HILBERT-KUNZ MULTIPLICITY AND RELATED TOPICS

KEI-ICHI WATANABE

1. General Property

Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d, which contains a perfect field $k \cong A/\mathfrak{m}$ of characteristic p > 0 and let I be an \mathfrak{m} primary ideal of A.

We denote $I^{[q]} = (a^q \mid a \in I)$, where $q = p^e$ is a power of p. We define $e_{HK}(I) = \lim_{q=p^e \to \infty} \frac{\ell_A(A/I^{[q]})}{a^d}$ to be the Hilbert-Kunz multiplicity of I and also we define

$$e_{HK}(A) = e_{HK}(\mathfrak{m}).$$

We will denote usual (Hilbert-Samuel) multiplicity of I by e(I). We list some general properties of $e_{HK}(I)$ (cf. [Hu], [Mo1]).

- (1) $\frac{1}{d!}e(I) \leq e_{\mathrm{HK}}(I) \leq e(I).$ (2) For $I \subset I'$, $e_{\mathrm{HK}}(I') \leq e_{\mathrm{HK}}(I)$ and equality holds iff $I' \subset I^*$ (tight closure of I).
- (3) In (1), we have $\frac{1}{d!}e(I) < e_{\rm HK}(I)$ but there are examples that both sides are arbitrary near.

To calculate concrete examples, the following Proposition is very useful and in general, to determine the value of $e_{HK}(I)$ is very difficult.

Proposition 1.1. Let $(A, \mathfrak{m}) \subset (B, \mathfrak{n})$ be an extension of local domains where B is a finite A-module of rank r and $A/\mathfrak{m} = B/\mathfrak{n}$. Then for every \mathfrak{m} -primary ideal I, $e_{HK}(I, A) = \frac{1}{r} e_{HK}(IB, B)$.

In particular, if B is regular, then $e_{HK}(I) = \frac{1}{r} l_B(B/IB)$.

2. CRITERION OF REGULARITY

Let A be an unmixed local ring. Then Nagata showed that A is regular off e(A) = 1. The same holds for HK-multiplicity.

Theorem 2.1. ([WY1], [HuYa]) $e_{HK}(A) \ge 1$ always and $e_{HK}(A) = 1$ iff A is regular.

KEI-ICHI WATANABE

3. Case of dimension 2, 3.

In dimension 2, 3, we enjoy many nice properties of $e_{HK}(I)$.

Proposition 3.1. (([WY2]) Assume dim A = 2 and A is not regular.

- (1) If $e_{HK} < 2$, then $e_{HK}(A) = 2 1/n$ for some $n \in \mathbb{Z}, n > 0$.
- (2) If $e_{HK}(A) = 2$, then either e(A) = 2 and A is not F-rational or $\hat{A} \cong (k[[X,Y]])^{[3]}$ (3rd Veronese subring) if A/\mathfrak{m} is algebraically closed.
- (3) For any \mathfrak{m} -primary ideal I, we have $e_{HK}(I) \ge (e(I) + 1)/2$.

Theorem 3.2. ([WY4]) Assume dim A = 3 and A is not regular.

- (1) $e_{HK}(A) \ge 4/3$ and equality holds iff $G_{\mathfrak{m}}(A) \cong k[X, Y, Z, W]/(XW YZ)$ (if k is algebraically closed).
- (2) If $e_{HK}(A) < 2$, then A is F-rational.

4. Non-regular rings with minimal HK multiplicity

Fix d and consider the set $e_{HK}(A)$ of all non-regular local rings of dimension d. If d = 2, 3 the minimal values are 3/2 if d = 2 and 4/3 if d = 3.

Conjecture 4.1. Fix d and a prime number p and assume for simplicity, p > 2. Put

$$A_{p,d} := \overline{\mathbb{F}_p}[[X_0, X_1, \dots, X_d]]/(X_0^2 + \dots + X_d^2).$$

Then for all non-regular local ring A of dimension $d, e_{HK}(A) \geq e_{HK}(A_{p,d}).$

This conjecture was solved in [WY2], [WY5] if $d \le 4$ and in [AbE^{*}] if $d \le 6$.

Monsky has a surprising result about the limit of $e_{HK}(A_{p,d})$.

Theorem 4.2. ([GM*]) Let $\sum_{d\geq 0} (c_d/d!) x^d$ be the Maclaurin expansion of $\tan x + \sec x$. Then

$$\lim_{p \to \infty} e_{\mathrm{HK}}(A_{p,d}) = 1 + \frac{c_d}{d!}.$$

5. MINIMAL RELATIVE HK MULTIPLICITY AND RELATIONS WITH F-SIGNATURE

We are interested to estimate the difference $e_{HK}(I) - e_{HK}(I')$, where $I \subset I'$ with $\ell_A(I'/I) = 1$.

Definition 5.1. (Ket *E* be the injective envelope of A/\mathfrak{m} and *z* be a generator of the socle $[0:\mathfrak{m}]_E$ of *E*. We define

$$m_{hHK}(A) := \liminf_{e \to \infty} \frac{l_A(A/\operatorname{Ann}_A(z^{p^e}))}{p^{ed}},$$

and call it the Minimal relative Hilbert-Kunz multiplicity of A.

Proposition 5.2. If A is Gorenstein, we have the following facts;

- (1) $m_{HK}(A) > 0$ if and only if A is F-regular
- (2) For every full parameter ideal Q of A, if we put $I = [Q : \mathfrak{m}]$, then $m_{HK}(A) = e_{HK}(Q) - e_{HK}(I)$.
- (3) $m_{HK}(A)$ coincides with F-signature defined by Huneke and Leuschke ([HuLe]).
- (4) If A is an invariant subring of a finite group G whose order is relatively prime to p and acting on a regular local ring without non-trivial pseudo-reflaction, then $m_{HK}(A) = 1/|G|$.

