Ordinary Differential Equations

Homework 3

Important

- Write your solutions neatly and submit it on 25 October(tutorials). Late submission will not be allowed.
- Simplify all your answers as much as possible and express answers in terms of fractions or constants such as \sqrt{e} or $\ln(4)$ rather than decimals.
- Show all your work and explain your reasonings clearly! Copying will not be tolerated.
- 1. Find the general solution of the following linear systems.

(a)
$$X'(t) = \begin{pmatrix} 2 & -2 \\ 1 & 0 \end{pmatrix} X(t),$$

(b) $X'(t) = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} X(t),$
(c) $X'(t) = \begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix} X(t).$

2. Solve the initial value problems

(a)
$$X'(t) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} X(t)$$
, with $X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,
(b) $X'(t) = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} X(t)$, with $X(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

- 3. Find the general solution of the ODE: $x'' + 2x' + x = t^2$.
- 4. Find the general solution of the ODE: $X'(t) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} X(t)$, where $a + d \neq 0$ and ad = bc.
- 5. Find the limit $\lim_{t \to +\infty} X(t)$ where X(t) satisfies: $X'(t) = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix} X(t)$.
- 6. Determine the values of a and b such that the linear system: $X'(t) = \begin{pmatrix} a & -b \\ b & 2 \end{pmatrix} X(t)$ has a sink at the origin.
- 7. Let A be a 2×2 matrix with real entries. Show that: $Det(exp(tA)) = e^{t(TraceA)}$ for all $t \in \mathbb{R}$.