Ordinary Differential Equations

Problem Set 5

1. Show that the equilibrium solution 0 of $x^{\prime}=\beta x^{3}$ is:
(a) asymptotically stable if $\beta<0$,
(b) stable if $\beta \leq 0$,
(c) unstable if $\beta>0$.
2. Study the stability of the equilibrium solution $\binom{0}{0}$ of the following systems (by linearization or otherwise):
(a) $\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{-y+x^{3}}{x}$.
(b) $\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{2 \sin x-4 y}{\sin x-3 y}$.
(c) $\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{\sin (6 x-3 y)}{\sin (2 x+y)}$.
3. Find all the equilibrium solutions of the following system and discuss the stability of each of them:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{8 x-y^{2}}{-y+x^{2}} .
$$

4. Consider the system:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{-y+x^{3}}{x+y^{2}} .
$$

(a) Show that the equilibrium solution $\binom{0}{0}$ of the above system is unstable.
(b) Show that the equilibrium solution $\binom{0}{0}$ for the associated linearized system is stable.
5. Consider the system:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{(y-1)\left(y^{2}-2 y+2\right)}{(1-x)\left(x^{2}-2 x+2\right)} .
$$

Show that the equilibrium solution $\binom{1}{1}$ is stable.
6. Study the stability of the equilibrium solution $\binom{0}{0}$ of the following system (via Liapunov or otherwise):

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{y}{-\sin x}
$$

