A walk through integrally closed domains.

Neeraj Sangwan
Indian Institute of Science Education and Research, Mohali, India.
E-mail: neerajsan@iisermohali.ac.in

Let R be an integrally closed domain with quotient field K and θ be an element of an integral domain containing R with θ integral over R and $F(x)$ be the minimal polynomial of θ over K. Kummer proved that if $R[\theta]$ is an integrally closed domain then the maximal ideals of $R[\theta]$ which lie over \mathfrak{p} can be explicitly determined from the irreducible factors of $F(x)$ modulo \mathfrak{p}. We shall discuss a necessary and sufficient criterion to be satisfied by $F(x)$ so that $R[\theta]$ is integrally closed when R is a valuation ring. We shall also give some applications of this criterion for algebraic number fields and derive necessary and sufficient conditions involving only the primes dividing a, b, m, n for $\mathbb{Z}[\theta]$ to be integrally closed when θ is a root of an irreducible trinomial $x^{n}+a x^{m}+b$ with integer coefficients. For any pair of algebraic number fields K_{1}, K_{2} linearly disjoint over $K_{1} \cap K_{2}$, we shall show that the relative discriminants of K_{1} / K and K_{2} / K to be coprime if and only if the composite ring $A_{K_{1}} A_{K_{2}}$ is integrally closed, $A_{K_{i}}$ being the ring of algebraic integers of K_{i}. This provides converse of a well known result in algebraic number theory and will be discussed in a more general setting.

