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Chapter 1

Rings and Modules

In this chapter, we shall review a number of basic notions and results con-
cerning rings and modules. First, let us settle the basic terminology and
notation that we shall use throughout these notes.

By a ring we mean a commutative ring with identity. Given a ring A,
we denote by A∗ the set of all nonzero elements of A and by A× the set of
all (multiplicative) units of A. For sets I, J , we write I ⊆ J to denote that
I is a subset of J and I ⊂ J to denote that I is a proper subset of J , that
is, I ⊆ J and I 6= J . We denote the set of nonnegative integers by N and
for any n ∈ N, by Nn we denote the set of all n-tuples of elements of N. We
sometimes use the abbreviation ‘iff’ to mean ‘if and only if’.

1.1 Ideals and Radicals

Historically, the notion of an ideal arose in an attempt to prove Fermat’s
Last Theorem (see Chapter 4 for more on this). From a formal viewpoint,
an ideal of a ring is analogous to a normal subgroup of a group. More
precisely, an ideal of a ring A is a subset I of A satisfying (i) I is a subgroup
of A with respect to addition, and (ii) whenever a ∈ I and x ∈ A, we have
ax ∈ I . If A is a ring and I is an ideal of A, then we can construct a new
ring, denoted by A/I and called the residue class ring or the quotient ring
obtained from “moding out” A by I . The elements of A/I are the cosets
x+ I := {x+a : a ∈ I} where x varies over A. Addition and multiplication
in A/I is defined by (x+I)+(y+I) = (x+y)+I and (x+I)(y+I) = xy+I .
The fact that I is an ideal of A ensures that this addition and multiplication
is well-defined and A/I is a ring with respect to these operations. Passing
to A/I from A has the effect of making I the null element. We have a natural
surjective homomorphism q : A → A/I given by q(x) := x + I for x ∈ A.
The kernel of q is precisely the ideal I . Conversely, if φ : A → B is any ring
homomorphism (that is, a map of rings satisfying φ(x + y) = φ(x) + φ(y)
and φ(xy) = φ(x)φ(y) for every x, y ∈ A), then the kernel of φ (which,
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by definition, is the set of all a ∈ A such that φ(a) = 0) is an ideal of A;
moreover, if I = ker φ denotes the kernel of φ, then A/I is isomorphic to
the image of φ. In short, residue class ring and homomorphic image are
identical notions. If I is an ideal of a ring A, then there is a one-to-one
correspondence between the ideals of A containing I and the ideals of A/I
given by J 7→ q(J) = J/I and J ′ 7→ q−1(J ′).

An easy way to generate examples of ideals is to look at ideals gen-
erated by a bunch of elements of the ring. Given a ring A and elements
a1, . . . , an ∈ A, the set

(a1, . . . , an) := { a1x1 + · · · + anxn : x1, . . . , xn ∈ A}

is clearly an ideal of A and it is called the ideal generated by a1, . . . , an. More
generally, given any ring A and a subset E of A, by EA we denote the set
of all finite A-linear combinations of elements of E. Clearly, EA is an ideal
of A and it is called the ideal generated by E. Ideals generated by a single
element are called principal. Thus, an ideal I of a ring A is called a principal
ideal if I = (a) for some a ∈ A. By a principal ideal ring or PIR we mean a
ring in which every ideal is principal. An integral domain which is also a
PIR is called a principal ideal domain or simply, a PID.

All the basic algebraic operations are applicable to ideals of a ring. Let
A be a ring and let I and J be ideals of A. The sum of I and J is defined by
I + J := {a + b : a ∈ I, b ∈ J}, whereas the product of I and J is defined
by IJ := {∑ aibi : ai ∈ I, bi ∈ J}. Clearly, I + J and IJ are ideals of A.
It may be remarked that the product IJ is closely related, but not quite the
same as, the ideal I ∩ J given by the intersection of I and J . For example,
if A is a PID, I = (a) and J = (b), then IJ = (ab) whereas I ∩ J = (ℓ) and
I + J = (d), where ℓ = LCM(a, b) and d = GCD(a, b). Analogue of division
is given by the colon ideal (I : J) := {a ∈ A : aJ ⊆ I}. Note that (I : J)
ideal of A. If J equals a principal ideal (x), then (I : J) is often denoted
simply by (I : x). For example, if A is a PID, I = (a) and J = (b), then
(I : J) = (a/d), where d = GCD(a, b). We can also consider the radical of
an ideal I . It is defined by

√
I := {a ∈ A : an ∈ I for some n ≥ 1} and it is

readily seen to be an ideal of A (by Binomial Theorem!). One says that I is
a radical ideal if

√
I = I . Note that the notions of sum and intersections of

ideals extend easily to arbitrary families of ideals, whereas the notion of a
product of ideals extends easily to finite families of ideals.

Having defined algebraic operations for ideals, it is natural to see if
the basic notions of arithmetic find an analogue in the setting of ideals. It
turns out that the notion of a prime number has two distinct analogues as
follows. Let A be a ring and I be an ideal of A. We say that I is prime if
I 6= A and for any a, b ∈ A,, whenever ab ∈ I , we have a ∈ I or b ∈ I . We
say that I is maximal if for any ideal J of A satisfying I ⊆ J , we have J = I
or J = A. The set of all prime ideals of A is denoted by Spec (A), whereas
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the set of all maximal ideals of A is denoted by Max (A). It is easy to see that
I is a prime ideal if and only if A/I is an integral domain, and also that I is
a maximal ideal if and only if A/I is a field. Using this (or alternatively, by
a simple direct argument), we see that every maximal ideal is prime, that
is, Max (A) ⊆ Spec (A).

Examples 1.1. (i) If A is the zero ring, then Spec (A) = ∅ = Max (A).

(ii) If A is a field, then Spec (A) = {(0)} = Max (A).

(iii) If A = Z, then Spec (A) = {(0)} ∪ {(p) : p is a prime number}, and
Max (A) = {(p) : p is a prime number}.

If A is a ring and P is a nonunit ideal of A, that is, P is an ideal of A
satisfying P 6= A, then it is evident that P is a prime ideal if and only if P
satisfies the following property: if ∩n

j=1Ij ⊆ P for any ideals I1, . . . , In of A,
then Ij ⊆ P for some j. It may be interesting to note that there is also the
following counterpart where instead of an intersection of ideals contained
in a prime ideal, we have an ideal contained in a union of prime ideals.

Proposition 1.2 (Prime Avoidance Lemma). Let I, P1, . . . , Pn be ideals in a
ring A such that P1, . . . , Pn are prime. If I ⊆ ∪n

j=1Pj , then I ⊆ Pj for some j.

Proof. The case n = 1 is trivial. Suppose n > 1. If there exist xi ∈ I \ ∪j 6=iPj

for 1 ≤ i ≤ n, then we have a contradiction since x1 +x2x3 . . . xn ∈ I \∪iPi.
Thus I ⊆ ∪j 6=iPj , for some i. The case of n = 1 being trivial, the result now
follows using induction on n.

Remark 1.3. An easy alteration of the above proof shows that Proposition
1.2 holds under the weaker hypothesis that I is a subset of A closed under
addition and multiplication, and P1, . . . , Pn are ideals of A such that at least
n − 2 of them are prime. If A contains a field, then Proposition 1.2 can be
proved, by elementary vector space arguments, without assuming any of
the Pi’s to be prime.

The notion of congruence modulo an integer has a straightforward ana-
logue for ideals. If A is a ring and I is an ideal of A, then for any x, y ∈ A we
say that x ≡ y(modI) if x − y ∈ I . More interestingly, Chinese Remainder
Theorem for integers has the following analogue for ideals.

Proposition 1.4 (Chinese Remainder Theorem). Let I1, I2, . . . , In be pair-
wise comaximal ideals in a ring A (i.e., Ii + Ij = A for all i 6= j). Then:

(i) I1I2 . . . In = I1 ∩ I2 ∩ · · · ∩ In.

(ii) Given any x1, . . . , xn ∈ A, there exists x ∈ A such that x ≡ xj(mod Ij)
for 1 ≤ j ≤ n.
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(iii) The map x + I1I2 · · · In 7→ (x + I1, . . . , x + In) defines an isomorphism of
A/I1I2 . . . In onto the direct sum A/I1 ⊕ A/I2 ⊕ · · · ⊕ A/In.

Proof. (i) Clearly, I1I2 . . . In ⊆ I1∩I2∩· · ·∩In. To prove the other inclusion,
we induct on n. The case of n = 1 is trivial. Next, if n = 2, then we can
find a1 ∈ I1 and a2 ∈ I2 such that a1 + a2 = 1. Now, a ∈ I1 ∩ I2 implies
that a = aa1 + aa2, and thus a ∈ I1I2. Finally, if n > 2, then as in (i), let
J1 = I2 · · · In and note that I1 + J1 = A. Hence by induction hypothesis
and the case of two ideals, I1 ∩ I2 ∩ · · · ∩ In = I1 ∩ J1 = I1J1 = I1I2 · · · In.

(ii) Given any i ∈ {1, . . . , n}, let Ji = I1 · · · Ii−1Ii+1 · · · In. Since Ii +
Ij = A, we can find aij ∈ Ij such that aij ≡ 1(mod Ii), for all j 6= i. Let
ai =

∏
j 6=i aij . Then ai ≡ 1(mod Ii) and ai ∈ Ji. Thus Ii + Ji = A. Now,

x = x1a1 + · · · + xnan satisfies x ≡ xj(mod Ij) for 1 ≤ j ≤ n.

(iii) The map x+I1I2 · · · In 7→ (x + I1, . . . , x + In) is clearly well-defined
and a homomorphism. By (i), it is surjective and by (ii), it is injective.

Of course, not every notion concerning rings is a straightforward ana-
logue of an algebraic or arithmetic notion applicable to integers. There are
some basic notions, such as those defined below, which would be quite
redundant or useless in the realm of integers.

Let A be a ring. An element a of A is said to be a zerodivisor if there is
b ∈ A∗ such that ab = 0. We will denote the set of all zerodivisors in A by
Z(A). Note that Z(A) = {a ∈ A : (0 : a) 6= 0}. An element of A which is
not a zerodivisor is called a nonzerodivisor (sometimes abbreviated as nzd).
Elements of

√
(0), that is, those elements a ∈ A for which an = 0 for some

n ∈ N, are said to be nilpotent. The set
√

(0) of all nilpotent elements in a
ring A is called the nilradical of A. If A is a nonzero ring, then clearly every
nilpotent element of A is a zerodivisor, that is,

√
(0) ⊆ Z(A).

Interestingly, each of the above notions is neatly connected with prime
ideals. To begin with, the set of all nonzerodivisors in a ring enjoys prop-
erties similar to complements of prime ideals. More precisely, it is a multi-
plicatively closed set in the following sense.

Definition 1.5. A subset S of a ring A is said to be multiplicatively closed if it
satisfies the following: (i) 1 ∈ S and (ii) if a ∈ S and b ∈ S, then ab ∈ S.

Examples 1.6. (i) If A is an integral domain, then A∗ = A \ {0} is mul-
tiplicatively closed. More generally, as remarked earlier, the set of all
nonzerodivisors in any ring A is a multiplicatively closed subset of A.
Also, the set A× of multiplicative units in any ring A is a multiplica-
tively closed subset of A.

(ii) If P is a prime ideal of a ring A, then A \ P multiplicatively closed.
More generally, if {Pα : α ∈ Λ} is a family of prime ideals of a ring A,
then A \ ∪α∈ΛPα is a multiplicatively closed subset of A. Note that if
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I is any ideal in a ring A, then A \ I is multiplicatively closed if and
only if I is a prime ideal.

(iii) Given any element a of a ring A, the set S = {an : n ∈ N} of pow-
ers of a is a multiplicatively closed subset of A. In particular, {1} is
multiplicatively closed and it is clearly the smallest among the multi-
plicatively closed subsets of A.

(iv) If a ring A is a subring of a ring B and S is a multiplicatively closed
subset of A, then S is a multiplicatively closed subset of B.

Lemma 1.7. Let A be a ring. If I is an ideal of A and S is a multiplicatively closed
subset of A such that I ∩ S = ∅, then there exists a prime ideal P of A such that
I ⊆ P and P ∩ S = ∅. Moreover P is maximal among the family of ideals J of A
satisfying I ⊆ J and J ∩ S = ∅.

Proof. Consider the family {J : J an ideal of A with I ⊆ J and J ∩ S = ∅}
and Zornify!

Corollary 1.8. Let I be a nonunit ideal of a ring A. Then there is a maximal ideal
m of A such that I ⊆ m. In particular, every nonzero ring has a maximal ideal and
the spectrum of a nonzero ring is nonempty.

Proof. The first assertion follows from Lemma 1.7 with S = {1}. To prove
the second assertion, take I = (0).

