Ordinary Differential Equations

Problem Set 4

1. Solve the following equations:
(a) $\frac{d x}{d t}=x+\sin t$,
(b) $\left\{\begin{array}{l}\dot{x}=-y-t \\ \dot{y}=x+t\end{array} \quad\right.$ with the initial condition: $x(0)=1, y(0)=0$,
(c) $X^{\prime}(t)=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right) X(t)$,
(d) $X^{\prime}(t)=\left(\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right) X(t)+\binom{0}{5 t}$,
(e) $X^{\prime}(t)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) X(t)$,
(f) $\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+x=0$,
(g) $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=e^{t}$.
2. Determine if the linear system

$$
X^{\prime}(t)=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) X(t)
$$

has a sink, source, saddle or center at the origin. Also determine the stability of the system.
3. Consider the second order equation $x^{\prime \prime}+b x^{\prime}+c x=0$, where $a, b \in \mathbb{R}$ are constants. Transform the given equation into a first order system and then find the eigenvalues of the coefficient matrix A. Show that the eigenvalues of A satisfies the equation $z^{2}+b z+c=0$.

