Ideal theory of 2-dimensional normal local rings using resolution of singularities and a new characterization of rational singularities via core of ideals

Kei-ichi Watanabe (Nihon Unversity, Tokyo)

This is a joint work with Tomohiro Okuma (Yamagat Univ.) and Ken-ichi Yoshida (Nihon Univ.).

In this talk, let (A, \mathfrak{m}) be a local ring of a 2-dimensional algebraic variety over an algebraically closed field k (of any characteristic) and let $f: X \to \operatorname{Spec}(A)$ be a resolution of singulaities with $f^{-1}(\mathfrak{m}) = \bigcup_{i=1}^r E_i$. Take an integrally closed \mathfrak{m} primary ideal I of A, then we can find f so that $I\mathcal{O}_X = \mathcal{O}_X(-Z)$ will be invertible, where $Z = \sum_{i=1}^r n_i E_i$. Thus we can translate ideal theory of A into theory of cycles on X. We denote $I = I_Z$ in this case.

Now, $p_g(A) := \ell_A(H^1(X, \mathcal{O}_X))$ is an invariant of A, called the "geometric genus" of A. If we put $q(I_Z) = \ell_A(H^1(X, \mathcal{O}_X(-Z)))$, then $q(I_Z)$ is an invariant of ideal I_Z . We can show that $0 \le q(I_Z) \le p_g(A)$ and in particular, we call $I = I_Z$ a p_g -ideal if $q(I_Z) = p_g(A)$. We will show that p_g -ideals have very nice properties and behaves like integrally closed ideals of rational singularities (note that, by our definition, A is a rational singularity if and only if every integrally closed ideal is a p_g -ideal).

The core of an ideal I is defined by the intersection of all the reductions of I (an ideal $J \subset I$ is a reduction of I if $I^{r+1} = I^r J$ for some $r \geq 1$) and investigated by meny authors (D. Rees, J. Lipman, C. Huneke, I. Swanson, N.V. Trung, E. Hyry, K. Smith, A. Corso, C. Polini, B. Ulrich, . . .).

We will show that we have an explicit description of core(I) using the resolution of I

We ask the following question

Question 1. Let (A, \mathfrak{m}) be a normal 2-dimensional local ring and $I' \subset I$ are integrally closed ideals. Then is it always true that $\operatorname{core}(I') \subset \operatorname{core}(I)$

We answer this question by the following Theorem.

Theorem 1. Let (A, \mathfrak{m}) be a normal 2-dimensional local ring. Then the following conditions are equivalent.

- (1) For any integrally closed \mathfrak{m} primary ideals $I' \subset I$, we have $\operatorname{core}(I') \subset \operatorname{core}(I)$.
- (2) A is a rational singularity.

More precisely, we will show the following Theorem. In fact we will give

Theorem 2. Let (A, \mathfrak{m}) be a normal 2-dimensional local ring.

- (1) If $I' \subset I$ are p_q -ideals, then $core(I') \subset core(I)$.
- (2) If I is an integrally closed ideal with $q(I) < p_g(A)$, assume that I^2 is integrally closed and $QI \neq I^2$ for some minimal reduction Q of I. Then there is a p_g -ideal $I' \subset I$ such that $\operatorname{core}(I') \not\subset \operatorname{core}(I)$.