Corollary 1.9. Let A be a ring and I be any ideal of A. Then

√
I =

⋂

P∈ Spec (A)

I⊆P

P. In particular,
√

(0) =
⋂

P∈ Spec (A)

P.

Proof. Clearly
√

I ⊆ P for every prime ideal P of A containing I . On the
other hand, if a ∈ P for every P ∈ Spec (A) with I ⊆ P , but a 6∈

√
I , then

applying Lemma 1.7 to S := {an : n ∈ N}, we arrive at a contradiction.

If a is a nilpotent element of a ring A then an = 0 for some n ∈ N, and
hence (1− a)(1 + a + a2 + · · · + an−1) = 1. In other words, we have a valid
geometric series expansion

1

1 − a
= 1 + a + · · · + an−1,

which shows that 1 − a is a unit in A. In fact, a similar argument shows
that if a ∈ A is nilpotent, then 1 − ab is a unit in A for any b ∈ A. It
follows that

√
(0) ⊆ {a ∈ A : 1 − ab is a unit for every b ∈ A}. The set

{a ∈ A : 1 − ab is a unit for every b ∈ A} will be denoted by J (A) and
called the Jacobson radical of A. The following result shows that the Jacobson
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radical of A is an an ideal of A and it is, in fact, the intersection of all the
maximal ideals of A. It also gives an alternative proof of the fact that the
nilradical is contained in the Jacobson radical.

Proposition 1.10. Let A be a ring. Then

J (A) =
⋂

m∈Max (A)

m

Proof. Let a ∈ J (A). If a /∈ m for some m ∈ Max (A), then m + (a) is an
ideal of A with m ⊂ m + (a). Since m is maximal, we have m + (a) = A.
Hence there is m ∈ m and b ∈ A such that m + ab = 1. Now m contains the
unit m = 1 − ab, and this is a contradiction. On the other hand, if a is in m

for every m ∈ Max (A), then so is ab for every b ∈ A. Now if 1 − ab is not a
unit in A for some b ∈ A, then by Corollary 1.8, there is m ∈ Max (A) such
that 1 − ab ∈ m, but then 1 ∈ m, which is a contradiction.

1.2 Polynomial rings and Localization of rings

Forming the residue class ring or the quotient ring is one of the three funda-
mental processes in Algebra for constructing new rings from a given ring.
The other two processes are forming the polynomial ring in one or several
variables with coefficients in the given ring and forming the localization of
the given ring. We shall first review the former and then describe the latter.

Polynomial Ring: Let A be a ring and n be a nonnegative integer.
We denote by A[X1, . . . ,Xn] the ring of all polynomials in the variables
X1, . . . ,Xn with coefficients in A. Elements of A[X1, . . . ,Xn] look like

f =
∑

ai1...inXi1
1 . . . Xin

n , ai1...in ∈ A,

where (i1, . . . , in) vary over a finite subset of Nn. A typical term (excluding
the coefficient), viz., Xi1

1 . . . Xin
n , is called a monomial; its (usual) degree is

i1 + · · ·+ in. Such a monomial is said to be squarefree if ir ≤ 1 for 1 ≤ r ≤ n.
If f 6= 0, then the (total) degree of f is defined by deg f = max{i1 + · · ·+ in :
ai1...in 6= 0}. Usual convention is that deg 0 = −∞. With this in view, for
every f, g ∈ A[X1, . . . ,Xn], we have deg(f + g) ≤ max{deg f,deg g} and
in case A is a domain, then deg fg = deg f + deg g. A homogeneous polyno-
mial of degree d in A[X1, . . . ,Xn] is simply a finite A-linear combination of
monomials of degree d. The set of all homogeneous polynomials of degree
d is denoted by A[X1, . . . ,Xn]d. Note that any f ∈ A[X1, . . . ,Xn] can be
uniquely written as f = f0 + f1 + . . . , where fi ∈ A[X1, . . . ,Xn]i and fi = 0
for i > deg f ; we may call fi’s to be the homogeneous components of f . If f 6= 0
and d = deg f , then clearly fd 6= 0 and f = f0 + f1 + · · · + fd. An ideal I of
A[X1, . . . ,Xn] is said to be a homogeneous ideal (resp: monomial ideal) if it is
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generated by homogeneous polynomials (resp: monomials). Henceforth,
when we use a notation such as k[X1, . . . ,Xn], it will be tacitly assumed
that k denotes a field and X1, . . . ,Xn are independent indeterminates over
k (and, of course, n ∈ N).

The process of localization described next generalizes the construction
of the field of fractions of an integral domain, which in turn, is a general-
ization of the formal construction of rational numbers from integers.

Localization: Let A be a ring and S be a multiplicatively closed subset
of A. Define a relation ∼ on A×S as follows. Given any (a, s), (b, t) ∈ A×S,

(a, s) ∼ (b, t) ⇐⇒ u(at − bs) = 0 for some u ∈ S.

It is easy to see that ∼ defines an equivalence relation on A × S. Let us
denote the equivalence class of (a, s) ∈ A×S by a/s (or by a

s ), and let S−1A
denote the set of equivalence classes of elements of A × S. Define addition
and multiplication on S−1A by

a

s
+

b

t
=

at + bs

tb
and

(a

s

)(b

t

)
=

ab

ts
for any (a, s), (b, t) ∈ A × S.

It can be easily seen that these binary operations are well defined and that
S−1A is a ring with respect to them. The ring S−1A is called the ring of
fractions or the localization of A with respect to multiplicatively closed subset
S. Passing to S−1A from A has the effect of making the elements of S units.
In case 0 ∈ S, we see that S−1A is the zero ring, and conversely, if S−1A is
the zero ring, then 0 ∈ S.

Examples 1.11. Let A be a ring.

(i) If A is an integral domain and S = A \ {0}, then S−1A is nothing but
the quotient field or the field of fractions of A. Note that in this case
the equivalence relation ∼ on A × S takes the simpler form: (a, s) ∼
(b, t) ⇐⇒ (at − bs) = 0. More generally, this is the case when all
the elements of S are nonzerodivisors. In general, if S is the set of all
nonzerodivisors in A, then S−1A is called the total quotient ring of A.

(ii) Let S = A \ p, where p is a prime ideal of A. In this case S−1A is
customarily denoted by Ap. The set pAp := {a/s : a ∈ p, s ∈ S} is
an ideal of Ap and an element of Ap that is not in pAp is a unit in Ap.
It follows that pAp is the only maximal ideal of the ring Ap. In other
words Ap is a local ring [A local ring is a ring with only one maximal
ideal].

In general, we have the natural homomorphism

φ : A → S−1A defined by φ(a) :=
a

1
for a ∈ A.
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The map φ is not injective, in general, and its kernel is given by

ker φ = {a ∈ A : sa = 0 for some s ∈ S} =
⋃

s∈S

(0 : s).

In particular, φ is injective if S consists of nonzerodivisors; in this case A
may be regarded as a subring of S−1A. Given an ideal a of A, the ideal
of S−1A generated by φ(a) is called the extension of a, and is denoted by
aS−1A or by S−1a. For an ideal b of S−1A, the inverse image φ−1(b) is an
ideal of A and is called the contraction of b to A. By abuse of language,
the contraction of b is sometimes denoted by b ∩ A. Basic properties of
extension and contraction are described in the following result.

Proposition 1.12. Let A be a ring and S be a multiplicatively closed subset of A.
Given any ideal a of A and an ideal b of S−1A, we have the following:

(i) If a = b ∩ A, then b = S−1a = S−1 (b ∩ A). In particular, b is the
extension of some ideal of A.

(ii) S−1a ∩ A =
⋃

s∈S

(a : s). In particular, S−1a = S−1A ⇔ a ∩ S 6= ∅.

(iii) a is a contraction of an ideal of S−1A if and only if every element of S is a
nonzerodivisor in A/a; in this case a = S−1a ∩ A.

(iv) The prime ideals of S−1A are in one-to-one correspondence with the prime
ideals of A which do not meet S.

Proof. (i) Since a = b ∩ A = φ−1(b), we have φ(a) ⊆ b and hence S−1a ⊆ b.
On the other hand, if a ∈ A and s ∈ S are such that a/s ∈ b, then a/1 =
(s/1)(a/s) ∈ b, and hence a ∈ b ∩ A = a, and this shows that a/s ∈ S−1a.
Thus, b = S−1a.

(ii) Given any x ∈ A ∩ S−1a, we have x/1 = a/t for some a ∈ a and t ∈ S,
and so u(tx − a) = 0 for some u ∈ S. Now s = ut ∈ S and sx ∈ a, that is,
x ∈ (a : s). On the other hand, if x ∈ (a : s) for some s ∈ S, then sx ∈ a, and
so x/1 = (1/s)(sx/1) ∈ S−1a, that is, x ∈ A∩S−1a. This shows that S−1a∩A
is the union of (a : s) as s varies over S. In particular, S−1a = S−1A if and
only if 1 ∈ (a : s) for some s ∈ S, that is, a ∩ S 6= ∅.

(iii) Observe that s ∈ S is a nonzerodivisor in A/a if and only if (a : s) = a.
With this in view, (iii) is an immediate consequence of (ii).

(iv) If q is a prime ideal of S−1A, then q ∩ A = φ−1(q) is a prime ideal of
A, being the inverse image of a prime ideal under a ring homomorphism.
Moreover, since q 6= S−1A, we see from (i) above that q ∩ A is disjoint from
S. On the other hand, suppose p is a prime ideal of A such that p ∩ S = ∅.
Then by (ii) above, S−1p 6= S−1A. Further, if x, y ∈ p and s, t ∈ S are such
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that (x/s)(y/t) ∈ S−1p, then uxy ∈ p for some u ∈ S. Since p is prime and
p ∩ S = ∅, it follows that x ∈ p or y ∈ p, which implies that x/s ∈ S−1p or
y/t ∈ S−1p. Thus S−1p is a prime ideal of S−1A. So, in view of (i) and (iii)
above, it follows that the processes of contraction and extension set up the
desired one-to-one correspondence.

1.3 Modules

Let A be a ring. An A-module is simply a vector space except that the
scalars come from the ring A instead of a field. Apart from vector spaces
over a field, basic examples of A-modules are: ideals I of A, residue class
rings A/I , polynomial rings A[X1, . . . ,Xn] and localizations S−1A. The
notions of submodules, quotient modules, direct sums of modules and iso-
morphism of modules are defined in an obvious fashion. The concept of
localization (w.r.t. multiplicatively closed subsets of A) also carries over
to A-modules. A direct sum of (isomorphic) copies of A is called a free A-
module. The finite direct sum

An := A ⊕ · · · ⊕ A︸ ︷︷ ︸
n times

is referred to as the free A-module of rank n.
Let M be an A-module. Given submodules {Mi} of M , their sum

∑
Mi := {

∑
xi : xi ∈ Mi and all except finitely many xi’s are 0}

is a submodule of M . Products of submodules do not make sense but of
course, intersections of submodules of M does. Further, the colon opera-
tion has an interesting and important counterpart. If M1 and M2 are sub-
modules of M , we define

(M1 : M2) := {a ∈ A : aM2 ⊆ M1}.

Note that (M1 : M2) is an ideal of A. The ideal (0 : M) is called the anni-
hilator of M and is denoted by Ann(M); for x ∈ M , we may write Ann(x)
for the ideal (0 : x), i.e., for Ann(Ax). Note that if I is an ideal of A, then
Ann(A/I) = I and if Ann(M) ⊇ I , then M may be regarded as an A/I-
module. Let us also note that for any submodules M1,M2 of M , we always
have the isomorphisms (M1 + M2)/M2 ≃ M1/(M1 ∩ M2), and, if M2 ⊆ M1

and N is a submodule of M2, then (M1/N )/(M2/N) ≃ M1/M2.
We say that M is finitely generated (f. g.) or that M is a finite A-module

if there exist x1, . . . , xn ∈ M such that M = Ax1 + · · · + Axn; in this case
{x1, . . . , xr} is referred to as a set of generators of M . Note that an A-module
M is finitely generated if and only if M is isomorphic to An/K for some
n ∈ N and a submodule K of the free A-module An.

12



In general, and unlike in the case of vector spaces, if an A-module M is
finitely generated, then a submodule of M need not be finitely generated.
For example, if A = C[X1,X2, . . . ] is the polynomial ring in infinitely many
variables and I = (X1,X2, . . . ) is the ideal of A generated by all the vari-
ables, then A is finitely generated as an A-module, but the A-submodule I
of A is not finitely generated. We shall see in Chapter 2 that if every ideal
of A is finitely generated, then every submodule of a finitely generated
A-module is finitely generated. Meanwhile let us note here a very useful
property of finitely generated A-modules.

Lemma 1.13 (Nakayama’s Lemma). Let M be a finitely generated A-module
and I be an ideal of A such that IM = M . Then (1 − a)M = 0 for some a ∈ I .
In particular, if I 6= A and if A is a local ring, then M = 0.

