Lectures & Tutorials :
tba.
Prerequisite
MA 403 Real analysis
Quizzes on : tba.
Syllabus
 Basic Properties of Fourier Series: Uniqueness of Fourier Series, Convolutions, Cesaro and Abel Summability, Fejer's theorem, Poisson Kernel and Dirichlet problem in the unit disc. Mean square Convergence, Example of Continuous functions with divergent Fourier series.
 Distributions and Fourier Transforms: Calculus of Distributions, Schwartz class of rapidly decreasing functions, Fourier transforms of rapidly decreasing functions, Riemann Lebesgue lemma, Fourier Inversion Theorem, Fourier transforms of Gaussians.
Tempered Distributions: Fourier transforms of tempered distributions, Convolutions, Applications to PDEs (Laplace, Heat and Wave Equations), SchrodingerEquation and Uncertainty principle.
 PaleyWienner Theorems, Poisson Summation Formula: Radial Fourier transforms and Bessel's functions. Hermite functions.
 Applications to PDEs.
Texts
1 (principal). E.M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton University Press, 2003.
2 (supplementary). G.B. Folland, Fourier Analysis and its applications, Brooks/Cole publishers, 1992.
