Let t, v, k and λ be positive integers. A $t - (v, k, \lambda)$ design is a pair (X, \mathcal{A}) where X is a set of size v and $\mathcal{A} \subseteq {X \choose k}$ such that every $T \in {X \choose t}$ is contained in exactly λ elements of \mathcal{A} . For t = 2, finite projective planes and affine planes over finite fields are examples. For t = 3, finite Mobius planes are examples. For t = 4 and t = 5 there are only finitely many examples known (with $\lambda = 1$ and v > k) constructed from Mathieu groups. Construction of such structures for $\lambda = 1$ are extremely difficult problems. No examples are known with parameters $t \ge 6, \lambda = 1$ and v > k. Some recently proved results will be presented. Following the tradition of late Paul Erdos the speaker is offering two prizes.

(1) Rs. 5000 for construction of any 3 - (v, 7, 1) design with v > 7.

(2) Rs. 10000 for construction of any t - (v, k, 1) design with $t \ge 6$ and v > k.