Proof. Write M = Ax1 + · · ·+ Axn. Then xi =
∑n

j=1 aijxj , for some aij ∈ I .
Let d = det(δij − aij). Then d = 1 − a, for some a ∈ I , and, by Cramer’s
rule, dxj = 0 for all j.

1.4 Zariski Topology

Let A be a ring. Given any subset E of A, we define,

V (E) := {p ∈ Spec (A) : E ⊆ p}.
In case E = {f} for some f ∈ A, then V (E) may be denoted simply by
V (f). Note that if I is the ideal of A generated by E, then V (E) = V (I) =
V (

√
I). In particular,

{V (E) : E ⊆ A} = {V (I) : I an ideal of A} = {V (J) : J a radical ideal of A}.
The following facts follow directly from definition.

1. V (0) = Spec (A) and V (1) = ∅.

2.
⋂

α∈Λ

V (Eα) = V (
⋃

α∈Λ

Eα), for any family {Eα : α ∈ Λ} of subsets of A.

3.
m⋃

i=1

V (Ei) = V

(
m⋂

i=1

Ei

)
, for any m ∈ N and subsets E1, . . . Em of A.

Thus the family {V (E) : E ⊆ A} satisfies all the axioms of closed sets for
a topology on Spec (A). The resulting topology on Spec (A) is called the
Zariski topology. For example, if A = C[X], then using the Fundamental
Theorem of Algebra we see that Spec (C[X]) = {(X − α) : α ∈ C} ∪ {(0)};

thus Spec(A) can be identified with the Riemann sphere Ĉ := C ∪ {∞}
(or the projective line P1

C
). The Zariski topology on Spec (C[X]) coincides

with the cofinite topology1 on Ĉ. Reverting to the general case, for any

1The cofinite topology on any set X is defined as follows. A subset U of X is open if and
only if U = ∅ or U = X \ F where F is a finite subset of X.
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V ⊆ Spec (A), we define

I(V ) := {f ∈ A : f ∈ P for all P ∈ V } =
⋂

P∈V

P.

Clearly, I(V ) is an ideal of A (in fact, a radical ideal); it is called the vanishing
ideal of V . For example, if A = C[X] and a is a nonzero ideal of A, then a =
(h(X)) for some nonzero polynomial h(X) ∈ C[X]. Further, if α1, . . . , αm

are the distinct roots of h(X) in C, then V = V (a) = {α1, . . . , αm} and
I(V ) = {f ∈ C[X] : f(αi) = 0 for i = 1, . . . m} is the ideal of polynomials
which vanish at the roots of h(X).

The following result may be viewed as a version of Hilbert’s Nullstel-
lensatz (see Corollary 3.19 in Chapter 3). However, here the proof is trivial.

We shall use here the following notation and terminology.

Proposition 1.14. Let A be a ring.

(i) If a is a nonunit ideal of A, then V (a) is nonempty.

(ii) If a is an ideal of A and V = V (a) then I(V ) =
√

a.

Proof. Corollary 1.8 implies (i) and Corollary 1.9 implies (ii).

The Zariski topology has a number of interesting properties. To begin
with, let us note that the principal open sets

Df := Spec (A) \ V (f) = {p ∈ Spec (A) : f /∈ p}, where f ∈ A,

form a base for the the Zariski topology on Spec (A). The Zariski topology
is almost never Hausdorff (or T2). In fact, as part (ii) of the proposition
below shows, a singleton set can be dense. On the other hand, part (iv) of
the same proposition shows that Spec (A) with the Zariski topology is a T0

topological space.

Proposition 1.15. Let A be a ring and p, q ∈ Spec (A). We have the following:

(i) p ∈ Max (A) ⇐⇒ {p} is closed subset of Spec (A).

(ii) {p} := closure of {p} = V (p). Consequently, q ∈ {p} ⇐⇒ p ⊆ q. In
particular, if A is an integral domain, then {(0)} = Spec (A).

(iii) If p 6= q, then there exists a neighbourhood of p which does not intersect q or
a neighbourhood of q which does not intersect p.

Proof. (i) If p ∈ Max A, then {p} = V (p), and hence {p} is closed. Con-
versely, if p ∈ Spec (A) is such that {p} is a closed, then {p} = V (a) for some
ideal a of A. Clearly, a 6= A and so by Corollary 1.8, there is m ∈ Max (A)
such that a ⊆ m. Hence m ∈ V (a) = {p} and so p = m is maximal.
(ii) If V is a closed subset of Spec (A) containing p, then V = V (a) for some
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ideal a of A. Consequently a ⊆ p, and hence V (p) ⊆ V (a). It follows that
V (p) is the smallest closed set containing {p}, and thus {p} = V (p). In case
A is a domain, (0) is a prime ideal and we have V ({(0)}) = Spec (A), that
is, {(0)} = Spec (A).
(iii) If p 6= q, then p * q or q * p. Suppose p * q. Then there is f ∈ p \ q;
now Df is an open set that contains q but does not contain p.

Recall that a topological space X is quasi-compact if every open cover of
X has a finite subcover; X is compact if it is quasi-compact and Hausdorff.

Proposition 1.16. Spec (A) is quasi-compact in the Zariski topology.

Proof. Given an open cover of Spec (A), we can refine it to an open cover
of Spec (A) consisting of principal open sets. This implies that Spec (A) is
the union of Df where f vary over a subset Λ of A. Consequently, the
intersection of V (f) as f varies over Λ is empty, and so V (a) = ∅, where
a is the ideal of A generated by Λ. By part (ii) of Proposition 1.14, we see
that a = A, and hence there are f1, . . . , fm ∈ Λ and g1, . . . , gm ∈ A such that
f1g1 + · · ·+fmgm = 1. This implies that {Dfi

: i = 1, . . . ,m} cover Spec (A),
and hence the given open cover of Spec (A) has a finite subcover.

Exercises

Throughout the following exercises A denotes a ring.

1. Let φ : A → B be a homomorphism of rings. If J is an ideal of B, then
show that φ−1(J) is an ideal of A. Further, show that J ∈ Spec (B) im-
plies φ−1(J) ∈ Spec (A). Is it true that J ∈ Max (B) implies φ−1(J) ∈
Max (A)? Also, is it true that if I is an ideal of A, then φ(I) is an ideal
of B? What if φ is surjective? Further, if φ is surjective, then is it
true that I ∈ Spec (A) implies φ(I) ∈ Spec (B), and that I ∈ Max (A)
implies φ(I) ∈ Max (B)? Justify your answers.

2. Let I be an ideal of A and q : A → A/I be the natural homomorphism
given by x 7→ x+ I . Show that J 7→ q(J) defines a bijective map from
the ideals of A containing I and the ideals of A/I . Further, show that
this bijection preserves inclusions, primality and maximality.

3. Assume that A is a PID. Given any a, b ∈ A, let d = GCD(a, b) and
ℓ = LCM(a, b). If I = (a) and J = (b), then show that

IJ = (ab), I ∩ J = (ℓ), I + J = (d), and (I : J) = (a/d).

Are these results valid if A is an arbitrary ring. What if A is a UFD?
Justify your answer.
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4. Consider ideals a, b, c of A and the following three equalities.

ab = a ∩ b, (a + b)(a ∩ b) = ab, a ∩ (b + c) = (a ∩ b) + (a ∩ c).

In each case, determine if the equality is valid for arbitrary a, b, c. If
yes, then give a proof; otherwise give a counterexample. Also, if the
answer is no, then determine if either of the inclusions ⊆ and ⊇ is
valid, in general.

5. If I is an ideal of A, then show that
√

I is an ideal of A.

6. Show that colons commute with intersections, whereas radicals com-
mute with finite intersections. More precisely, if {Iα : α ∈ Λ} is a
family of ideals of a ring A and J is any ideal of A, then show that

⋂

i∈Λ

(Ii : J) =
( ⋂

i∈Λ

Ii : J
)

and if Λ is finite, then

√⋂

i∈Λ

Ii =
⋂

i∈Λ

√
Ii.

Give examples to show that these results do not hold (for finite fami-
lies) if intersections are replaced by products.

7. With I1, . . . , In and A as in Proposition 1.4, show that the map in part
(iii) of Proposition 1.4 induces an isomorphism of (A/I1I2 . . . In)×

onto the direct sum (A/I1)
× ⊕ (A/I2)

× ⊕ · · · ⊕ (A/In)×. Deduce that
the Euler φ-function is multiplicative.

8. Suppose A is not the zero ring and let N be the nilradical of A. Show
that the following are equivalent.

(i) A has exactly one prime ideal.

(ii) Every element of A is either nilpotent or a unit.

(iii) A/N is a field.

9. Let k be a field. Show that dimk k[X1, . . . ,Xn]d =
(
n+d−1

d

)
.

10. Let f(X) = a0 + a1X + . . . + anXn ∈ A[X]. Prove the following:

(i) f is a unit in A[X] if and only if a0 is unit in A and a1, a2, . . . , an

are nilpotent in A.

(ii) f is a nilpotent in A[X] if and only if a0, a1, . . . , an are nilpotent
in A.

(iii) f is a zero divisor in A[X] if and only if there exists a ∈ A∗ such
that af = 0.

11. Let S be any multiplicatively closed subset of A. Consider the relation
on A× S defined by (a, s) ∼ (b, t) ⇐⇒ (at− bs) = 0. Determine if ∼
is an equivalence relation.

16



12. Given any f ∈ A, let S = {fn : n ∈ N} and Af = S−1A. Show that Af

is isomorphic to A[X]/(Xf − 1).

13. Let S and T be multiplicatively closed subsets of A with S ⊆ T and
let U denote the image of T under the natural map φ : A → S−1A.
Show that T−1A is isomorphic to U−1(S−1A).

14. Show that localization commutes with taking homomorphic images.
More precisely, if I is an ideal of a ring A and S is a multiplica-
tively closed subset of A, then show that S−1A/S−1I is isomorphic

to S
−1

(A/I), where S denotes the image of S in A/I .

15. Let A be an integral domain. Fix a quotient field K of A and consider
the localization Ap, where p ∈ Spec (A), as subrings of K. Show that

A =
⋂

p∈Spec (A)

Ap =
⋂

m∈Max (A)

Am.

16. Consider the following ring-theoretic properties that A can have: (i)
integral domain, (ii) field, (iii) PIR, (iv) PID, and (v) UFD. For each of
these, determine if the property is preserved under the passage from
A to a (i) residue class ring, (ii) polynomial ring, or (iii) localization.

17. Let M be an A-module and S be a multiplicatively closed subset of
A. Define carefully the localization S−1M of M at S. With ideals re-
placed by A-submodules, determine which of the notions and results
in Section 1.2 has an analogoue in the setting of modules.

18. Let (A,m) be a local ring [which means that A is a local ring and m

is its unique maximal ideal] and M be a finitely generated A-module.
For x ∈ M , let x denotes the image of x in the A/m-module M/mM .
Given any x1, . . . , xr ∈ M , show that {x1, . . . , xr} is a minimal set
of generators of M if and only if {x1, . . . , xr} is a basis for the A/m-
vector space M/mM . Deduce that any two minimal set of generators
of M have the same cardinality, namely, dimA/mM/mM .

19. Assume that A is not the zero ring and let m,n ∈ N. Use Exercise 18
to show that Am and An are isomorphic as A-modules iff m = n.

20. Given any f, g ∈ A, show that the principal open sets Df and Dg of
SpecA satisfy the following.
(i) Df = ∅ ⇐⇒ f is nilpotent, (ii) Df = Spec (A) ⇐⇒ f is a unit,
(iii) Df ∩ Dg = Dfg, and (iv) Df = Dg ⇐⇒

√
(f) =

√
(g).

21. Given any f ∈ A, show that the principal open set Df is quasi-
compact. Further show that an open subset of Spec (A) is quasi-
compact if and only if it is a finite union of principal open sets.
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Chapter 2

Noetherian Rings

In this chapter we shall study a class of rings and modules named after E.
Noether (1921), who first realized their importance. Basic results proved
in this chapter include the Basis Theorem that goes back to the work of
Hilbert (1890) on C[X1, . . . ,Xn] and the Primary Decomposition Theorem
for ideals that goes back to the work of Lasker (1905) also on C[X1, . . . ,Xn].

2.1 Noetherian Rings and Modules

Proposition 2.1. Let A be a ring. The following conditions are equivalent.

(i) (Finite Generation Condition) Every ideal of A is finitely generated.

(ii) (Ascending Chain Condition or the a.c.c.) If I1, I2, . . . are ideals of A
with I1 ⊆ I2 ⊆ . . . , then there exists m ≥ 1 such that In = Im for n ≥ m.

(iii) (Maximality Condition) Every nonempty set of ideals of A has a maximal
element.

Proof. (i) ⇒ (ii): Given a chain I1 ⊆ I2 ⊆ . . . of ideals of A, the union
I = ∪n≥1In is an ideal of A. Thus by (i), there are a1, . . . , ar ∈ I such that
I = (a1, . . . , ar). Now, if m ∈ N is such that ai ∈ Im for i = 1, . . . , r, then we
clearly have In = Im for n ≥ m.

