Abstract

In the two lectures in the week March 25-29, 2019, I shall present the details of the construction from the research paper: Larfeldt and Lech: Analytic ramifications and at couples of local rings, *Acta Math.* **146** (1981), no. 3-4, 201-208.

Theorem Let $\varphi : (A, \mathfrak{m}_A) \longrightarrow (B, \mathfrak{m}_B)$ be a flat homomorphism of local rings with dim $A = \dim B$. Then there exists a local ring (C, \mathfrak{m}_C) and flat local homomorphisms

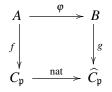
$$f: (A, \mathfrak{m}_A) \longrightarrow (C, \mathfrak{m}_C)$$
 and $g: (B, \mathfrak{m}_B) \longrightarrow (C, \mathfrak{m}_C)$ such that:

(i) the diagram

is commutative.

- (ii) $\mathfrak{p} := \mathfrak{m}_A C$ is a prime ideal of C with dim $C/\mathfrak{p} = 1$.
- (iii) $\mathfrak{p}^* := \mathfrak{m}_B \widehat{C}$ is a prime ideal of \widehat{C} with dim $\widehat{C}/\mathfrak{p}^* = 1$.
- (iv) $\mathfrak{p}^* \cap C = \mathfrak{p}$.
- (v) the map $g: B \longrightarrow \widehat{C}$ has the form $B \xrightarrow{\text{nat. inclusion}} \widehat{B}[[X]]$, where X is an indeterminate.

It induces a transformation $(A, B) \mapsto \{C, \mathfrak{p}\}$ such that the analytic ramification of \mathfrak{p} reflects the structure of (A, B) in as much as there exists a commutative diagram :



with unramified flat homomorphisms as vertical maps. This ingenious construction has an interesting applications.