A walk through integrally closed domains.

Neeraj Sangwan

Indian Institute of Science Education and Research, Mohali, India. E-mail: neerajsan@iisermohali.ac.in

Let R be an integrally closed domain with quotient field K and θ be an element of an integral domain containing R with θ integral over R and F(x) be the minimal polynomial of θ over K. Kummer proved that if $R[\theta]$ is an integrally closed domain then the maximal ideals of $R[\theta]$ which lie over \mathfrak{p} can be explicitly determined from the irreducible factors of F(x) modulo \mathfrak{p} . We shall discuss a necessary and sufficient criterion to be satisfied by F(x) so that $R[\theta]$ is integrally closed when R is a valuation ring. We shall also give some applications of this criterion for algebraic number fields and derive necessary and sufficient conditions involving only the primes dividing a, b, m, n for $\mathbb{Z}[\theta]$ to be integrally closed when θ is a root of an irreducible trinomial $x^n + ax^m + b$ with integer coefficients. For any pair of algebraic number fields K_1, K_2 linearly disjoint over $K_1 \cap K_2$, we shall show that the relative discriminants of K_1/K and K_2/K to be coprime if and only if the composite ring $A_{K_1}A_{K_2}$ is integrally closed, A_{K_i} being the ring of algebraic integers of K_i . This provides converse of a well known result in algebraic number theory and will be discussed in a more general setting.