## Ordinary Differential Equations

## Problem Set 2

1. Find the general solution of the ODEs:
(a) $\frac{d x}{d t}=x \log \left(\frac{1}{x}\right)$.
(b) $\frac{d x}{d t}=\left(\frac{t+x+1}{t+2}\right)-\exp \left(\frac{t+x+1}{t+2}\right)$.
(c) $\frac{d x}{d t}=\frac{t+2 x+1}{2 t+x+2}$.
(d) $\frac{d x}{d t}=3|x|^{2 / 3}$.
(e) $\frac{d x}{d t}=(t-x+3)^{2}$.
2. Solve the following initial value problems:
(a) $\frac{d x}{d t}=\frac{t}{1+t} x+1$, with the initial condition: $x(0)=0$.
(b) $\frac{d x}{d t}=\frac{e^{-x^{2}}}{x\left(2 t+t^{2}\right)}$, with the initial condition: $x(2)=0$.
(c) $\frac{d x}{d t}=\frac{\cos t}{\cos ^{2} x}$, with the initial condition: $x(\pi)=\frac{\pi}{4}$.
3. Give a first order ODE for the curve $y=c x^{2}$, where $c \in \mathbb{R}$ is a parameter.
4. Transform the ODE

$$
t^{2} \frac{d^{2} x}{d t^{2}}+3 t \frac{d x}{d t}+x=\frac{2}{t}
$$

to the new coordinates $y=x, s=\log t$. You need not solve it.
5. Show that the ODE

$$
\frac{d x}{d t}=t^{n-1} f\left(\frac{x}{t^{n}}\right)
$$

can be solved using the new variable $y=\frac{x}{t^{n}}$.
6. Solve the following ODE

$$
x \frac{d y}{d x}+3 x=2 y
$$

using an integrating factor $\mu(x)$.

