MA-414 (Galois Theory) Tutorial-6

March 30, 2023

Notation: For any prime number $p>0$ and an integer $n>0$, we denote by $\mathbb{F}_{p^{n}}$ the finite field of order p^{n}.

1. Show that for any integer $n>0$, there is an irreducible polynomial $f(X) \in$ $\mathbb{F}_{p}[X]$ of degree n.
2. Let F be a finite field of characteristic $p>0$. If $\alpha \in F$ be a root of a polynomial $f(X) \in \mathbb{F}_{p}[X]$, show that α^{p} is also a root of $f(X)$.
3. Let F be a field such that $F^{\times}:=F \backslash\{0\}$ is a cyclic group. Show that F is a finite field.
4. Let n, r be two positive integers such that r divides n. Then for any prime number $p>0$, show that $X^{p^{r}}-X$ divides $X^{p^{n}}-X$.
5. Find the number of distinct irreducible polynomials of degree 3 over the field \mathbb{F}_{3}.
6. Let F be a finite field. Show that the product of all non-zero elements of F is equal to -1 in F.
7. Show that every element of \mathbb{F}_{p} has exactly one $p^{\text {th }}$ root.
8. Factorize $X^{16}-X$ in $\mathbb{F}_{4}[X]$ and in $\mathbb{F}_{8}[X]$.
9. Show that the polynomial $X^{p^{n}}-X$ factors over $\mathbb{F}_{p}[X]$ as the product of all monic irreducible polynomials of degree d, where d divides n.
10. Let $\alpha \in \overline{\mathbb{F}_{p}}$. If $E / \mathbb{F}_{p}(\alpha)$ is an algebraic field extension, determine if E is separable over \mathbb{F}_{p} or not.
11. Let F be a field of characteristic $p>0$. Show that $f(X)=X^{p}-X-a \in F[X]$ is reducible over F if and only if $f(X)$ has a root in F.
12. Let F be a subfield of \mathbb{C} such that F is not a subfield of \mathbb{R}. Show that F is a dense subset of \mathbb{C} in the standard topology.
13. Let F be a finite field. Show that, for each element $\alpha \in F$, there exists $\beta, \gamma \in F$ such that $\alpha=\beta^{2}+\gamma^{2}$.
14. Let E be the unique finite field of order p^{n}. Show that for every $m \geq 1$ there is a unique extension K_{m} of E such that $\left[K_{m}: E\right]=m$. Show that $\operatorname{Aut}\left(K_{m} / E\right)=\left\langle F r^{n}\right\rangle$. (HINT: Imitate what we did in class for $n=1$)
15. Show that every element of $\operatorname{Aut}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$, except for the identity map of $\overline{\mathbb{F}}_{p}$, has infinite order.
16. Let F be a field of characteristic $p>0$. Let $\alpha \in \bar{F}$ and $\alpha \notin F^{p}$. Show that $X^{p^{n}}-\alpha \in F[X]$ is irreducible, for all integer $n \geq 1$.
17. Let F be a field. Let $f(X) \in F[X]$ be a monic irreducible polynomial of degree at least 2 such that all of its roots (in an algebraic closure of F) are the same. Show that $\operatorname{char}(F)=p>0$, for some prime number p and $f(X)=X^{p^{n}}-\alpha$, for some integer $n \geq 1$ and $\alpha \in F$.
18. Let F be a field of characteristic $p>0$. Let E / F be a finite degree field extension such that $p \nmid[E: F]$. Show that E is separable over F.
19. Let F be a field of characteristic $p>0$. Show that $\alpha \in \bar{F}$ is separable over F if and only if $F(\alpha)=F\left(\alpha^{p^{n}}\right)$, for all integer $n \geq 1$.
20. Let $f(X) \in F[X]$ be an irreducible polynomial of degree $n>0$. If the characteristic of F does not divide n, show that $f(X)$ has no multiple roots.
21. Let F be a field and let V be an F vector space. Let $V_{i} \subset V$ be finitely many proper subspaces. If $V=\cup_{i=1}^{r} V_{i}$, show that there is a subset $S \subset\{1,2, \ldots, r\}$ such that
(a) $V=\cup_{j \in S} V_{j}$
(b) For $j \in S$, we have $V_{j} \not \subset\left(\cup_{l \in S \backslash j} V_{l}\right)$.
(We are simply finding a minimal collection whose union is V) So we may assume that $V=\cup_{i=1}^{r} V_{i}$ and the V_{i} satisfy the second property above. Let $v_{1} \in V_{1}$ be such that $v_{1} \notin \cup_{i \neq 1} V_{i}$. Similarly, let $v_{2} \in V_{2}$ be such that $v_{2} \notin$ $\cup_{i \neq 2} V_{i}$. Show that for any i there is at most one $\lambda \in F$ such that $v_{1}+\lambda v_{2} \in V_{i}$. If F is infinite, show that V cannot be written as a finite union of proper subspaces.
22. Let F be a field of characteristic $p>0$. Let $E=F(\sqrt[p]{\alpha}, \sqrt[p]{\beta})$, for some $\alpha, \beta \in F$, be such that $[E: F]=p^{2}$. Show that
(a) F is an infinite field,
(b) $E \neq F(\gamma)$ for any $\gamma \in E$, and
(c) there are infinitely many intermediate field extensions of E / F. Contrast this with the situation when we have a Galois extension.
23. Let F be a field of characteristic $p>0$. Let E / F be a finite extension. Let $[E: F]_{i}=p^{n}$ be the inseparable degree of E / F. Suppose that there is no exponent p^{r}, with $r<n$, such that the composite field $E^{p^{r}} F$ is separable over F. Show that $E=F(\alpha)$, for some $\alpha \in E$.
24. Let F be a field of characteristic $\neq 2$. Let $F^{\times}:=F \backslash\{0\}$. Let E / F be a quadratic field extension (that is, $[E: F]=2$). Let

$$
S(E)=\left\{a \in F^{\times}: a=b^{2}, \text { for some } b \in E\right\} .
$$

(i) Show that $S(E)$ is a subgroup of F^{\times}containing $F^{\times 2}$.
(ii) Let E and E^{\prime} be two quadratic extensions of F. Show that there is an F-isomorphism $\phi: E \rightarrow E^{\prime}$ if and only if $S(E)=S\left(E^{\prime}\right)$.
(iii) Show that there is an infinite sequence of quadratic field extensions E_{i} / \mathbb{Q}, $i \in \mathbb{N}$, such that $E_{i} \neq E_{j}$, for all $i \neq j$ in \mathbb{N}. Contrast this with the fact that for a finite field K, and for an integer $m \geqslant 1$ there is only one extension of K of degree m.

