Speaker

Krishna B. Athreya

Professor Emeritus, Department of Mathematics, Iowa State University

Title : Some results in probability theory with application to analysis

Abstract

In this talk we shall prove the following results in probability theory and give one application to analysis of each of the results.

Result 1: Let f_n, f be probability densities on a measure space $(\Omega, \mathcal{B}, \mu)$, i.e. $f, f_n : \Omega \to \mathbb{R}^+, \mathcal{B}$ measurable and

$$\int f_n d\mu = 1$$
 for all n and $\int f d\mu = 1$.

Then

$$\int |f_n - f| d\mu \to 0$$
 as $n \to \infty$ iff $f_n \to f$ in measure μ

i.e. $\forall \epsilon > 0, \ \mu\{\omega : |f_n(\omega) - f(\omega)| > \epsilon\} \to 0 \text{ as } n \to \infty.$

Application: $\exists \mu_n, \mu$ probability measures on a measurable space $(\Omega, \mathcal{B}) \ni \mu_n(A) \to \mu(A) \ \forall \ A \in \mathcal{B}$ but $\sup_{A \in \mathcal{B}} |\mu_n(A) - \mu(A)| \not\to 0$ as $n \to \infty$.

Result 2: Let $\{X_i\}_{i\geq 1}$ be iid Poisson (1) random variables. Then

$$\sqrt{n}P(S_n = n) \to \frac{1}{\sqrt{2\pi}} \text{ as } n \to \infty$$

where $S_n = \sum_{j=1}^n X_j$. Application: $n! \sim \frac{e^{-n}n^{n+\frac{1}{2}}}{\sqrt{2\pi}}$ as $n \to \infty$.

Result 3: Let $\{X_i\}_{i\geq 1}$ be i.i.d. random variables with finite mean μ . Then $\forall \epsilon > 0, P(|\overline{X}_n - \mu| > \epsilon) \to 0$ as $n \to \infty$.

Application: Let $f = [0,1] \to \mathbb{R}$ be continuous. Then $\forall n > 0, \exists$ a polynomial $p_n(x)$ such that

$$\sup_{0 \le x \le 1} |f(x) - p_n(x)| \to 0 \text{ as } n \to \infty.$$