Ordinary Differential Equations

Problem Set 6

1. Find the eigenvalues and eigenfunctions of following the boundary value problems:
(a) $u^{\prime \prime}+\lambda u=0$ on $(0,1)$, with $u(0)=0, u^{\prime}(1)+u(1)=0$.
(b) $u^{\prime \prime}+\lambda u=0$ on $(0,2 \pi)$, with $u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)$.
2. Let

$$
\mathcal{L} u:=\left(p(x) u^{\prime}\right)^{\prime}+q(x) u .
$$

Here $p(x)$ and $q(x)$ are continuously differentiable functions in $[a, b]$.
Show that for any $\phi, \psi \in C^{2}[a, b]$ with $\phi^{\prime}(a)=\phi(b)=0, \psi(a)=\psi^{\prime}(b)=0$ we have:

$$
\int_{a}^{b} \phi \mathcal{L} \psi d x=\int_{a}^{b} \psi \mathcal{L} \phi d x .
$$

We say that \mathcal{L} is self-adjoint.