(ii) ⇒ (iii): Let F be a nonempty set of ideals of A that does not have a
maximal element. Since F is nonempty, there is some I1 ∈ F . Moreover, I1

is not a maximal element, and so there is I2 ∈ F such that I1 ⊂ I2. Further,
I2 is not a maximal element, and so there is I3 ∈ F such that I2 ⊂ I3.
Continuing in this way, we obtain a strictly ascending chain I1 ⊂ I2 ⊂ · · ·
of ideals in F . This contradicts (ii).

(iii) ⇒ (i): Let I be an ideal of A and consider the set F of ideals J
of A such that J ⊆ I and J is finitely generated. By (iii), F has a maximal
element, say a. If there is some x ∈ I \a, then a+Ax ∈ F , which contradicts
the maximality of a. Thus I = a ∈ F , and hence I is finitely generated.
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A ring which satisfies either (and hence all) of the three equivalent con-
ditions in Proposition 2.1 is said to be noetherian. The class of noetherian
rings has a remarkable property that it is closed w.r.t. each of the three fun-
damental processes mentioned in Section 1.2. Indeed, if A is a noetherian
ring, then it is trivial to check that A/I is noetherian for every ideal I of A
and also that S−1A is noetherian, for every multiplicatively closed subset
S of A. Moreover, the following basic result implies, using induction, that
if A is noetherian, then A[X1, . . . ,Xn] is noetherian.

Proposition 2.2 (Hilbert Basis Theorem). If A is noetherian, then so is A[X].

Proof. Let I be any ideal of A[X]. For 0 6= f ∈ I , let LC(f) denote the
leading coefficient of f , and let J := {0} ∪ {LC(f) : f ∈ I, f 6= 0}. Then
J is an ideal of A, and so we can find f1, . . . , fr ∈ I \ {0} such that J =
(LC(f1), . . . ,LC(fr)). Let d = max{deg fi : 1 ≤ i ≤ r}. For 0 ≤ i < d, let
Ji = {0} ∪ {LC(f) : f ∈ I, deg f = i}; then Ji is an ideal of A, and so we
can find fi1, . . . , firi

∈ I \ {0} such that Ji = (LC(fi1), . . . ,LC(firi
)). Let I ′

be the ideal of A[X] generated by {f1, . . . , fr}∪{fij : 0 ≤ i < d, 1 ≤ j ≤ ri}.
Clearly, I ′ ⊆ I and for any 0 6= f ∈ I , we easily see that there is f ′ ∈ I ′ such
that deg(f − f ′) < deg f . Thus an inductive argument yields I = I ′.

A field as well as a PID (e.g., Z, the ring of integers) is clearly noetherian.
Starting from these and using iterations of the three fundamental processes,
we obtain an abundant supply of noetherian rings. Especially important
among these are finitely generated algebras over a field or, more generally,
over a noetherian ring. Let us recall the relevant definitions.

Definition 2.3. Let B be a ring and let A be a subring of B. Given any
b1, . . . , bn ∈ B, we denote by A[b1, . . . , bn] the smallest subring of B contain-
ing A and the elements b1, . . . , bn. This subring consists of all polynomial
expressions f(b1, . . . , bn) as f varies over A[X1, . . . ,Xn]. We say that B is
a finitely generated (f.g.) A-algebra or an A-algebra of finite type if there exist
b1, . . . , bn ∈ B such that B = A[b1, . . . , bn]. Finitely generated k-algebras,
where k is a field, are sometimes called affine rings.

Note that a ring B is a f.g. A-algebra if and only if B ≃ A[X1, . . . ,Xn]/I
for some n ∈ N and some ideal I of A[X1, . . . ,Xn]. Hence it follows from
the Hilbert basis theorem that finitely generated algebras over noetherian
rings are noetherian. In particular, every affine ring is noetherian.

Now let us turn to modules. In the remainder of this section, we fix a
ring A and consider A-modules. By submodules of a given A-module, we
always mean A-submodules.

To begin with, let us note that we have the following straightforward
analogue of Proposition 2.1.

Proposition 2.4. Let M be an A-module. The following conditions are equivalent.
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(i) (Finite Generation Condition) Every submodule of M is finitely generated.

(ii) (a.c.c.) If N1, N2, . . . are submodules of M with N1 ⊆ N2 ⊆ . . . , then
there exists m ≥ 1 such that Nn = Nm for n ≥ m.

(iii) (Maximality Condition) Every nonempty set of submodules of M has a
maximal element.

Proof. The proof of Proposition 2.1 carries over verbatim with ideals re-
placed by A-submodules.

We define a module to be noetherian if it satisfies any (and hence all) of
the equivalent conditions in Proposition 2.4. Notice that if A is any ring,
then A is noetherian as an A-module if and only if A is a noetherian ring.
Thus, the terminology for modules is consistent with that for rings.

Proposition 2.5. Let M be an A-module and N be a submodule of M . Then

M is noetherian ⇐⇒ both N and M/N are noetherian.

Proof. The a.c.c. on M clearly implies the a.c.c. on N . Moreover, an as-
cending chain of A-submodules of M/N gives rise to an ascending chain of
A-submodules of M . Thus, if M is noetherian, then so is N and M/N . Con-
versely, if both N and M/N are noetherian, then for any ascending chain
M0 ⊆ M1 ⊆ . . . of A-submodules of M , we can find p, q ∈ N such that
Mi ∩ N = Mp ∩ N for i ≥ p and (Mi + N)/N ≃ (Mq + N)/N for i ≥ q. If
m = max{p, q}, then for any i ≥ m, we have Mm ⊆ Mi. Further, if x ∈ Mi,
then x = y + n for some y ∈ Mm and n ∈ N ; now n ∈ Mi ∩ N = Mm ∩ N ,
and hence x ∈ Mm. Thus Mi = Mm for i ≥ m. So M is noetherian.

Corollary 2.6. If M1, . . . ,Mn are noetherian A-modules, then so is ⊕n
i=1Mi. In

particular, if A is a noetherian ring, then An is a noetherian A-module.

Proof. Given any n ≥ 1, let M = ⊕n
i=1Mi and N = ⊕n−1

i=1 Mi. Observe that
Mn ≃ M/N and use Proposition 2.5 together with induction on n.

Proposition 2.7. If A is noetherian and M is a finitely generated A-module, then
M is noetherian.

Proof. Since M is finitely generated, M ≃ An/N for some n ∈ N and a
submodule N of An. Now apply Corollary 2.6 and Proposition 2.5.

2.2 Primary Decomposition of Ideals

Ideals in noetherian rings admit a decomposition which is somewhat sim-
ilar to, though much cruder than, the decomposition of positive integers
into prime–powers.
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Definition 2.8. An ideal q in a ring A is said to be primary if q 6= A and for
any a, b ∈ A,

ab ∈ q and b /∈ q =⇒ an ∈ q for some n ≥ 1.

If q is a primary ideal, then its radical
√

q is readily seen to be a prime
ideal; if p =

√
q, then we say that q is p–primary or that q is a primary ideal

belonging to p or that q is primary to p.

Remark 2.9. If q is an ideal such that
√

q is prime, then q needn’t be pri-
mary; in fact, even a power of a prime ideal can fail to be primary. [Exam-
ple: p2, where p is the image in k[X,Y,Z]/(XY − Z2) of (X,Z).] However,
if
√

q is a maximal ideal m, then q is easily seen to be m–primary. [Indeed,
if ab ∈ q and a 6∈ m =

√
q, then

√
q + Aa ⊆ m + Aa = A, and so 1 ∈ q + Aa,

which implies b ∈ q.] On the other hand, if q is p–primary, then q needn’t be
a power of p, even when p is maximal. [Example: q = (X2, Y ) in k[X,Y ].]
It may be noted, however, that if A is a noetherian ring and q is a p–primary
ideal of A, then q does contain some power of p.

Proposition 2.10 (Primary Decomposition Theorem for ideals). Let A be a
noetherian ring and I be any ideal of A with I 6= A. Then we have the following.

(i) There exist primary ideals q1, . . . , qh in A such that I = q1 ∩ · · · ∩ qh.

(ii) In (i) above, q1, . . . , qh can be chosen such that qi 6⊇ ∩j 6=iqj for 1 ≤ i ≤ h,
and p1, . . . , ph are distinct, where pi =

√
qi.

(iii) If qi, pi are as in (ii) above, then p1, . . . , ph are unique; in fact, {p1, . . . , ph}
is precisely the set of prime ideals among the ideals (I : x) where x varies
over elements of A. Moreover, if pi is minimal among p1, . . . , ph, i.e. pi 6⊇ pj

for j 6= i, then the corresponding primary ideal qi is also unique.

Proof: Classical proof of (i) is in two steps. First, one considers irreducible
ideals, viz., nonunit ideals that are not finite intersections of strictly larger
ideals. The maximality condition readily implies that every ideal of A is a
finite intersection of irreducible ideals. Next, if I is irreducible and ab ∈ I
are such that b /∈ I and no power of a is in I , then we consider the chain
(I : a) ⊆ (I : a2) ⊆ . . . . By a.c.c., (I : an) = (I : an+1) for some n, and now
it is easy to verify that I = (I + Aan) ∩ (I + Ab), which is a contradiction.
Thus I is primary and (i) is proved. Proving (ii) is easy since if pi = pj , then
qi ∩ qj is primary and it can replace both qi and qj in the decomposition. To
prove (iii), let i ∈ {1, . . . , h}. Find ci ∈ (∩j 6=iqj) \ qi. Then qi ⊆ (I : ci) ⊆ pi,
and so there is k ≥ 1 such that pk

i ⊆ (I : ci) and pk−1
i 6⊆ (I : ci). Choose

y ∈ pk−1
i \ (I : ci), and let xi = yci. We claim that pi = (I : xi). Clearly,

pi ⊆ (I : xi). Further, if there is x ∈ (I : xi) \ pi, then xyci ∈ I ⊆ qi. Since
qi is primary and x /∈ pi, we obtain yci ∈ qi and so by the choice of ci, we
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have yci ∈ I , that is, y ∈ (I : ci), which is a contradiction. This proves the
claim. Conversely, suppose (I : x) is a prime ideal p for some x ∈ A. Then
p = (∩qi : x) = ∩(qi : x), and thus (qi : x) ⊆ p for some i. Hence x /∈ qi

and pi =
√

qi ⊆
√

(qi : x) ⊆ p. Also, a ∈ p ⇒ ax ∈ I ⊆ qi ⇒ a ∈ pi. Thus
p = pi. Finally, the uniqueness of the primary component qi corresponding
to a minimal prime pi can be proved by localizing at pi. 2

Definition 2.11. A decomposition I = q1 ∩ · · · ∩ qh, as in (i) above is called
a primary decomposition of I . If q1, . . . , qh satisfy the conditions in (ii), then
it is called an irredundant (primary) decomposition of I ; the uniquely deter-
mined primes p1, . . . , ph are called the associated primes of I (in A) and the
set {p1, . . . , ph} is denoted by Ass(A/I). An associated prime pi is called
a minimal prime or an isolated prime of I if pi 6⊇ pj for all j 6= i; otherwise
pi is called an embedded prime of I . The set of minimal primes of I in A is
denoted by Min(A/I). It may be noted that Min(A/I) coincides with the set
of minimal elements of V (I), i.e, the minimal primes of I in A are precisely
the minimal elements among the prime ideals of A containing I .

It is easy to see that primary decompositions are neatly preserved under
the fundamental processes of forming polynomial rings, quotient rings (by
smaller ideals), and localizations w.r.t. multiplicatively closed subsets that
are disjoint from all associated primes. If S is an arbitrary multiplicatively
closed subset of A and I = q1 ∩ · · · ∩ qh, then

S−1I =
⋂

pi∩S=∅

S−1qi and S−1I ∩ A =
⋂

pi∩S=∅

qi .

A special case of this is of some interest. Suppose p ∈ SpecA and I = pn.
We have seen that I need not be a primary ideal. But p is contained in
any associated prime of I . Hence p is the only minimal prime of I , and so
by Proposition 2.10, there is a unique p-primary ideal in any irredundant
primary decomposition of pn; this primary ideal is denoted by p(n) and is
called the nth symbolic power of p. Note that this symbolic power is alter-
natively given by p(n) = pnAp ∩ A. Indeed pnAp is a primary ideal of Ap,
being a power of the (unique) maximal ideal pAp of Ap; its contraction to A
is primary and this is precisely the primary component of p in pn.

Examples 2.12. (i) Let A = k[X,Y ] and I = (X2,XY ). Then I = (X) ∩
(X2, Y ) gives an irredundant primary decomposition of I . The asso-
ciated primes of I are p1 = (X) and p2 = (X,Y ); clearly, p1 is minimal,
while p2 is embedded. Observe that I = (X) ∩ (X2, Y + cX) is also
an irredundant primary decomposition of I , for any c ∈ k.

