Ordinary Differential Equations

Problem Set 6

- 1. Find the eigenvalues and eigenfunctions of following the boundary value problems:
 - (a) $u'' + \lambda u = 0$ on (0, 1), with u(0) = 0, u'(1) + u(1) = 0.
 - (b) $u'' + \lambda u = 0$ on $(0, 2\pi)$, with $u(0) = u(2\pi)$, $u'(0) = u'(2\pi)$.
- 2. Let

$$\mathcal{L}u := (p(x)u')' + q(x)u.$$

Here p(x) and q(x) are continuously differentiable functions in [a, b]. Show that for any $\phi, \psi \in C^2[a, b]$ with $\phi'(a) = \phi(b) = 0$, $\psi(a) = \psi'(b) = 0$ we have:

$$\int_{a}^{b} \phi \mathcal{L} \psi \, dx = \int_{a}^{b} \psi \mathcal{L} \phi \, dx.$$

We say that \mathcal{L} is self-adjoint.