Ordinary Differential Equations

Homework 1

Important

- Write your solutions neatly and submit it on 23 August(tutorials). Late submission will not be allowed.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as \sqrt{e} or $\ln (4)$ rather than decimals.
- Show all your work and explain your reasonings clearly! Copying will not be tolerated.

1. Find the general solution of the ODEs:
(a) $\frac{d x}{d t}=t e^{t}$.
(b) $\frac{d x}{d t}=\frac{2 x^{4}+t^{4}}{t x^{3}}$.
(c) $\frac{d x}{d t}= \begin{cases}-t \sqrt{x} & \text { for } x \geq 0, \\ t \sqrt{-x} & \text { for } x \leq 0 .\end{cases}$
2. Solve the following initial value problems:

$$
\frac{d x}{d t}+a(t) x=t, \text { with } x(0)=1
$$

where $a(t)=\left\{\begin{array}{l}1 \text { for } 0 \leq t \leq 2, \\ 3 \text { for } t>2 .\end{array}\right.$
Is the solution differentiable in $(0,+\infty)$.
3. Suppose $x(t)$ satisfies the ODE:

$$
\dot{x}(t)=\alpha(t) x(t)+\beta(t),
$$

where $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions such that $\alpha(t) \leq-c<0$ for some $c>0$, and $\lim _{|t| \rightarrow+\infty} \beta(t)=0$. Find $\lim _{t \rightarrow \infty} x(t)$.
4. Suppose $x(t)$ satisfies the ODE:

$$
\frac{d x}{d t}-\frac{x}{2}=2 \cos t .
$$

Find the initial values $x(0)=x_{0}$ such that:
(a) $x(t)>0$ as $t \rightarrow+\infty$.
(b) $x(t)<0$ as $t \rightarrow+\infty$.
5. Solve the Bernoulli type equation

$$
t x^{2} \frac{d x}{d t}+x^{3}=t \cos t
$$

6. Determine the constant a so that the following equations are exact, and then solve the resulting ODEs.
(a) $\left(2 x t^{3}+e^{a t+x}\right) \frac{d x}{d t}+e^{a t+x}+3 t^{2} x^{2}=0$.
(b) $\left(\frac{a t+1}{x^{3}}\right) \frac{d x}{d t}+\frac{1}{x^{2}}+\frac{1}{t^{2}}=0$.
7. Finding an integrating factor, or otherwise, solve the following ODEs:
(a) $\left(x^{2}+t^{2}\right) \frac{d x}{d t}+3 t^{2} x+2 t x+x^{3}=0$.
(b) $\left(e^{t} \cos x+2 \cos t\right) \frac{d x}{d t}+e^{t} \sin x-2 x \sin t=0$, with $x(0)=\frac{\pi}{2}$.
(c) $\left(t e^{t x} \cos (2 t)-3\right) \frac{d x}{d t}+x e^{t x} \cos (2 t)-2 e^{t x} \sin (2 t)+2 t=0$, with $x(0)=0$.