(ii) Let A = k[X,Y,Z]/(XY − Z2) and write x, y, z for the images of
X,Y,Z in A, respectively. We have seen that if p = (x, z), then p is
prime but p2 = (x2, xz, z2) is not primary. Now y ∈ A \ p and thus
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x = z2/y is in p2Ap ∩ A. In fact, it can be seen that p(2) = (x, z2) and
that p2 = (x, z2) ∩ (x2, y, z) is a primary decomposition of p2 in A.

The following result is a nice application of primary decomposition
(Proposition 2.10) and Nakayama’s Lemma (Proposition 1.13).

Proposition 2.13 (Krull’s Intersection Theorem). Suppose A is noetherian
and I is any ideal of A. Then there exists a ∈ I such that (1− a)∩∞

n=0 In = 0. In
particular, if I 6= A, and A is a local ring, then ∩∞

n=0I
n = 0.

Proof. Let J = ∩∞
n=0I

n. Write IJ = q1∩· · ·∩qr∩qr+1∩· · ·∩qh, where qi are pi-
primary ideals with pi ⊇ I for 1 ≤ i ≤ r and pj 6⊇ I for r < j ≤ h. Fix some
yj ∈ I\pj for r < j ≤ h. Then x ∈ J ⇒ xyj ∈ IJ ⇒ xyj ∈ qj ⇒ x ∈ qj . Thus
J ⊆ qr+1 ∩ · · · ∩ qh. Also, since I ⊆ pi for 1 ≤ i ≤ r, there exists m ≥ 1 such
that Im ⊆ q1 ∩ · · · ∩ qr. Since J ⊆ Im, it follows that J ⊆ q1 ∩ · · · ∩ qh = IJ .
Thus IJ = J . Now apply Nakayama’s Lemma.

It may be remarked that Krull’s Intersection Theorem is usually proved
using a result known as the Artin-Rees Lemma. Importance of Krull Inter-
section Theorem stems from the fact that it paves the way for a Hausdorff
topology on a noetherian local ring. See [AM, Ch. 10] for more on this.

We end this section by introducing the notions, ascribed to Krull (1928),
of the dimension of a ring and the height of a prime ideal.

Definition 2.14. Let A be a ring. The (Krull) dimension of A is defined as the
maximum of the lengths of chains of prime ideals of A, that is,

dimA := max {n : ∃ p0, p1, . . . , pn ∈ SpecA such that p0 ⊂ p1 ⊂ · · · ⊂ pn} ;

in case A has no prime ideals (which happens only when A is the zero ring),
we set dim A = −1, and in case the set of lengths of chains of prime ideals
of A is unbounded, we set dim A = ∞. Given any prime ideal p of A, the
height of p is defined by ht p = dim Ap. Equivalently, ht p is the maximum
of the lengths of chains p0 ⊂ p1 ⊂ · · · ⊂ pn of prime ideals of A with pn = p.

If A is a noetherian ring, the concept of height can be extended to any
nonunit ideal I of A by putting ht I = min{ht p : p ∈ Ass(A/I)}. Note that

ht I = min{ht p : p ∈ Min(A/I)} = min{ht p : p ∈ V (I)}.
Examples 2.15. (i) A field has dimension 0. A PID which is not a field

(such as, for example, Z or k[X]) has dimension 1.

(ii) If R is a local ring and I is primary for the unique maximal ideal of
R, then dim(R/I) = 0. More generally, if I is any nonunit ideal of a
ring A and p is a minimal prime of I in A, then dim(Ap/IAp) = 0.

(iii) In the polynomial ring k[X1, . . . ,Xn] we have a chain of prime ideals
of length n given by (0) ⊂ (X1) ⊂ (X1,X2) ⊂ · · · ⊂ (X1, . . . ,Xn);
consequently, dim k[X1, . . . ,Xn] ≥ n. Similarly, ht (X1, . . . ,Xr) ≥ r.
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2.3 Artinian Rings and Modules

Throughout this section A denotes a ring and M denotes an A-module. By
a submodule of M , we mean an A-submodule of M . Here is a result similar
to Proposition 2.1 with descending chains instead of ascending chains.

Proposition 2.16. The following conditions are equivalent.

(i) (d.c.c.) If N1, N2, . . . are submodules of M with N1 ⊇ N2 ⊇ . . . , then
there exists m ≥ 1 such that Nn = Nm for n ≥ m.

(ii) (Minimality Condition) Every nonempty family of submodules of M has a
minimal element.

Proof. The proof of “(i) ⇒ (ii)” is identical to that of “(ii) ⇒ (iii)” in Propo-
sition 2.1 with ideals replaced by submodules and “⊂” replaced by “⊃”.
Conversely, if N1 ⊇ N2 ⊇ . . . is a descending chain of submodules of M
and Nm is a minimal element of {Ni : i ≥ 1}, then Nn = Nm for n ≥ m.

We define M to be artinian if it satisfies either (and hence both) of the
conditions in Proposition 2.16. We say that A is an artinian ring if it is ar-
tinian as an A-module. This means that A satisfies the d.c.c. on ideals or
equivalently, every nonempty set of ideals of A has a minimal element.

Examples 2.17. (i) If V is a vector space over a field k, then it is clear
that V is finite dimensional if and only if V satisfies the d.c.c as well
as the a.c.c., that is, if and only if V is an artinian module and also a
noetherian module. In particular, a finite dimensional vector space is
an artinian module and a field is an artinian ring.

(ii) If p is a prime number and n ∈ N, then Z/(pn) is an Artinian Z-
module. To see this, if suffices to observe that the Z-submodules of
Z/(pn) correspond to (pm) for m = 0, 1, . . . n, and these are linearly
ordered. Note also that Z/(pn) is an artinian ring.

(iii) If k is a field and A = k[X], then (X) ⊃ (X2) ⊃ (X3) ⊃ . . . is an infi-
nite strictly descending chains of ideals of A. Thus A is not artinian.

Examples (i) and (iii) above show that an analogue of Hilbert Basis The-
orem is not true for artinian rings. However, it is easy to see that if A is
artinian, then so is A/I as well as S−1A for any ideal I of A and a mul-
tiplicatively closed subset S of A. In the case of modules, we have the
following analogues of the results in Section 2.1 for noetherian modules.

Proposition 2.18. Let N be a submodule of M and let M1, . . . ,Mn be any A-
modules. Then we have the following.

(i) M is artinian ⇐⇒ both N and M/N are artinian.
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(ii) Mi is artinian for i = 1, . . . , n =⇒ ⊕n
i=1Mi is artinian.

(iii) A is artinian and M is a f.g. A-module =⇒ M is artinian.

Proof. (i), (ii) and (iii) follow from arguments similar to those in the proofs
of Proposition 2.5, Corollary 2.6 and Proposition 2.7, respectively.

For a finite dimensional vector space over a field, there are several ways
of defining the dimension. For example, as the cardinality of (i) a basis or
(ii) a minimal generating set or (iii) a maximal linearly independent set.
Yet another way is to define the dimension as the length of maximal chains
of subspaces of V . Indeed, if dim V = n, then there is a maximal chain
V = V0 ⊃ V1 ⊃ · · · ⊃ Vn of subspaces and its length (= the number of
inclusion signs) is n. Moreover, every maximal chain looks like this. It turns
out that the notion of length extends to a slightly more general setting.

In general, a chain of submodules of M is a strictly descending sequence
M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 of submodules of M ; the length of such a
chain is n. A maximal chain, i.e., a chain in which no extra submodules can
be added, is called a composition series of M . Note that a chain M = M0 ⊃
M1 ⊃ · · · ⊃ Mn = 0 of submodules of M is a composition series of M if and
only if Mi−1/Mi is simple (that is, it has no submodules other than 0 and
itself) for each i = 1, . . . , n. We define the length of M , denoted by ℓA(M)
or simply by ℓ(M), to be the minimum of the lengths of composition series
of M . In case M has no composition series, we set ℓ(M) = ∞.

Proposition 2.19. Assume that M has finite length. Then we have the following.

(i) Every submodule N of M has finite length. Also, N ⊂ M ⇒ ℓ(N) < ℓ(M).

(ii) Every chain of submodules of M has length ≤ ℓ(M).

(iii) A chain of submodules of M is a composition series iff its length is ℓ(M).

(iv) Every chain of submodules of M can be refined to a composition series.

Proof. Let n = ℓ(M) and let M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 be a composi-
tion series of M of length n. Then Mi−1/Mi is simple for i = 1, . . . , n.

(i) Given a submodule N of M , let Ni = N ∩ Mi for i = 0, 1, . . . , n.
Then Ni−1/Ni can be viewed as a submodule of Mi−1/Mi; since the latter is
simple, we have Ni−1 = Ni or Ni−1/Ni = Mi−1/Mi. Thus, throwing away
repetitions in the sequence N = N0 ⊇ N1 ⊇ · · · ⊇ Nn = 0, we obtain a
composition series for N of length ≤ n. Hence ℓ(N) ≤ n = ℓ(M). Further,
if ℓ(N) = n, then we must have Ni−1/Ni = Mi−1/Mi for i = 1, . . . , n.
Consequently, Nn−1 = Mn−1, and so Nn−2 = Mn−2, and continuing in this
way, we obtain N = M . It follows that N ⊂ M implies ℓ(N) < ℓ(M).

(ii) If M = M ′
0 ⊃ M ′

1 ⊃ · · · ⊃ M ′
r = 0 is any chain of submodules of M ,

then by (i), n = ℓ(M) > ℓ(M ′
1) > · · · > ℓ(M ′

r) = 0, and hence r ≤ n.
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(iii) If M = M ′
0 ⊃ M ′

1 ⊃ · · · ⊃ M ′
r = 0 is a composition series of M ,

then r ≤ n, by (ii). Also, r ≤ n by the definition of length. Thus r = ℓ(M).
Conversely, if r = ℓ(M) and the chain is not a composition series, then we
can insert some terms to get a chain of length > ℓ(M).This contradicts (ii).

(iv) In view of (iii), if a chain is not a composition series, then new terms
can be added to it until its length becomes n, as desired.

Proposition 2.20. M has finite length ⇐⇒ M is both noetherian and artinian.

Proof. If ℓ(M) < ∞, then by Proposition 2.19, any chain of submodules
of M is finite, and hence the a.c.c. as well as the d.c.c. is satisfied by M .
Conversely, if M is noetherian, then there is a maximal submodule M1 ⊂
M ; further, if M1 6= 0, then there is a maximal submodule M2 ⊂ M1. If M
is also artinian, then the descending chain M ⊃ M1 ⊃ M2 ⊃ . . . must be
finite. Thus if M is both noetherian and artinian, then M has a composition
series of finite length, and hence ℓ(M) < ∞.

Corollary 2.21. Let V be a vector space over a field k. Then

V is finite dimensional ⇐⇒ V is noetherian ⇐⇒ V is artinian.

Proof. If V is finite dimensional, then ℓ(V ) = dimk V < ∞, and so by Propo-
sition 2.20, V is both noetherian and artinian. On the other hand, if dim V is
not finite, then we can find an infinite linearly independent set {x1, x2, . . . }
in V . Now if Ln = span{x1, . . . , xn} and Rn = span{xn, xn+1, . . . }, then
considering the subspaces L1 ⊂ L2 ⊂ . . . and R1 ⊃ R2 ⊃ . . . , we see that V
is neither noetherian nor artinian. This proves the desired equivalence.

Proposition 2.22. Let N be a submodule of M . Then

M has finite length ⇐⇒ both N and M/N have finite length.

Moreover, if M has finite length, then ℓ(M) = ℓ(N) + ℓ(M/N).

Proof. The equivalence follows from Propositions 2.5, 2.18 (i), and 2.20.
Moreover, if ℓ(M) < ∞, then combining a composition series of N and (the
inverse image of) a composition series of M/N we obtain a composition
series of M . Thus, in view of Proposition 2.18, ℓ(M) = ℓ(N) + ℓ(M/N).

Proposition 2.23. If the zero ideal of A is a product m1 · · ·mr of (not necessarily
distinct) maximal ideals of A, then A is noetherian if and only if A is artinian.

Proof. Let I0 = A and Ij = m1 · · ·mj for j = 1, . . . , r. Since Ir = 0, by finite
induction on r and using Propositions 2.5 and 2.18 (i), we see that Ii−1/Ij is
noetherian (resp: artinian) for all j = 1, . . . , r if and only if A is noetherian
(resp: artinian). But each Ii−1/Ij is annihilated by mj and thus it is not
only an A-module but also an A/mj-module, that is, a vector space over
the field A/mj . Hence by Corollary 2.21, Ii−1/Ij is noetherian if and only if
it is artinian. This yields the desired result.
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We will now use the previous proposition to derive a useful and in-
teresting characterization of artinian rings. But first, let us observe some
simpler properties of artinian rings.

