Ordinary Differential Equations

1. Solve the following equations:

(a)
$$\frac{dx}{dt} = x + \sin t$$
,
(b) $\begin{cases} \dot{x} = -y - t \\ \dot{y} = x + t \end{cases}$ with the initial condition: $x(0) = 1, y(0) = 0$,
(c) $X'(t) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} X(t)$,
(d) $X'(t) = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} X(t) + \begin{pmatrix} 0 \\ 5t \end{pmatrix}$,
(e) $X'(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X(t)$,
(f) $\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0$,
(g) $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = e^t$.

2. Determine if the linear system

$$X'(t) = \begin{pmatrix} 1 & 3\\ 2 & 4 \end{pmatrix} X(t)$$

has a sink, source, saddle or center at the origin. Also determine the stability of the system.

3. Consider the second order equation x'' + bx' + cx = 0, where $a, b \in \mathbb{R}$ are constants. Transform the given equation into a first order system and then find the eigenvalues of the coefficient matrix A. Show that the eigenvalues of A satisfies the equation $z^2 + bz + c = 0$.