MA-414 (Galois Theory) Tutorial-8

March 11, 2023

- 1. Let *m* and *n* be coprime integers. Show that $\mathbb{Q}[\zeta_n, \zeta_m] = \mathbb{Q}[\zeta_{mn}]$.
- 2. Let m, n > 1 be integers and let l be their lcm. Show that $\mathbb{Q}[\zeta_n, \zeta_m] = \mathbb{Q}[\zeta_l]$.
- 3. Let $\Phi_n(X) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X \zeta_n^i)$ denote the *n*th cyclotomic polynomial. Show that

$$X^n - 1 = \prod_{d|n} \Phi_d(X) \,.$$

- 4. Let p be prime. Show that $\Phi_{p^r}(X) = \Phi_p(X^{p^{r-1}})$.
- 5. Let $n = p_1^{r_1} p_2^{r_2} \dots p_l^{r_l}$. Let $m = p_1 p_2 \dots p_l$. Show that

$$\Phi_n(X) = \Phi_m(X^{n/m}).$$

- 6. If n > 1 is odd then $\Phi_{2n}(X) = \Phi_n(-X)$.
- 7. If p is a prime not dividing n then $\Phi_{pn}(X) = \Phi_n(X^p)/\Phi_n(X)$. If p divides n then $\Phi_{pn}(X) = \Phi_n(X^p)$.
- 8. Define the Möbius μ -function by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n \text{ has a square factor,} \\ (-1)^r & \text{if } n \text{ has } r \text{ distinct prime factors} \end{cases}$$

Let $\mathbb N$ be the set of all positive integers. Let $f:\mathbb N\to\mathbb N$ be a function, and define

$$F(n) := \sum_{d|n} f(d), \quad \forall \ n \in \mathbb{N}.$$

The *Möbius inversion formula* states that one can recover the function f(n) from F(n) by

$$f(n) = \sum_{d|n} \mu(d) F(n/d), \quad \forall \ n \in \mathbb{N} \,.$$

Use the Möbius inversion formula to show that

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

- 9. Let p be a primes and let n > 1 be an integer such that $p \nmid n$. For $a \in \mathbb{Z}$, we get an integer $\Phi_n(a) \in \mathbb{Z}$, since $\Phi_n(X) \in \mathbb{Z}[X]$. Show that $p | \Phi_n(a)$ iff the order of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is equal to n.
- 10. Let $f(X) \in \mathbb{Z}[X]$ be a polynomial whose constant coefficient is 1. Let S_N be the set of those primes which divides any member of the set $\{f(n) \mid n \geq N\}$. Show that $\#S_N$ is infinite.
- 11. Let $f(X) \in \mathbb{Z}[X]$. Let S_N be the set of those primes which divides any member of the set $\{f(n) \mid n \geq N\}$. Show that $\#S_N$ is infinite.
- 12. Let $f(X) = \Phi_n(X)$ and apply the previous exercise. Show that there are infinitely many primes p such that n|(p-1). This is a special case of Dirichlet's Theorem.
- 13. Use the previous exercise to give a complete proof of the fact that every finite abelian group occurs as the Galois group of an extension of \mathbb{Q} .
- 14. Let $a \in \mathbb{Z}$. Show that if p is an odd prime dividing $\Phi_n(a)$, then either $p \mid n$ or $n \mid (p-1)$.
- 15. Let p > 2 be a prime number and $\zeta_p = e^{2\pi i/p} \in \mathbb{C}$, where $i = \sqrt{-1}$. Let L be a subfield of $\mathbb{Q}(\zeta_p)$ such that $[L:\mathbb{Q}] = \frac{1}{2}(p-1)$. Show that $L = \mathbb{Q}(\zeta_p + \zeta_p^{p-1}) = \mathbb{Q}(\zeta_p) \cap \mathbb{R}$.
- 16. Show that $p = \prod_{i=1}^{p-1} (1 \zeta_p^i)$. Prove the following.
 - (a) If $p \equiv 1 \mod 4$, show that $\sqrt{p} \in \mathbb{Q}(\zeta_p)$. (HINT: Use $\zeta_p^i = \zeta_p^{p-(p-i)}$)
 - (b) If $p \equiv 3 \mod 4$, show that $\sqrt{-p} \in \mathbb{Q}(\zeta_p)$.
 - (c) Show that $\sqrt{2} \in \mathbb{Q}(\zeta_8)$.
- 17. Use the above two exercises to show that every quadratic extension of \mathbb{Q} is contained in a cyclotomic extension.
- 18. Let p, q > 0 be two distinct prime numbers. Show that $\mathbb{Q}(\zeta_p^m) \cap \mathbb{Q}(\zeta_q^n) = \mathbb{Q}$, for any two positive integers n, m.
- 19. Let $n = p_1^{r_1} \cdots p_m^{r_m}$ be the unique decomposition of a positive integer $n \ge 2$ into product of distinct prime powers. Show that

(a)
$$\mathbb{Q}(\zeta_n) = \prod_{j=1}^m \mathbb{Q}(\zeta_{p_j}{}^{r_j})$$
, and
(b) $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \prod_{j=1}^m \operatorname{Gal}(\mathbb{Q}(\zeta_{p_j}{}^{r_j})/\mathbb{Q})$

- 20. For an integer n > 0, let ζ_n be the primitive *n*-th root of unity. Let r > 0 be an integer with gcd(r, n) = 1. Let $\sigma_r \in Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ be such that $\sigma_r(\zeta_n) = \zeta_n^r$. Show that, $\sigma_r(\zeta) = \zeta^r$, where ζ is a *n*-th root of unity.
- 21. Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not contained in any cyclotomic extension of \mathbb{Q} .

- 22. Prove that the set of all primitive *n*-th roots of unity form a basis over \mathbb{Q} of the cyclotomic field $\mathbb{Q}(\zeta_n)$ of *n*-th roots of unity if and only if *n* is square free (that is, *n* is not divisible by square of any prime number).
- 23. Let $n \ge 1$ be an integer, and let $\sigma_p : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be the Frobenius automorphism define by $\sigma_p(a) = a^p$, for all $a \in \mathbb{F}_{p^n}$. Consider \mathbb{F}_{p^n} as a \mathbb{F}_p -vector space and σ_p a \mathbb{F}_p -linear transformation.
 - (a) Find the characteristic polynomial of σ_p .
 - (b) Show that the \mathbb{F}_p -linear map σ_p is diagonalizable over the algebraic closure $\overline{\mathbb{F}}_p$ of \mathbb{F}_p if and only if gcd(n, p) = 1.