
 - (c) there are infinitely many intermediate field extensions of E/F. Contrast this with the situation when we have a Galois extension.
- 23. Let F be a field of characteristic p > 0. Let E/F be a finite extension. Let $[E : F]_i = p^n$ be the inseparable degree of E/F. Suppose that there is no exponent p^r , with r < n, such that the composite field $E^{p^r}F$ is separable over F. Show that $E = F(\alpha)$, for some $\alpha \in E$.

24. Let F be a field of characteristic $\neq 2$. Let $F^{\times} := F \setminus \{0\}$. Let E/F be a quadratic field extension (that is, [E:F] = 2). Let

$$S(E) = \{ a \in F^{\times} : a = b^2, \text{ for some } b \in E \}.$$

- (i) Show that S(E) is a subgroup of F^{\times} containing $F^{\times 2}$.
- (ii) Let E and E' be two quadratic extensions of F. Show that there is an F-isomorphism $\phi: E \to E'$ if and only if S(E) = S(E').
- (iii) Show that there is an infinite sequence of quadratic field extensions E_i/\mathbb{Q} , $i \in \mathbb{N}$, such that $E_i \ncong E_j$, for all $i \neq j$ in \mathbb{N} . Contrast this with the fact that for a finite field K, and for an integer $m \ge 1$ there is only one extension of K of degree m.