# MA-414 (Galois Theory) Tutorial-7 

March 15, 2023

1. Let $L$ be a finite extension of $E$. Suppose there is a field homomorphism $\psi: L \rightarrow L$ such that $\psi(a)=a$ for all $a \in E$. Show that $\psi$ is surjective.
2. Let $L$ be an algebraic extension of $E$ (not necessarily finite). Suppose there is a field homomorphism $\psi: L \rightarrow L$ such that $\psi(a)=a$ for all $a \in E$. Show that $\psi$ is surjective.
3. On several occasions we used the following statement. Let $i: E \subset \bar{E}$ be an embedding. Let $\psi: \bar{E} \rightarrow \bar{E}$ be a field homomorphism such that $\psi(a)=a$ for all $a \in E$. Then $\psi$ is an isomorphism. We will show that the condition " $\psi(a)=a$ for all $a \in E$ " is necessary for this to happen.
Find a field $E$ and a homomorphism $\sigma: E \rightarrow E$ such that $E$ is not algebraic over $\sigma(E)$. Recall that if $L / E$ is algebraic and $K$ is any algebraically closed field then any homomorphism $\phi: E \rightarrow K$ can be extended to a homomorphism $L \rightarrow K$. Applying this by taking $L=K=\bar{E}$ and $\phi=i \circ \sigma$, we get a map $\psi: \bar{E} \rightarrow \bar{E}$. Show that $\psi$ is not surjective.
4. Let

be fields. Define

$$
K L:=\left\{\sum_{i=1}^{m} \alpha_{i} \beta_{i} \mid m \geqslant 1, \alpha_{i} \in K, \beta_{i} \in L\right\} .
$$

Apriori, this is only a subring of $F$. Show that if $K$ is a finite extension of $E$ then the dimension of $K L$ as a vector space over $L$ is $\leqslant[K: E]$. Use this to show that $K L$ is a field. Finally conclude that $K L$ is the smallest subfield of $F$ containing both $K$ and $L$.
5. Let notation be as in the preceding problem. If both $[K: E]$ and $[L: E]$ are finite, show that $[K L: E] \leqslant[K: E] \cdot[L: E]$.
6. Let $K / F$ be a finite separable extension. Show that there are only finitely many fields $E$ such that $F \subset E \subset K$. Compare this with the last exercise in the previous tutorial sheet.
7. Show that $\mathbb{Q}\left[\sqrt{2}, e^{2 \pi i / 4}\right] / \mathbb{Q}$ is a Galois extension. What is $\operatorname{Gal}\left(\mathbb{Q}\left[\sqrt{2}, e^{2 \pi i / 4}\right] / \mathbb{Q}\right)$ ?
8. Let $F \subset E \subset K$ be fields such that both $E$ and $K$ are Galois extensions of $F$. Show that there is a natural map $\operatorname{Gal}(K / F) \rightarrow \operatorname{Gal}(E / F)$ which is surjective. (HINT: We have used a slightly more general version of this map earlier.)
9. Consider the following statement from group theory. Let $\phi: G \rightarrow H$ be a surjective homomorphism of groups and let $N$ be the kernel. (This is often written as: Let

$$
1 \rightarrow N \rightarrow G \xrightarrow{\phi} H \rightarrow 1
$$

be a short exact sequence of groups.) Assume that there is a subgroup $M \subset G$ such that the restriction of $\phi$ to $M$ is an isomorphism $M \xrightarrow{\sim} H$. Then every element of $G$ can be written uniquely as $n m$ where $n \in N$ and $m \in M$ (why?). In this case we say that $G$ is the semi-direct product of $N$ and $M$. The "semi" is because although $G$ is a product of $N$ and $M$ as sets, it may not be a product as groups. Show that $S_{n}$ is the semi-direct product of $A_{n}$ and $\mathbb{Z} / 2 \mathbb{Z}$, but it is not the product of these groups.