6. Generalized HK multiplicity

The concept of generalized HK multiplicity was first defined in [EY] and the studied in [DS],[DW].

Definition 6.1. Let (A, \mathfrak{m}) as above. For a finitely generated A module M, we put $F_A^n(M) = M \otimes_A F^n(A)$ and put $f_{gHK}^M(n) := \ell_A(H^0_{\mathfrak{m}}(F_A^n(M)))$. Then we define

$$e_{gHK}(M) = \lim_{n \to \infty} \frac{f_{HK}^M(n)}{p^{nd}}$$

Some interesting properties are;

- **Proposition 6.2.** (1) Let A be a normal local ring of dimension 2 and let I be a reflexive ideal in A. Then I is principal if and only if $e_{gHK}(A/I) = 0$.
 - (2) If A is F-regular, then $e_{gHK}(M) = 0$ if and only if $depth(F^n(M)) > 0$ for every n.
 - (3) Assume A is F-regular with dim $A \ge 2$ and I is a reflexive ideal locally free at Spec $(A) \setminus \{\mathfrak{m}\}$. Then $e_{gHK}(A/I) = 0$ if and only if I is principal.

I put references concerning HK multiplicity. But the references with * are beyond my scope of this lecture.

KEI-ICHI WATANABE

References

- [AbE*] I. M. Aberbach and F. Enescu, New estimates of Hilbert-Kunz multiplicities for local rings of fixed dimension, Nagoya Math. J. 212 (2013), 59–85.
- [AbL*] I. M. Aberbach and G. Leuschke, The F-signature and strong F-regularity, Math. Res. Lett. 10 (2003), 51–56.
- [Br*] H. Brenner, The rationality of Hilbert-Kunz multiplicity in graded dimension two, Math. Ann. 334 (2006), 91–110.
- [Br2*] H. Brenner, Irrational Hilbert-Kunz multiplicities, arXiv:1305.5873.
- [BM*] H. Brenner and P. Monsky, Tight closure does not commute with localization, Ann. of Math. (2) 171 (2010), no. 1, 571–588.
- [EnSh*] F. Enescu, K. Shimomoto, On the upper semi-continuity of the Hilbert-Kunz multiplicity, J. Algebra 285 (2005), 222–237.
- [DS] H. Dao, I. Smirnov, On generalized HIlbert-Kunz function and multiplicity, arxiv:1305.1833.
- [DW] H. Dao and K. Watanabe, Some computations of generalized Hilbert-Kunz function and multiplicity, Proc. AMS, 144 (2016), 3199-3206.
- [EY] N. Epstein, Y. Yao, Some extensions of Hilbert-Kunz multiplicity, Collect. Math. (2016). doi:10.1007/s13348-016-0174-2; arXiv:1103.4730,.
- [GM*] I. Gessel and P. Monsky, The limit as $p \to \infty$ of the Hilbert-Kunz multiplicity of $\sum x_i^{d_i}$, arXiv:1007.2004.
- [Han] D. Hanes, Notes on Hilbert-Kunz function, J. Algebra **265** (2003), 619–630.
- [HaMo*] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119–135.
- [Hu] C. Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative algebra (Bellaterra, 1996), 187–239, Progr. Math., 166, Birkhäuser, Basel, 1998.
- [HuLe] C. Huneke and G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. **324** (2002), 391–404.
- [HMM] C. Huneke, M. A. McDermott and P. Monsky, Hilbert-Kunz functions for normal rings, Math. Res. Lett. 11 (2004), 539–546.
- [HuYa] C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular, Proc. Amer. Math. Soc. 130 (2002), 661–665.
- [Ku] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772–784.
- [Ku2] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999–1013.
- [Kur*] K. Kurano, The singular Riemann-Roch theorem and Hilbert-Kunz functions, J. Algebra 304 (2006), 487–499.
- [Le] C. Lech, Inequalities related to certain complexes of local rings, Acta Math. 112 (1964), 69-89.
- [Mo1] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43–49.
- [Mo2*] P. Monsky, Rationality of Hilbert-Kunz multiplicities: A likely counterexample, Michigan Math. J. 57 (2008), 605–613.
- [Se] G. Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Arch. Math. 69 (1997), 286–296.
- [Tr] V. Trivedi, Stability and Hilbert-Kunz multiplicities for curves, J. Algebra 284 (2005), 627–644.
- [Tuc] K. Tucker, F-signature exists, Invent. math **190** (2012), 743–765.

- [Wa] K.-i. Watanabe, Hilbert-Kunz multiplicity of toric rings, Proc. INst. Natural Sci. Nihon Univ., 35 (2000), 173–177.
- [WY1] K.-i. Watanabe and K.-i. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295– 317.
- [WY2] K.-i. Watanabe and K.-i. Yoshida, Hilbert-Kunz multiplicity of twodimensional local rings, Nagoya Math. J. 162 (2001), 87–110.
- [WY3] K.-i. Watanabe and K.-i. Yoshida, Hilbert-Kunz multiplicity, McKay correspondence and Good ideals in 2-dimensional Rational Singularities, Manuscripta Math., 104 (2001), 275-294
- [WY4] K.-i. Watanabe and K.-i. Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 48 (2004) 273–294.
- [WY5] K.-i. Watanabe and K.-i. Yoshida, Hilbert-Kunz multiplicity of three dimensional local rings, Nagoya Math. J. 177 (2005), 47–75.

Department of Mathematics, College of Humanities and Sciences, Nihon University, Setagaya-Ku, Tokyo 156-0045, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp