Ordinary Differential Equations

Problem Set 2

1. Find the general solution of the ODEs:

(a)
$$\frac{dx}{dt} = x \log\left(\frac{1}{x}\right).$$

(b) $\frac{dx}{dt} = \left(\frac{t+x+1}{t+2}\right) - \exp\left(\frac{t+x+1}{t+2}\right).$
(c) $\frac{dx}{dt} = \frac{t+2x+1}{2t+x+2}.$
(d) $\frac{dx}{dt} = 3|x|^{2/3}.$
(e) $\frac{dx}{dt} = (t-x+3)^2.$

2. Solve the following initial value problems:

(a)
$$\frac{dx}{dt} = \frac{t}{1+t}x + 1$$
, with the initial condition: $x(0) = 0$.
(b) $\frac{dx}{dt} = \frac{e^{-x^2}}{x(2t+t^2)}$, with the initial condition: $x(2) = 0$.
(c) $\frac{dx}{dt} = \frac{\cos t}{\cos^2 x}$, with the initial condition: $x(\pi) = \frac{\pi}{4}$.

- 3. Give a first order ODE for the curve $y = cx^2$, where $c \in \mathbb{R}$ is a parameter.
- 4. Transform the ODE

$$t^2\frac{d^2x}{dt^2} + 3t\frac{dx}{dt} + x = \frac{2}{t},$$

to the new coordinates $y = x, s = \log t$. You need not solve it.

5. Show that the ODE

$$\frac{dx}{dt} = t^{n-1} f\left(\frac{x}{t^n}\right)$$

can be solved using the new variable $y = \frac{x}{t^n}$.

6. Solve the following ODE

$$x\frac{dy}{dx} + 3x = 2y$$

using an integrating factor $\mu(x)$.