Continuing with the above, if further, elements of $M$ and $N$ commute with each other, then $G$ is a direct product of $M$ and $N$ as groups. Prove this by showing that the set map (what is the map?) $N \times M \rightarrow G$ is a group homomorphism. Since it is a bijection of sets, it follows that $G$ is the product of these two groups.
10. Let $n>1$. Show that there is a group of size $2 n$ which has the following properties
(a) It has a cyclic subgroup $H_{n}$ of size $n$
(b) It has a cyclic subgroup $H_{2}$ of size 2
(c) If $r$ is a generator of $H_{n}$ and $f$ is a generator of $H_{2}$ then $r f=f r^{-1}$.

Show that any two groups, of size $2 n$ and having the above properties, are isomorphic.
11. In this exercise, we compute $\operatorname{Aut}(\mathbb{R} / \mathbb{Q})$.
(a) Let $\sigma \in \operatorname{Aut}(\mathbb{R} / \mathbb{Q})$ be such that $\sigma(a)>0$, for all real numbers $a>0$. Show that for any $a, b \in \mathbb{R}$ with $a<b$, we have $\sigma(a)<\sigma(b)$.
(b) Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Then $-\frac{1}{n}<a-b<\frac{1}{n}$ implies $-\frac{1}{n}<\sigma(a)-\sigma(b)<$ $\frac{1}{n}$. Conclude that $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map with $\left.f\right|_{\mathbb{Q}}=\operatorname{Id}_{\mathbb{Q}}$, then $f=\operatorname{Id}_{\mathbb{R}}$. Conclude that $\operatorname{Aut}(\mathbb{R} / \mathbb{Q})=\left\{\operatorname{Id}_{\mathbb{R}}\right\}$.
12. Let $k$ be a field. Let $k(t)$ be the field of fractions of the polynomial ring $k[t]$. Let $X=\frac{p(t)}{q(t)} \in k(t)$, with relatively prime polynomials $p(t), q(t) \in k[t] \backslash\{0\}$. In this exercise, we compute the degree of the field extension $k(t) / k(X)$.
(a) Show that $p(Y)-X q(Y) \in k(X)[Y]$ is irreducible and $t$ is root of it. (Hint: Use Gauss' lemma to conclude irreducibility.)
(b) Show that $\operatorname{deg}_{Y}(p(Y)-X q(Y))=\max \{\operatorname{deg}(p(Y)), \operatorname{deg}(q(Y))\}$.
(c) Show that $[k(t): k(X)]=\left[k(t): k\left(\frac{p(t)}{q(t)}\right)\right]=\max \{\operatorname{deg}(p(t)), \operatorname{deg}(q(t))\}$.
13. Let $k$ be a field. Show the following.
(a) The maps $t \mapsto \frac{1}{t}$ and $t \mapsto a t+b$ (for all $a, b \in k$ with $a \neq 0$ ) defines elements of $\operatorname{Aut}(k(t) / k)$. Hence their compositions are also in $\operatorname{Aut}(k(t) / k)$.
(b) Show that, $\operatorname{Aut}(k(t) / k)=\left\{t \mapsto \frac{a t+b}{c t+d}: a, b, c, d \in k, a d-b c \neq 0\right\}$.
(c) Find the fixed field of the automorphism $t \mapsto t+1$ of $k(t)$.
14. Let $E / F$ be a field extension. Let $\varphi: E \rightarrow E^{\prime}$ be an isomorphism of $E$ with a field $E^{\prime}$ which maps $F$ to a subfield $F^{\prime}$ of $E^{\prime}$. Show that the map $\sigma \mapsto \varphi \circ \sigma \circ \varphi^{-1}$ defines a group homomorphism $\operatorname{Aut}(E / F) \xrightarrow{\simeq} \operatorname{Aut}\left(E^{\prime} / F^{\prime}\right)$.
15. Let $E / F$ be a finite Galois extension. Let $H$ be a subgroup of $\operatorname{Gal}(E / F)$. Show that there is an element $\alpha \in E$ such that $H=\{\sigma \in \operatorname{Gal}(E / F): \sigma(\alpha)=\alpha\}$.

