MA-414 (Galois Theory) Tutorial-7

March 15, 2023

- 1. Let L be a finite extension of E. Suppose there is a field homomorphism $\psi: L \to L$ such that $\psi(a) = a$ for all $a \in E$. Show that ψ is surjective.
- 2. Let L be an algebraic extension of E (not necessarily finite). Suppose there is a field homomorphism $\psi: L \to L$ such that $\psi(a) = a$ for all $a \in E$. Show that ψ is surjective.
- 3. On several occasions we used the following statement. Let $i : E \subset \overline{E}$ be an embedding. Let $\psi : \overline{E} \to \overline{E}$ be a field homomorphism such that $\psi(a) = a$ for all $a \in E$. Then ψ is an isomorphism. We will show that the condition " $\psi(a) = a$ for all $a \in E$ " is necessary for this to happen.

Find a field E and a homomorphism $\sigma : E \to E$ such that E is not algebraic over $\sigma(E)$. Recall that if L/E is algebraic and K is any algebraically closed field then any homomorphism $\phi : E \to K$ can be extended to a homomorphism $L \to K$. Applying this by taking $L = K = \overline{E}$ and $\phi = i \circ \sigma$, we get a map $\psi : \overline{E} \to \overline{E}$. Show that ψ is not surjective.

4. Let

be fields. Define

$$KL := \left\{ \sum_{i=1}^{m} \alpha_i \beta_i \, | \, m \ge 1, \alpha_i \in K, \beta_i \in L \right\}.$$

Apriori, this is only a subring of F. Show that if K is a finite extension of E then the dimension of KL as a vector space over L is $\leq [K : E]$. Use this to show that KL is a field. Finally conclude that KL is the smallest subfield of F containing both K and L.

5. Let notation be as in the preceding problem. If both [K : E] and [L : E] are finite, show that $[KL : E] \leq [K : E] \cdot [L : E]$.

- 6. Let K/F be a finite separable extension. Show that there are only finitely many fields E such that $F \subset E \subset K$. Compare this with the last exercise in the previous tutorial sheet.
- 7. Show that $\mathbb{Q}[\sqrt{2}, e^{2\pi i/4}]/\mathbb{Q}$ is a Galois extension. What is $\operatorname{Gal}(\mathbb{Q}[\sqrt{2}, e^{2\pi i/4}]/\mathbb{Q})$?
- 8. Let $F \subset E \subset K$ be fields such that both E and K are Galois extensions of F. Show that there is a natural map $\operatorname{Gal}(K/F) \to \operatorname{Gal}(E/F)$ which is surjective. (HINT: We have used a slightly more general version of this map earlier.)
- 9. Consider the following statement from group theory. Let $\phi : G \to H$ be a *surjective* homomorphism of groups and let N be the *kernel*. (This is often written as: Let

$$1 \to N \to G \xrightarrow{\phi} H \to 1$$

be a short exact sequence of groups.) Assume that there is a subgroup $M \subset G$ such that the restriction of ϕ to M is an isomorphism $M \xrightarrow{\sim} H$. Then every element of G can be written uniquely as nm where $n \in N$ and $m \in M$ (why?). In this case we say that G is the semi-direct product of N and M. The "semi" is because although G is a product of N and M as sets, it may not be a product as groups. Show that S_n is the semi-direct product of A_n and $\mathbb{Z}/2\mathbb{Z}$, but it is not the product of these groups.

Continuing with the above, if further, elements of M and N commute with each other, then G is a direct product of M and N as groups. Prove this by showing that the set map (what is the map?) $N \times M \to G$ is a group homomorphism. Since it is a bijection of sets, it follows that G is the product of these two groups.

- 10. Let n > 1. Show that there is a group of size 2n which has the following properties
 - (a) It has a cyclic subgroup H_n of size n
 - (b) It has a cyclic subgroup H_2 of size 2
 - (c) If r is a generator of H_n and f is a generator of H_2 then $rf = fr^{-1}$.

Show that any two groups, of size 2n and having the above properties, are isomorphic.

- 11. In this exercise, we compute $\operatorname{Aut}(\mathbb{R}/\mathbb{Q})$.
 - (a) Let $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ be such that $\sigma(a) > 0$, for all real numbers a > 0. Show that for any $a, b \in \mathbb{R}$ with a < b, we have $\sigma(a) < \sigma(b)$.
 - (b) Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Then $-\frac{1}{n} < a-b < \frac{1}{n}$ implies $-\frac{1}{n} < \sigma(a) \sigma(b) < \frac{1}{n}$. Conclude that $\sigma : \mathbb{R} \to \mathbb{R}$ is continuous.
 - (c) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous map with $f|_{\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$, then $f = \mathrm{Id}_{\mathbb{R}}$. Conclude that $\mathrm{Aut}(\mathbb{R}/\mathbb{Q}) = {\mathrm{Id}_{\mathbb{R}}}$.
- 12. Let k be a field. Let k(t) be the field of fractions of the polynomial ring k[t]. Let $X = \frac{p(t)}{q(t)} \in k(t)$, with relatively prime polynomials $p(t), q(t) \in k[t] \setminus \{0\}$. In this exercise, we compute the degree of the field extension k(t)/k(X).

- (a) Show that $p(Y) Xq(Y) \in k(X)[Y]$ is irreducible and t is root of it. (Hint: Use Gauss' lemma to conclude irreducibility.)
- (b) Show that $\deg_Y(p(Y) Xq(Y)) = \max\{\deg(p(Y)), \deg(q(Y))\}.$
- (c) Show that $[k(t):k(X)] = [k(t):k(\frac{p(t)}{q(t)})] = \max\{\deg(p(t)), \deg(q(t))\}.$
- 13. Let k be a field. Show the following.
 - (a) The maps $t \mapsto \frac{1}{t}$ and $t \mapsto at + b$ (for all $a, b \in k$ with $a \neq 0$) defines elements of $\operatorname{Aut}(k(t)/k)$. Hence their compositions are also in $\operatorname{Aut}(k(t)/k)$.
 - (b) Show that, $\operatorname{Aut}(k(t)/k) = \{t \mapsto \frac{at+b}{ct+d} : a, b, c, d \in k, ad bc \neq 0\}.$
 - (c) Find the fixed field of the automorphism $t \mapsto t+1$ of k(t).
- 14. Let E/F be a field extension. Let $\varphi: E \to E'$ be an isomorphism of E with a field E' which maps F to a subfield F' of E'. Show that the map $\sigma \mapsto \varphi \circ \sigma \circ \varphi^{-1}$ defines a group homomorphism $\operatorname{Aut}(E/F) \xrightarrow{\simeq} \operatorname{Aut}(E'/F')$.
- 15. Let E/F be a finite Galois extension. Let H be a subgroup of $\operatorname{Gal}(E/F)$. Show that there is an element $\alpha \in E$ such that $H = \{\sigma \in \operatorname{Gal}(E/F) : \sigma(\alpha) = \alpha\}$.