Ordinary Differential Equations

Homework 2

Important

- Write your solutions neatly and submit it on 13 September(tutorials). Late submission will not be allowed.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as \sqrt{e} or $\ln (4)$ rather than decimals.
- Show all your work and explain your reasonings clearly! Copying will not be tolerated.

1. (a) Show that the initial value problem: $\left\{\begin{array}{l}\dot{x}=x^{2}+\cos t^{2} \\ x(0)=0\end{array}\right.$, has a unique solution in some interval $-\delta \leq t \leq \delta$.
(b) Show that the initial value problem: $\left\{\begin{array}{l}\dot{x}=\left(4 x+e^{-t^{2}}\right) e^{2 x} \\ x(0)=0\end{array}\right.$, has a unique solution in some interval $-\delta \leq t \leq \delta$.
2. Suppose $f \in \mathbb{C}^{1}(\mathbb{R})$, that is, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuously differentiable function. Show that the initial value problem: $\left\{\begin{array}{c}\dot{x}=f(x) \\ x(0)=x_{0}\end{array}\right.$, has at most one solution in some interval $-\delta \leq t \leq \delta$.
3. (a) Let α, β be real valued continuous function on \mathbb{R}. Show that the initial value problem:

$$
\left\{\begin{array}{l}
\dot{x}=\alpha(t) \sin x+\beta(t) \cos x \\
x(0)=x_{0} \in \mathbb{R}
\end{array}\right.
$$

has a unique solution for all $t \in \mathbb{R}$.
(b) Show that the initial value problem:

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\sin ^{2} t}{1+t^{2}} e^{-x^{2}} \\
x(0)=1,
\end{array}\right.
$$

has a unique solution for all $t \in \mathbb{R}$.
4. Consider the initial value problem:

$$
\left\{\begin{array}{l}
\dot{x}=f(x) \\
x(0)=x_{0},
\end{array}\right.
$$

(a) For $f(x)=\left\{\begin{array}{l}x \log \left(\frac{1}{x}\right) \text { if } 0<x<1 \\ 0 \text { for } x=0 .\end{array}\right.$ and $x_{0}=1 / 2$, show that the above initial value problem has at most one solution.
(b) For $f(x)=3 x^{2 / 3}$ and $x_{0}=0$, show that above initial value problem has a solution. (This shows that the Lipschitz condition is not necessary for existence of a solution).
(c) For $f(x)=1+x^{2 / 3}$ and $x_{0}=0$, show that above initial value problem has at most one solution. (This shows that the Lipschitz condition is not necessary for uniqueness of solutions).
5. Consider the ordinary differential equation: $\dot{x}=-x^{2}$.
(a) For the initial condition $x(1)=1$, show that the above ODE has a unique solution for t in $(0,+\infty)$.
(b) For the initial condition $x(0)=0$, show that the above ODE a unique solution for $-\infty<$ $t<+\infty$.

