Ordinary Differential Equations

Homework 3

Important

- Write your solutions neatly and submit it on 25 October(tutorials). Late submission will not be allowed.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as \sqrt{e} or $\ln (4)$ rather than decimals.
- Show all your work and explain your reasonings clearly! Copying will not be tolerated.

1. Find the general solution of the following linear systems.
(a) $X^{\prime}(t)=\left(\begin{array}{cc}2 & -2 \\ 1 & 0\end{array}\right) X(t)$,
(b) $X^{\prime}(t)=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right) X(t)$,
(c) $X^{\prime}(t)=\left(\begin{array}{ll}5 & -6 \\ 3 & -4\end{array}\right) X(t)$.
2. Solve the initial value problems
(a) $X^{\prime}(t)=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right) X(t)$, with $X(0)=\binom{1}{1}$,
(b) $X^{\prime}(t)=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right) X(t)$, with $X(0)=\binom{1}{-1}$.
3. Find the general solution of the ODE: $x^{\prime \prime}+2 x^{\prime}+x=t^{2}$.
4. Find the general solution of the ODE: $X^{\prime}(t)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) X(t)$, where $a+d \neq 0$ and $a d=b c$.
5. Find the limit $\lim _{t \rightarrow+\infty} X(t)$ where $X(t)$ satisfies: $X^{\prime}(t)=\left(\begin{array}{cc}-2 & 1 \\ 0 & -2\end{array}\right) X(t)$.
6. Determine the values of a and b such that the linear system: $X^{\prime}(t)=\left(\begin{array}{cc}a & -b \\ b & 2\end{array}\right) X(t)$ has a sink at the origin.
7. Let A be a 2×2 matrix with real entries. Show that: $\operatorname{Det}(\exp (t A))=e^{t(\operatorname{Trace} A)}$ for all $t \in \mathbb{R}$.