Proposition 2.24. Let A be an artinian ring. Then we have the following.

(i) A is a domain ⇐⇒ A is a field.

(ii) Spec (A) = Max (A). In particular,
√

(0) = J (A).

(iii) Max (A) is finite.

(iv) If N =
√

(0) is the nilradical of A, then Nm = (0) for some m ∈ N.

Proof. (i) Given any a ∈ A, applying the d.c.c. to the chain (a) ⊇ (a2) ⊇ . . . ,
we see that (an) = (an+1) for some n ≥ 1. Hence an = ban+1 for some
b ∈ A. Now if A is a domain and a 6= 0, then an 6= 0 and hence ba = 1. Thus
an artinian domain is a field. The converse is trivial.

(ii) Given any p ∈ Spec (A), apply (i) to A/p. This gives Spec (A) =
Max (A). Consequently,

√
(0) = J (A), by Propositions 1.9 and 1.10.

(iii) If A is the zero ring, there is nothing to prove. Assume that A 6= 0.
Consider the set F of all finite intersections of maximal ideals of A. This
is nonempty and hence has a minimal element, say m1 ∩ · · · ∩ mr. Now
for any m ∈ Max (A), m ∩ m1 ∩ · · · ∩ mr ∈ F . Hence by the minimality
of m1 ∩ · · · ∩ mr, we see that m ⊇ m ∩ m1 ∩ · · · ∩ mr = m1 ∩ · · · ∩ mr, and
this implies m ⊇ mi for some i. Since mi is maximal, we obtain m = mi. It
follows that Max (A) = {m1, . . . ,mr}.

(iv) Applying d.c.c. to the chain N ⊇ N2 ⊇ . . . , we see that there is
m ≥ 1 with Nn = Nm for n ≥ m. Suppose, if possible, I := Nm is
nonzero. Then the set {J : J an ideal of A with IJ 6= (0)} is nonempty;
hence it has a minimal element, say J0. Since IJ0 6= (0), there is a ∈ J0 such
that I(a) 6= (0). Hence J0 = (a), by the minimality of J0. Further I2 = I
and so I(I(a)) = I(a) 6= (0). Hence I(a) = (a), again by the minimality of
J0 = (a). It follows that a = ua for some u ∈ I , and consequently, a = uja
for all j ≥ 1. But, u ∈ I ⊆

√
(0), and hence uj = 0 for some j ≥ 1. Thus,

a = 0, which is a contradiction. It follows that Nm = I = (0).

Proposition 2.25. A ring is artinian iff it is noetherian and zero dimensional.

Proof. Suppose A is an artinian ring. Then by part (ii) of Proposition 2.24,
dimA = 0. Further, by parts (iii) and (iv) of Proposition 2.24, we see that
(m1m2 · · ·mr)

m = (m1 ∩ · · · ∩ mr)
m = 0. for some m ≥ 1 and (finitely

many) maximal ideals m1, . . . ,mr of A. Hence by Proposition 2.23, A is
noetherian. Conversely, if A is noetherian and dim A = 0, then every prime
ideal of A is maximal, and hence in view of Proposition 2.10,

√
(0) is an

intersection m1 ∩ · · · ∩ mr of maximal ideals of A. Since A is noetherian,
(m1m2 · · ·mr)

m = (m1 ∩ · · · ∩ mr)
m = 0 for some m ≥ 1, and hence by

Proposition 2.23, A is artinian.
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2.4 Krull’s Principal Ideal Theorem

In this section we shall prove an important result in dimension theory of
commutative rings, due to Krull (1929), called the Principal Ideal Theorem
or the Hauptidealsatz. The proof given here is along classical lines and
will use the notion of symbolic powers introduced in Section 2.2. For a
more modern approach, using the so called Dimension Theorem, one may
consult [AM] or [M2].

Proposition 2.26 (Krull’s Principal Ideal Theorem). Let A be a noetherian
ring and p be a minimal prime of a principal ideal (a) of A. Then ht p ≤ 1.

Proof. By localizing at p, we can and will assume that A is a local ring with
p as its unique maximal ideal. Let p1 be any prime ideal of A such that
p1 ⊂ p. It suffices to show that ht p1 = 0. Since p is a minimal prime of (a)
and the unique maximal ideal of A, we see that dim A/(a) = 0 and a 6∈ p1.
Consider

(a) + p1 ⊇ (a) + p
(2)
1 ⊇ (a) + p

(3)
1 ⊇ . . . ,

where p
(n)
1 denotes the nth symbolic power of p1. This corresponds to a

descending chain of ideals of A/(a). By Proposition 2.25, A/(a) is artinian,

and hence there is n ≥ 1 such that (a) + p
(n)
1 = (a) + p

(n+1)
1 . In particular,

given any x ∈ p
(n)
1 , we can write x = ab + y for some b ∈ A and y ∈ p

(n+1)
1 .

Now ab ∈ p
(n)
1 and since a 6∈ p1 and p

(n)
1 is p1-primary, we see that b ∈ p

(n)
1 .

Thus, p
(n)
1 = (a)p

(n)
1 + p

(n+1)
1 . Hence by Nakayama’s Lemma (applied to

the module p
(n)
1 /p

(n+1)
1 ), we obtain p

(n)
1 = p

(n+1)
1 . This implies that pn

1Ap1
=

pn+1
1 Ap1

= (p1Ap1
)(pn

1Ap1
). Applying Nakayama’s Lemma once again (this

time to the Ap1
-module pn

1Ap1
), we obtain pn

1Ap1
= 0. It follows that p1Ap1

is the only prime ideal of Ap1
and dim Ap1

= 0, that is, ht p1 = 0.

The above result can be readily generalized.

Proposition 2.27 (Generalized Krull’s Principal Ideal Theorem). Let A be
a noetherian ring and p be a minimal prime of an ideal (a1, . . . , ar) generated by r
elements of A. Then ht p ≤ r. Consequently, ht (a1, . . . , ar) ≤ r.

Proof. By localizing at p, we can and will assume that A is a local ring with
p as its unique maximal ideal. This implies that (a1, . . . , ar) is p-primary.
We shall now proceed by induction on r. Proposition 2.26 settles the case
r = 1. Suppose r > 1 and the result holds for r − 1. Let p1 be any prime
ideal of A such that p1 ⊂ p and p1 is maximal among prime ideals of A
strictly contained in p. It suffices to show that ht p1 ≤ r − 1. To begin
with, note that not all ai (1 ≤ i ≤ r) can be in p1. Assume, without loss of
generality, that a1 6∈ p1. Now, p1 ⊂ p1 + (a1) ⊆ p, and hence p is a minimal
prime of p1 + (a1). But p is also the unique maximal ideal of A. Hence
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p1 + (a1) is p-primary, and since A is noetherian, there is m ≥ 1 such that
pm ⊆ p1 + (a1). In particular, for i = 2, . . . , r we can write am

i = yi + xia1

for some yi ∈ p1 and xi ∈ A. Now (a1, . . . , ar) is p-primary and am
i ∈

(a1, y2, . . . , yr) for 1 ≤ i ≤ r. Hence pN ⊆ (a1, y2, . . . , yr) for some large
enough N ≥ 1. Hence p is a minimal prime of (a1, y2, . . . , yr), and therefore
p/(y2, . . . , yr) is a minimal prime of (a1, y2, . . . , yr)A/(y2, . . . , yr). But the
latter is a principal ideal of A/(y2, . . . , yr). Hence by Proposition 2.26, the
height of p/(y2, . . . , yr) is ≤ 1, and therefore, the height of p1/(y2, . . . , yr)
is ≤ 0. It follows that p1 is a minimal prime of (y2, . . . , yr), and so by the
induction hypothesis, ht p1 ≤ r − 1. This proves that ht p ≤ r.

The above result has a number of interesting consequences. We outline
some of them below.

1. Every ideal of a noetherian ring is of finite height.

2. The d.c.c. is satisfied by the prime ideals in a noetherian ring.

3. In the polynomial ring k[X1, . . . ,Xr], we have ht (X1, . . . ,Xr) = r.

4. Let A be a noetherian domain. Then A is a UFD if and only if every
height 1 prime ideal of A is principal.

Of these assertions, the first is obvious from Proposition 2.27, while the
second follows from the first. To see the third, recall from Example 2.15 (iii),
that ht (X1, . . . ,Xr) ≥ r; the other inequality ht (X1, . . . ,Xr) ≤ r follows
from Proposition 2.27. Finally, the fourth assertion that gives a character-
ization of UFD’s can be proved as follows. If A is a UFD and p a height
1 prime ideal of A, then there is a ∈ p such that a is irreducible (check!);
moreover, since A is a UFD, (a) is a nonzero prime ideal of A with (a) ⊆ p.
But since ht p = 1, we must have p = (a), that is, p is principal. Conversely,
suppose every height 1 prime ideal of A is principal. Since A is a noetherian
domain, it satisfies a.c.c. on principal ideals of A, and hence every nonzero
element of A can be factored as a product of irreducible elements. Thus it
suffices to show that an irreducible element of A is prime. Let a ∈ A be
irreducible. If p is a minimal prime of (a), then ht p ≤ 1. Moreover, since p

contains a 6= 0, it follows that ht p = 1. Hence by our hypothesis, p is princi-
pal, that is, p = (b) for some b ∈ A. Now, a is irreducible and (a) ⊆ (b) 6= A
implies (a) = (b) = p. Hence (a) is a prime ideal of A and so a is prime.

Remark 2.28. A converse of (Generalized) Krull’s Principal Ideal Theorem
is true. Namely, if A is noetherian and p ∈ Spec (A) has height r, then p is a
minimal prime of an ideal generated by r elements of A. This can be proved
as an easy consequence of Prime Avoidance Lemma and Proposition 2.27,
and we leave the details as an exercise. This converse can be used to prove
the following interesting characterization of the dimension of a local ring.
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Let R be a local ring with m as its unique maximal ideal. By a system of
parameters for R we mean elements x1, . . . , xd of R such that (x1, . . . , xd) is
m-primary, that is, mn ⊆ (x1, . . . , xd) for some n ∈ N. Define

s(R) := min{d ∈ N : ∃ a system of parameters for R with d elements}.
Then s(R) = dim R. Indeed, if (x1, . . . , xd) is m-primary, then m is a min-
imal prime of (x1, . . . , xd), and so by Proposition 2.27, dim R = ht m ≤ d.
Thus dim R ≤ s(R). On the other hand, if dim R = ht m = d, then by the
(above mentioned) converse of Krull’s Principal Ideal Theorem, there exist
x1, . . . , xd ∈ R such that m is a minimal prime of (x1, . . . , xd). But since m

is the unique maximal ideal of R, it follows that (x1, . . . , xd) is m-primary.
This shows that s(R) ≤ d = dim R.

Exercises

Throughout the following exercises A denotes a ring.

1. Let A = k[X1,X2, . . . ] be the polynomial ring in infinitely many vari-
ables with coefficients in a field k. Prove that A is not noetherian.

2. Let q be an ideal of A and p =
√

q. Show that if A is noetherian, then
pn ⊆ q for some n ∈ N. Is this result valid if A is not noetherian?
Justify your answer.

3. Let q be a nonunit ideal of A. Show that q is primary if and only if
every zerodivisor in A/q is nilpotent.

4. Let q be a p-primary ideal and x be an element of A. Show that if
x ∈ q, then (q : x) = (1), whereas if x 6∈ q, then (q : x) is p-primary,
and in particular,

√
(q : x) = p. Further show that if x 6∈ p, then

(q : x) = q.

5. Show that if q is an ideal of A such that
√

q ∈ Max (A), then q is
primary.

6. Let A = Z[X] and consider the ideals q = (4,X) and m = (2,X).
Show that m is a maximal ideal of A and q is m-primary, but q is not
a power of m.

7. Let A = k[X,Y ] and I = (X2,XY, Y 2). Show that I = (X2, Y ) ∩
(X,Y 2) is a primary decomposition of I . Is this an irredundant pri-
mary decomposition of I? Justify your answer.

8. Let I be a radical ideal and I = q1∩· · ·∩qh be an irredundant primary
decomposition of I , where qi is pi–primary for 1 ≤ i ≤ h. Show that
I = p1 ∩ · · · ∩ ph. Deduce that I has no embedded component, and
that qi = pi for 1 ≤ i ≤ h.
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9. Given an ideal I of A, define Z(A/I) := {x ∈ A : (I : x) 6= I} ∪ {0}.
Show that Z(A/I) is the union of the associated primes of I , that is,

Z(A/I) =
⋃

p∈Ass(A/I)

p and deduce that Z(A) =
⋃

p∈Ass(A/(0))

p,

where Z(A) denotes the set of all zerodivisors of A.

