ON COEFFICIENT IDEALS

TONY J. PUTHENPURAKAL

ABSTRACT

Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 2$ with infinite residue field and let I be an \mathfrak{m} -primary ideal. Let For $0 \leq i \leq d$ let I_i be the i^{th} -coefficient ideal of I. Also let $\widetilde{I} = I_d$ denote the Ratliff-Rush closure of A. Let $G = G_I(A)$ be the associated graded ring of I. We show that if $\dim H^j_{G_+}(G)^{\vee} \leq j-1$ for $1 \leq j \leq i \leq d-1$ then $(I^n)_{d-i} = \widetilde{I^n}$ for all $n \geq 1$. In particular if G is generalized Cohen-Macaulay then $(I^n)_1 = \widetilde{I^n}$ for all $n \geq 1$. As a consequence we get that if A is an analytically unramified domain with G generalized Cohen-Macaulay, then the S_2 -ification of the Rees algebra A[It] is $\bigoplus_{n\geq 0} \widetilde{I^n}$.

DEPARTMENT OF MATHEMATICS, IIT BOMBAY, POWAI, MUMBAI 400 076 Email address: tputhen@math.iitb.ac.in

Date: September 18, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 13A30, 13D45 ; Secondary 13H10, 13H15. Key words and phrases. multiplicity, reduction, Hilbert polynomial, associated graded rings, coefficient ideals.