Name	Abstract
Prof. Sourav Pal	Title : Operator theory on the Tetrablock
	Abstract : A triple of commuting operators (T1, T2, T3), defined on a Hilbert space H, for which the closed
	tetrablock E is a spectral set is called a tetrablock contraction or an E-contraction. The set E is defined as E
	= {(x1, x2, x3) \in C3 : 1-zx1-wx2+zwx3 \neq 0 whenever $ z \le 1$, $ w \le 1$ }. We show by a counter example
	that rational dilation fails on the tetrablock. Also for an E-contraction (T1, T2, T3), where each Ti is a
	matrix, has the property of having a distinguished variety in E as a spectral set. Moreover, we prove that
	every E-contraction can be uniquely written as a direct sum of an E-unitary and a completely non-unitary
	E-contraction. This decomposition is analogous to the canonical decomposition of a contraction operator
	into a unitary and a completely non-unitary contraction. We produce a concrete operator model for (T1, T2,
	T3) under certain conditions.
Prof. Santanu Dey	Title : Maps between Hilbert C* -modules
	Abstract : We introduce, for any set S, the concept of K-family between two Hilbert C [*] -modules over two
	C [*] -algebras, for a given completely positive definite (CPD-) kernel K over S between those C [*] -algebras
	and obtain a factorization theorem for such K-families. Several characterizations of K-families are
	obtained. One of these characterizations says that such K-families extend as CPD-kernels, between
	associated (extended) linking algebras, whose (2, 2)-corner is a homomorphism and vice versa.