MA-414 (Galois Theory) Tutorial-8

March 11, 2023

1. Let m and n be coprime integers. Show that $\mathbb{Q}\left[\zeta_{n}, \zeta_{m}\right]=\mathbb{Q}\left[\zeta_{m n}\right]$.
2. Let $m, n>1$ be integers and let l be their lcm. Show that $\mathbb{Q}\left[\zeta_{n}, \zeta_{m}\right]=\mathbb{Q}\left[\zeta_{l}\right]$.
3. Let $\Phi_{n}(X)=\prod_{i \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(X-\zeta_{n}^{i}\right)$ denote the nth cyclotomic polynomial. Show that

$$
X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)
$$

4. Let p be prime. Show that $\Phi_{p^{r}}(X)=\Phi_{p}\left(X^{p^{r-1}}\right)$.
5. Let $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{l}^{r_{l}}$. Let $m=p_{1} p_{2} \ldots p_{l}$. Show that

$$
\Phi_{n}(X)=\Phi_{m}\left(X^{n / m}\right)
$$

6. If $n>1$ is odd then $\Phi_{2 n}(X)=\Phi_{n}(-X)$.
7. If p is a prime not dividing n then $\Phi_{p n}(X)=\Phi_{n}\left(X^{p}\right) / \Phi_{n}(X)$. If p divides n then $\Phi_{p n}(X)=\Phi_{n}\left(X^{p}\right)$.
8. Define the Möbius μ-function by

$$
\mu(n)=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
0 & \text { if } n \text { has a square factor, } \\
(-1)^{r} & \text { if } n \text { has } r \text { distinct prime factors }
\end{array}\right.
$$

Let \mathbb{N} be the set of all positive integers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and define

$$
F(n):=\sum_{d \mid n} f(d), \quad \forall n \in \mathbb{N} .
$$

The Möbius inversion formula states that one can recover the function $f(n)$ from $F(n)$ by

$$
f(n)=\sum_{d \mid n} \mu(d) F(n / d), \quad \forall n \in \mathbb{N} .
$$

Use the Möbius inversion formula to show that

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)} .
$$

9. Let p be a primes and let $n>1$ be an integer such that $p \nmid n$. For $a \in \mathbb{Z}$, we get an integer $\Phi_{n}(a) \in \mathbb{Z}$, since $\Phi_{n}(X) \in \mathbb{Z}[X]$. Show that $p \mid \Phi_{n}(a)$ iff the order of a in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is equal to n.
10. Let $f(X) \in \mathbb{Z}[X]$ be a polynomial whose constant coefficient is 1 . Let S_{N} be the set of those primes which divides any member of the set $\{f(n) \mid n \geq N\}$. Show that $\# S_{N}$ is infinite.
11. Let $f(X) \in \mathbb{Z}[X]$. Let S_{N} be the set of those primes which divides any member of the set $\{f(n) \mid n \geq N\}$. Show that $\# S_{N}$ is infinite.
12. Let $f(X)=\Phi_{n}(X)$ and apply the previous exercise. Show that there are infinitely many primes p such that $n \mid(p-1)$. This is a special case of Dirichlet's Theorem.
13. Use the previous exercise to give a complete proof of the fact that every finite abelian group occurs as the Galois group of an extension of \mathbb{Q}.
14. Let $a \in \mathbb{Z}$. Show that if p is an odd prime dividing $\Phi_{n}(a)$, then either $p \mid n$ or $n \mid(p-1)$.
15. Let $p>2$ be a prime number and $\zeta_{p}=e^{2 \pi i / p} \in \mathbb{C}$, where $i=\sqrt{-1}$. Let L be a subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ such that $[L: \mathbb{Q}]=\frac{1}{2}(p-1)$. Show that $L=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{p-1}\right)=$ $\mathbb{Q}\left(\zeta_{p}\right) \cap \mathbb{R}$.
16. Show that $p=\prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)$. Prove the following.
(a) If $p \equiv 1 \bmod 4$, show that $\sqrt{p} \in \mathbb{Q}\left(\zeta_{p}\right)$. (HINT: Use $\zeta_{p}^{i}=\zeta_{p}^{p-(p-i)}$)
(b) If $p \equiv 3 \bmod 4$, show that $\sqrt{-p} \in \mathbb{Q}\left(\zeta_{p}\right)$.
(c) Show that $\sqrt{2} \in \mathbb{Q}\left(\zeta_{8}\right)$.
17. Use the above two exercises to show that every quadratic extension of \mathbb{Q} is contained in a cyclotomic extension.
18. Let $p, q>0$ be two distinct prime numbers. Show that $\mathbb{Q}\left(\zeta_{p}^{m}\right) \cap \mathbb{Q}\left(\zeta_{q}^{n}\right)=\mathbb{Q}$, for any two positive integers n, m.
19. Let $n=p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$ be the unique decomposition of a positive integer $n \geq 2$ into product of distinct prime powers. Show that
(a) $\mathbb{Q}\left(\zeta_{n}\right)=\prod_{j=1}^{m} \mathbb{Q}\left(\zeta_{p_{j} r_{j}}\right)$, and
(b) $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong \prod_{j=1}^{m} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p_{j}}{ }^{r_{j}}\right) / \mathbb{Q}\right)$.
20. For an integer $n>0$, let ζ_{n} be the primitive n-th root of unity. Let $r>0$ be an integer with $\operatorname{gcd}(r, n)=1$. Let $\sigma_{r} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ be such that $\sigma_{r}\left(\zeta_{n}\right)=\zeta_{n}^{r}$. Show that, $\sigma_{r}(\zeta)=\zeta^{r}$, where ζ is a n-th root of unity.
21. Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not contained in any cyclotomic extension of \mathbb{Q}.
22. Prove that the set of all primitive n-th roots of unity form a basis over \mathbb{Q} of the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ of n-th roots of unity if and only if n is square free (that is, n is not divisible by square of any prime number).
23. Let $n \geq 1$ be an integer, and let $\sigma_{p}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ be the Frobenius automorphism define by $\sigma_{p}(a)=a^{p}$, for all $a \in \mathbb{F}_{p^{n}}$. Consider $\mathbb{F}_{p^{n}}$ as a $\mathbb{F}_{p^{2}}$-vector space and σ_{p} a \mathbb{F}_{p}-linear transformation.
(a) Find the characteristic polynomial of σ_{p}.
(b) Show that the \mathbb{F}_{p}-linear map σ_{p} is diagonalizable over the algebraic closure $\overline{\mathbb{F}}_{p}$ of \mathbb{F}_{p} if and only if $\operatorname{gcd}(n, p)=1$.