10. Let I be a nonunit ideal of A and Ass(A/I) be the set of associated
primes of I in A. Show that the minimal elements in Ass(A/I) are
precisely the minimal elements in the set V (I) = {p ∈ SpecA : p ⊇ I}
of primes containing I .

11. Let S be a multiplicative closed subset of A and q be a p-primary ideal
of A. Show that if S ∩ p 6= ∅, then S−1q = S−1A, whereas if S ∩ p = ∅,
then S−1q is S−1p-primary and S−1q ∩ A = q. Deduce that if I is any
ideal of A and I = q1 ∩ · · · ∩ qh is a primary decomposition of I in A,
then

S−1I =
⋂

pi∩S=∅

S−1qi and S−1I ∩ A =
⋂

pi∩S=∅

qi .

12. Let A = k[X,Y,Z]/(XY − Z2) and write x, y, z for the images of
X,Y,Z in A, respectively. Show that p = (x, z) is a prime ideal of
A, but p2 = (x2, xz, z2) is not primary. Further show that x 6∈ p2, but
x ∈ p(2).

13. Given an ideal I of A, let I[X] denote the set of all polynomials in
A[X] with coefficients in I . Show that IA[X] = I[X] and also that

(i) p ∈ Spec (A) =⇒ p[X] ∈ Spec (A[X]);

(ii) q is p-primary =⇒ q[X] is p[X]-primary;

(iii) p is a minimal prime of I =⇒ p[X] is a minimal prime of I[X];

(iv) I = ∩n
i=1qi a primary decomposition of I

=⇒ I[X] = ∩n
i=1qi[X] a primary decomposition of I[X].

14. Let ∆ be a simplicial complex with vertex set V = {1, 2, . . . , n}, and
let F1, F2, . . . , Fm be the facets (that is, maximal faces) of ∆. Let I∆

be the ideal of k[X1, . . . ,Xn] generated by the monomials Xi1 . . . Xir

for which {i1, . . . , ir} /∈ ∆. Given any face F of ∆, let PF be the
ideal of k[X1, . . . ,Xn] generated by the variables Xj1 , . . . ,Xjs , where
{j1, . . . , js} = V \ F . Prove that each PF is a prime ideal and that
I∆ = PF1

∩ · · · ∩PFm is an irredundant primary decomposition of I∆.
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15. Let J be a monomial ideal of k[X1, . . . ,Xn] and let u, v be relatively
prime monomials in k[X1, . . . ,Xn]. Show that (J, uv) = (J, u)∩ (J, v).
Also show that if e1, . . . , en are positive integers, then (Xe1

1 , . . . ,Xen
n )

is (X1, . . . ,Xn)–primary. Use these facts to determine the associated
primes and a primary decomposition of the ideal (X2Y Z, Y 2Z, Y Z3)
of k[X,Y,Z].

16. Consider Q/Z as a Z-module. Determine if it is a noetherian module?

17. Determine the dimension of the ring Z[X] of polynomials in one vari-
able with integer coefficients.

18. Suppose A is noetherian and I is any ideal of A. Show that dimA/I =
max{dim A/p : p ∈ Ass(A/I)} = max{dim A/p : p ∈ Min(A/I)}.

19. Let ∆ be a simplicial complex with vertex set V = {1, 2, . . . , n} and
I∆ be the ideal of k[X1, . . . ,Xn] as defined in Q. 14 of Problem Set 2.
Consider the residue class ring R∆ := k[X1, . . . ,Xn]/I∆. Show that
dim R∆ = d + 1, where d is the (topological) dimension of ∆. [Note:
R∆ is called the face ring or the Stanley-Reisner ring associated to ∆.]

20. Assume that A is a noetherian ring. If a ∈ A is a nonzerodivisor and
p is a minimal prime of (a), then prove that ht p = 1.

21. Give an example of a minimal prime p of a principal ideal of a noethe-
rian ring such that ht p = 0.

22. Show that every artinian ring is isomorphic to a direct sum of finitely
many artinian local rings. (Hint: Use Proposition 2.24 and the Chi-
nese Remainder Theorem.)

23. Give an example of a zero dimensional local ring that is not noethe-
rian.

24. Prove the converse of Krull’s Principal Ideal Theorem: If A is noethe-
rian and p ∈ Spec (A) has height r, then there exists a1, . . . , ar ∈ p

such that p is a minimal prime of (a1, . . . , ar).

25. Give an example of a prime ideal p of height 1 in a noetherian ring A
such that p is not principal.
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Chapter 3

Integral Extensions

3.1 Integral Extensions

The theory of algebraic field extensions has a useful analogue to ring ex-
tensions, which is discussed in this section.

Let B be a ring and A be a subring of B. We may express this by saying
that B is a (ring) extension of A or that B is an overring of A.

Definition 3.1. An element x ∈ B is said to be integral over A if it satisfies
a monic polynomial with coefficients in A, i.e., xn + a1x

n−1 + · · · + an = 0
for some a1, . . . , an ∈ A. If every element of B is integral over A, then we
say that B is an integral extension of A or that B is integral over A.

Evidently, if x ∈ B satisfies xn+a1x
n−1+· · ·+an = 0, where a1, . . . , an ∈

A, then 1, x, x2, . . . , xn−1 generate A[x] as an A-module. And if B′ is a sub-
ring of B containing A[x] such that B′ = Ax1 + · · · + Axn, then for any
b ∈ B′, we can write bxi =

∑
aijxj for some aij ∈ A, and hence b satisfies

the monic polynomial det(Xδij−aij) in A[X]. Thus we obtain the following
criteria.

x ∈ B is integral over A ⇐⇒ A[x] is a finite A-module

⇐⇒ a subring B′ of B containing A[x]

is a finite A-module.

In particular, if B is a finite A-module, then B is integral over A. The con-
verse is true if we further assume (the necessary condition) that B is a f.g.
A-algebra. This follows by observing that the above criteria implies, using
induction, that if x1, . . . , xn ∈ B are integral over A, then A[x1, . . . , xn] is a
finite A-module. This observation also shows that the elements of B which
are integral over A form a subring, say C , of B. If C = A, we say that A
is integrally closed in B. A domain is called integrally closed or normal if it
is integrally closed in its quotient field. Note that if S is a multiplicatively
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closed subset of A, B is integral over A, and J is an ideal of B, then S−1B
(resp: B/J) is integral over S−1A (resp: A/J ∩ A).

Example 3.2. Let B := k[X,Y ]/(Y − X2), and let x, y denote the images of
X,Y in B so that B = k[x, y]. Let A = k[y]. Then x is integral over A, and
hence B is integral over A. On the other hand, if B = k[X,Y ]/(XY − 1) =
k[x, y], then x is not integral over A = k[y]. It may be instructive to note,
indirectly, that B ≃ k[Y, 1/Y ] is not a finite k[Y ]-module. These examples
correspond, roughly, to the fact that the projection of the parabola y = x2

along the x-axis onto the y-axis is a ‘finite’ map in the sense that the inverse
image of every point is at ‘finite distance’, whereas in the case of the hyper-
bola xy = 1, this isn’t so. Similar examples in “higher dimensions” can be
constructed by considering projections of surfaces onto planes, solids onto
3-space, and so on.

Basic results about integral extensions are as follows. In the seven re-
sults given below, B denotes an integral extension of A and p ∈ Spec (A).

Proposition 3.3. (i) Assume that B (and hence A) is a domain. Then

A is a field ⇐⇒ B is a field.

(ii) Let q ∈ Spec (B) be such that q ∩ A = p. Then

p is maximal ⇐⇒ q is maximal.

(iii) Let q, q′ ∈ Spec (B) be such that q ⊆ q′ and q′ ∩ A = q ∩ A. Then q = q′.

Corollary 3.4. dim B ≤ dim A. In particular, if B is a domain and dimA ≤ 1,
then dimA = dimB.

Proposition 3.5 (Lying Over Theorem). There exists a prime ideal q of B such
that q ∩ A = p. In particular, pB ∩ A = p.

Proposition 3.6 (Going Up Theorem). If q is a prime ideal of B such that
q ∩ A = p, and p′ is a prime ideal of A such that p ⊆ p′, then there exists a prime
ideal q′ of B such that q ⊆ q′ and q′ ∩ A = p′.

Corollary 3.7. dimA = dimB.

Proposition 3.8 (Going Down Theorem). Assume that A and B are domains
and A is normal. If q is a prime ideal of B such that q ∩ A = p, and p′ is a prime
ideal of A such that p′ ⊆ p, then there exists a prime ideal q′ of B such that q′ ⊆ q

and q′ ∩ A = p′.

Corollary 3.9. Assume that A and B are domains and A is normal. Then for any
prime ideal q of B such that q ∩ A = p, we have ht p = ht q.
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Sketch of Proofs of Propositions 3.3, 3.5, 3.6 and 3.8. Easy manipula-
tions with integral equations of relevant elements proves the first asser-
tion of Proposition 3.3; the second and third assertions follow from the first
one by passing to quotient rings and localizations respectively. To prove
Proposition 3.5, first localize at p and, then, note that if pB0 = B0, where
B0 = (A \ p)−1B, then pB′ = B′ for some f.g. A-algebra B′; now B′ is a
finite A-module and Nakayama’s Lemma applies. Proposition 3.6 follows
by applying Proposition 3.5 to appropriate quotient rings. To prove Propo-
sition 3.8, consider the multiplicatively closed subset S = (A \ p′)(B \ q) =
{ab : a ∈ A\p′, b ∈ B \q} of B and note that it suffices to prove p′B∩S = ∅
[because, then there exists a prime ideal q′ of B such that p′B ⊆ q′ and
q′ ∩ S = ∅, and this will have the desired properties]. To this end, let
x ∈ p′B∩S. Let K and L denote the quotient fields of A and B respectively.
Let L be a normal extension of K containing L and B the integral closure of
A in L. Since p′ ⊆ A and x ∈ p′B, all the conjugates of x w.r.t L/K are in p′B.
Hence the coefficients of the minimal polynomial, say f(X), of x over K are
in p′B ∩ A = p′ (since A is normal!). Write f(X) = Xd + c1X

d−1 + · · · + cd,
and x = ab, where c1, . . . , cd ∈ p′, a ∈ A \ p′ and b ∈ B \ q. Clearly,
Xd +(c1/a)Xd−1 + · · ·+(cd/a

d) is the minimal polynomial of b over K. But
A is normal and b is integral over A implies that ci = c′ia

i for some c′i ∈ A
(1 ≤ i ≤ d). Since ci ∈ p′ and a 6∈ p′, we have c′i ∈ p′ for 1 ≤ i ≤ d. Hence
bd ∈ p′B ⊆ pB ⊆ q, and so b ∈ q, which is a contradiction. 2

For a more leisurely proof of the results above, see [AM, pp. 61–64] or
[ZS, pp. 257–264].

Remark 3.10. It may be noted that Corollary 3.7 is an analogue of the sim-
ple fact that if L/K is an algebraic extension of fields containing a common
subfield k, then tr.deg.kL = tr.deg.kK. Recall that if K is a ring contain-
ing a field k, then elements θ1, . . . , θd of K are said to be algebraically in-
dependent over k if they do not satisfy any algebraic relation over k, i.e.,
f(θ1, . . . , θd) 6= 0 for any 0 6= f ∈ k[X1, . . . ,Xd]. A subset of K is al-
gebraically independent if every finite collection of elements in it are alge-
braically independent. If K is a field then any two maximal algebraically
independent subsets have the same cardinality, called the transcendence de-
gree of K/k and denoted by tr.deg.kK; such subsets are then called transcen-
dence bases of K/k; note that an algebraically independent subset S is a tran-
scendence basis of K/k iff K is algebraic over k(S), the smallest subfield of
K containing k and S. If B is a domain containing k and K is its quotient
field, then one sets tr.deg.kB = tr.deg.kK. Finally, note that k[X1, . . . ,Xd]
and its quotient field k(X1, . . . ,Xd) are clearly of transcendence degree d
over k. On the other hand, if θ1, . . . , θd are algebraically independent over k,
then k[θ1, . . . , θd] and k(θ1, . . . , θd) are k-isomorphic to the polynomial ring
k[X1, . . . ,Xd] and the rational function field k(X1, . . . ,Xd), respectively.

A good reference for this material is Chapter 2 of [ZS].
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3.2 Noether Normalization

In this section we prove a basic result in Dimension Theory, known as
Noether’s Normalization Lemma. This result has a number of useful con-
sequences. For example, we will show that for a special class of rings, the
notions of Krull dimension and transcendence degree are closely related.
Also, we will prove a famous result known as Hilbert’s Nullstellensatz.

An essential ingredient in the proof of Noether’s Normalization Lemma
can be formulated and proved in the form of a lemma, which is of indepen-
dent interest and use. As an application, we shall compute the dimension
of k[X1, . . . ,Xn] and the height of any prime ideal in k[X1, . . . ,Xn] gener-
ated by a subset of the variables X1, . . . ,Xn.

