Introduction

An ordinary differential equation (ODE) is an equation relating an unknown function, derivatives of the unknown function and an independent variable of the form:

$$
\begin{equation*}
\mathcal{F}\left(t, X, X^{(1)}, \ldots, X^{(k)}\right)=0 \tag{0.1}
\end{equation*}
$$

Here $X:=X(t) \in C^{k}\left(I, \mathbb{R}^{n}\right)(k$-times continuously differentiable function from an interval $I \subset \mathbb{R}$ to \mathbb{R}^{n} or a curve) is the unknown function, $X^{(i)}(t):=\frac{d^{i} X}{d t^{i}}(t) \in \mathbb{R}^{n}$ denotes the i-th derivative, and $\mathcal{F} \in C(U, V)$ is a continuous function from U to $V \subset \mathbb{R}^{m}$ with U a domain (open and connected) in $\subset \mathbb{R}^{1+(k+1) n}$. The variable t (time) is often called the independent variable and $X=X(t)=$ $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ the dependent variable. The highest derivative appearing in (0.1) is called the order of the differential equation. A solution of the $\operatorname{ODE}(0.1)$ is a function $\gamma \in C^{k}\left(\mathcal{I}, \mathbb{R}^{n}\right)$, where $\mathcal{I} \subset I$ an interval, such that $\gamma(t)$ satisfies (0.1) for all $t \in \mathcal{I}$.
We will mostly consider ${ }^{1}$ ODEs of the form:

$$
\begin{equation*}
\frac{d X^{k}}{d t^{k}}=F\left(t, X, X^{(1)}, \ldots, X^{(k-1)}\right) \tag{0.2}
\end{equation*}
$$

where $F \in C(U, V)$ is a continuous function from a domain $U \subset \mathbb{R}^{1+k n}$ to $V \subset \mathbb{R}^{n}$. Writing in coordinates $X=\left(x_{1}, \ldots, x_{n}\right)$ and $F=\left(f_{1}, \ldots, f_{n}\right)$ gives a system of $O D E s$ of the form:

$$
\frac{d x_{i}^{k}}{d t^{k}}=f_{i}\left(t, X_{1}, X^{(1)}, \ldots, X^{(k-1)}\right), \quad 1 \leq i \leq n
$$

A system can always be reduced to a first-order system by changing to the new set of dependent variables: $Y=\left(X, X^{(1)}, \ldots, X^{(k-1)}\right) \in \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{k \text { copies }}$, yielding a new first-order system:

$$
\left\{\begin{array} { l }
{ \frac { d Y _ { i } } { d t } = Y _ { i + 1 } \text { for } 1 \leq i \leq k - 1 , } \\
{ \frac { d Y _ { k } } { d t } = F (t , Y) }
\end{array} \quad \text { or } \quad \left\{\frac{d Y}{d t}=\mathcal{G}(t, Y)\right.\right.
$$

The system (0.2) is called autonomous if it does not depend on t. We can add t to the dependent variables $Z=(t, Y)$, making the right-hand side of (0.2) independent of t converting it into an autonomous system:

$$
\left\{\begin{array}{l}
\frac{d Z_{1}}{d t}=1 \\
\frac{d Z_{i}}{d t}=Z_{i+1} \quad \text { for } 2 \leq i \leq k, \quad \text { or } \quad\left\{\frac{d Z}{d t}=\mathcal{H}(Z)\right. \\
\frac{d Z_{k+1}}{d t}=F(Z)
\end{array}\right.
$$

[^0]
[^0]: ${ }^{1}$ we can do this at least locally by solving for the highest derivative X^{k} in (0.1) using the implicit function theorem.