The key idea in the proof of the following lemma may be explained
by revisiting the example of hyperbola xy = 1. We have noticed that the
projection from the hyperbola onto the y-axis is not ‘finite’. However, if we
tilt the axes a bit, e.g., via the coordinate change X ′ = X, Y ′ = Y − cX
for some c 6= 0, then the projection becomes a ‘finite’ map. A similar trick
works in general.

Lemma 3.11 (Tilting of Axes Lemma). Let k be a field and B = k[X1, . . . ,Xn].
Given any nonconstant polynomial f ∈ B, there exist X ′

2, . . . ,X
′
n ∈ B such that

f,X ′
2, . . . ,X

′
n are algebraically independent over k and

f = cXm
1 + g1X

m−1
1 + · · · + gm

for some c ∈ k, c 6= 0 and g1, . . . , gm ∈ k[X ′
2, . . . ,X

′
n]. Moreover, X ′

2, . . . ,X
′
n

can be chosen such that X ′
i = Xi − Xmi

1 for some mi ≥ 1 (2 ≤ i ≤ n). In case k
is infinite, we can choose X ′

2, . . . ,X
′
n to be homogeneous linear polynomials of the

form X ′
i = Xi − ciX1 for some ci ∈ k (2 ≤ i ≤ n). In particular, B is integral

over A = k[f,X ′
2, . . . ,X

′
n]. Also, fB ∩ A = fA and B/fB is integral over

A/fA.

Proof. Let e be an integer greater than any of the exponents of X1, . . . ,Xn

appearing in f , and let mi = ei−1 for 2 ≤ i ≤ n. In the ‘new variables’
X1 and X ′

i = Xi − Xmi

1 (2 ≤ i ≤ n), a monomial Xi1
1 Xi2

2 · · ·Xin
n appear-

ing in f becomes Xi1
1 (X ′

2 + Xm2

1 )i2 · · · (X ′
n + Xmn

1 )in , and this is clearly
monic in X1 of degree i1 + i2e + · · · + inen−1. By our choice of e, these
degrees are distinct for different values of (i1, . . . , in), and if m is the max-
imum of these degrees, then f clearly has the desired form. In case k
is infinite, we let m = deg f and write f = f0 + f1 + · · · + fm, where
fi ∈ k[X1, . . . ,Xn]i. Since fm 6= 0, we can find c2, . . . , cn ∈ k such that
fm(1, c2, . . . , cn) 6= 0. Now with X ′

i = Xi − ciX1, for 2 ≤ i ≤ m, we
have f = fm(1, c2, . . . , cn)Xm

1 + g1X
m−1
1 + · · · + gm for some g1, . . . , gm ∈

k[X ′
2, . . . ,X

′
n]. Finally, since B = k[X1,X

′
2, . . . ,X

′
n], it follows that B is in-

tegral over A = k[f,X ′
2, . . . ,X

′
n]. In particular, tr.deg.kA = n, and hence
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f,X ′
2, . . . ,X

′
n are algebraically independent over k, and A is isomorphic to

a polynomial ring in n variables over k. This implies that A is a normal do-
main and thus if fh ∈ A for some h ∈ B, then h ∈ A, being in the quotient
field of A and integral over A. Thus fB ∩A = fA and consequently, B/fB
is integral over A/fA.

Corollary 3.12. dimk[X1, . . . ,Xn] = n. In particular, ht (X1, . . . ,Xr) = r, for
1 ≤ r ≤ n.

Proof. Let B = k[X1, . . . ,Xn]. Since (X1) ⊂ (X1,X2) ⊂ · · · ⊂ (X1, . . . ,Xn)
is a chain of prime ideals of B of length n, we have dim B ≥ n. We prove
dimB ≤ n by induction on n. The case of n = 0 is obvious. For the induc-
tive step, let P0 ⊂ P1 ⊂ · · · ⊂ Pm be a chain of prime ideals of B of length
m > 0. Choose 0 6= f ∈ P1. By Lemma 3.11, we obtain X ′

2, . . . ,X
′
n ∈ B

such that B is integral over A = k[f,X ′
2, . . . ,X

′
n]. Hence by Proposition 3.3,

A ∩ P1 ⊂ · · · ⊂ A ∩ Pm is a chain of prime ideals of A of length m − 1,
containing fA. Passing to A/fA and using the induction hypothesis, we
see that m − 1 ≤ n − 1. Hence m ≤ n.

Proposition 3.13 (Noether’s Normalization Lemma). Let B = k[x1, . . . , xn]
be a f.g. algebra over a field k and J1 ⊆ · · · ⊆ Jm be a chain of nonunit ideals
of B. Then there exist θ1, . . . , θd ∈ B and nonnegative integers r1 ≤ · · · ≤ rm

satisfying the following.

(i) θ1, . . . , θd are algebraically independent over k,

(ii) B is integral over A = k[θ1, . . . , θd]; in particular, B is a finite A-module,

(iii) Ji ∩ A = (θ1, . . . , θri
)A for 1 ≤ i ≤ m.

Moreover, if k is infinite, then θ1, . . . , θd can be chosen to be k-linear combinations
of x1, . . . , xn.

Proof. It suffices to prove the result when B = k[X1, . . . ,Xn] is the poly-
nomial ring in n variables over k (because in general, B ≃ B′/J ′

0 where
B′ = k[X1, . . . ,Xn] and J ′

0 is an ideal of B′; now if J ′
1, . . . , J

′
m are the ideals

of B′, containing J ′
0, corresponding to J ′

1, . . . , Jm respectively, then apply-
ing the result to B′ and the chain J ′

0 ⊆ J ′
1 ⊆ · · · J ′

m, we obtain θ′1, . . . , θ
′
n and

r′0, r
′
1, . . . , r

′
m, and it is easily seen that the images θ1, . . . , θd of θ′r′

0
+1, . . . , θ

′
n

in B and the integers r1, . . . , rm defined by ri = r′i − r′0 have the desired
properties). Thus we shall now assume that B = k[X1, . . . ,Xn]. Let us
induct on m. Note that the case m = 0 is obvious.

Consider the case when m = 1. Here, we induct on n. The case n = 0
being trivial, assume that n ≥ 1. We may also assume that J1 6= 0. Let 0 6=
f ∈ J1. Then we can find X ′

2, . . . ,X
′
n as in Lemma 3.11. By the induction

hypothesis, there exist θ2, . . . , θn ∈ A′ = k[X ′
2, . . . ,X

′
n] such that θ2, . . . , θn

are algebraically independent over k, A′ is integral over k[θ2, . . . , θn], and

37



there exists r ≥ 1 such that J1 ∩ k[θ2, . . . , θn] = (θ2, . . . , θr). Hence A =
A′[f ] is integral over k[f, θ2, . . . , θn], and therefore so is B. Consequently,
tr.deg.kk[f, θ2, . . . , θn] = tr.deg.kB = n, and so if we let θ1 = f , then
θ1, . . . , θn are algebraically independent over k. Moreover, since f ∈ J1.
and J1 ∩ k[θ1, . . . , θn] = (θ1) + J1 ∩ k[θ2, . . . , θn] = (θ1, . . . , θr).

If m > 1 and we assume that the result holds for m − 1, then for the
chain J1 ⊆ · · · ⊆ Jm−1, there exist θ′1, . . . , θ

′
n ∈ B and nonnegative integers

r′1, . . . , r
′
m−1 satisfying conditions such as (i), (ii) and (iii). Let r = r′m−1.

Using the previous case (of m = 1), we can find θ′′r+1, . . . , θ
′′
n in B′′ =

k[θ′r+1, . . . , θ
′
n], and an integer s ≥ r such that θ′′r+1, . . . , θ

′′
n are algebraically

independent over k, B′′ is integral over A′′ = k[θ′r+1, . . . , θ
′
n], and Jm∩A′′ =

(θ′′r+1, . . . , θ
′′
s ). Define θi = θ′i if 1 ≤ i ≤ r and θi = θ′′i if r + 1 ≤ i ≤ n; also

ri = r′i if 1 ≤ i ≤ m − 1 and rm = s. Now B′′ is integral over A′′ implies
that B′′[θ′1, . . . , θ

′
r] is integral over A′′[θ′1, . . . , θ

′
r]. Also, B is integral over

k[θ′1, . . . , θ
′
n] = B′′[θ′1, . . . , θ

′
r], and hence over A′′[θ′1, . . . , θ

′
r] = k[θ1, . . . , θn].

Consequently, tr.deg.kk[θ1, . . . , θn] = tr.deg.kB = n, and hence θ1, . . . , θn

are algebraically independent over k. Checking that Ji ∩ k[θ1, . . . , θn] =
(θ1, . . . , θri

) is an easy exercise.

Corollary 3.14. If B is domain and a f.g. k-algebra, then dim B = tr.deg.kB.
Consequently, dim B[X1, . . . ,Xn] = dim B + n.

Proof. Apply Proposition 3.13 for the singleton chain (0), and use Corollary
3.7 and Corollary 3.12.

Corollary 3.15. If B is a domain and a f.g. algebra over a field k, and P is a prime
ideal of B, then dim B = htP + dim B/P .

Proof. Apply Proposition 3.13 for the singleton chain P, and use Corollary
3.7 and Corollary 3.9.

Example 3.16. If B is not a domain, then result of 3.15 is not necessarily
true. For example, let B = k[X,Y,Z]/(XY,XZ) = k[x, y, z] and p = (y, z).
Then dim B = 2, whereas ht p = 0 and dim B/p = 1.

Definition 3.17. A ring A is said to be catenary if for any two prime ideals
p ⊂ q of A, all maximal chains of prime ideals between p and q have the
same length. A ring A is said to be universally catenary if every finitely
generated ring over A is catenary.

Corollary 3.18. Every affine k-algbera over a field k is universally catenary.

Proof. Since a finitely generated rings over an affine k-algebra is also an
affine k-algebra, it suffices to show that affine k-algberas are catenary. Let B
be an affine k-algbera and p ⊂ q be a chain of prime ideals of B. Passing to
B/p, we can and will assume that B is a domain and p = (0). Let (0) = q0 ⊂
q1 ⊂ · · · ⊂ qm = q be a maximal chain of distinct prime ideals of B between
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(0) and q. By Noether’s Normalization Lemma, there is a corresponding
chain (0) ⊂ p0 ⊂ p1 ⊂ · · · pm of prime ideals of the polynomial ring A :=
k[θ1, . . . , θd] with qi ∩ A = pi and pi := (θ1, . . . , θri

) for 0 ≤ i ≤ m and
some nonnegative integers r0 ≤ r1 ≤ · · · ≤ rm. Now, by Corollary 3.9 and
Corollary 3.12, we have ri+1 = ht pi+1 = ht qi+1 > ht qi = ht pi = ri for
0 ≤ i < m. Moreover, if ri+1 > ri + 1 for some i, then using the Going
Down Theorem (Proposition 3.8) and Corollary 3.9, we can find a prime
ideal q′ of B such that qi ⊂ q′ ⊂ qi+1. This contradicts the maximality of
(0) = q0 ⊂ q1 ⊂ · · · qm = q. Thus, ri+1 = ri + 1 for 0 ≤ i < m. Further,
it is easily seen that r0 = 0, and so rm = m. It follows that ht q = m. This
completes the proof.

Corollary 3.19 (Hilbert’s Nullstellensatz). Let k be a field. Then we have:

(i) If K is a field and a f.g. k-algebra, then K is algebraic over k.

(ii) If k is algebraically closed, and m is a maximal ideal of k[X1, . . . ,Xn], then
there exist α1, . . . , αn ∈ k such that m = (X1 − α1, . . . ,Xn − αn).

(iii) If k is algebraically closed, and I is a nonunit ideal of k[X1, . . . ,Xn], then
there exists (α1, . . . , αn) ∈ kn such that f(α1, . . . , αn) = 0, for each f ∈ I .

Proof. (i) By Proposition 3.13, K is integral over A := k[θ1, . . . , θd], and, by
Proposition 3.3, A is a field. Since A is isomorphic to a polynomial ring in
d variables, it follows that d = 0, and so K is algebraic over k.

(ii) Let K = k[X1, . . . ,Xn]/m. Then by (i) and the assumption on k, we
find that K ≃ k. Let α1, . . . , αn be the unique elements of k corresponding
to the images of X1, . . . ,Xn in K. Now (X1 − α1, . . . ,Xn − αn) ⊆ m, and
the former is clearly a maximal ideal of k[X1, . . . ,Xn].

(iii) If I is a nonunit ideal of k[X1, . . . ,Xn], then I ⊆ m, for some maxi-
mal ideal m of k[X1, . . . ,Xn]. Now apply (ii).

3.3 Finiteness of Integral Closure

The aim of this section is to prove that if A is a domain and an affine k-
algebra, then the integral closure of A in a finite extension L of its quotient
field K is a finite A-module. The case when L/K is separable is relatively
easy. This, together with Noether Normalization yields the general result.

First, let us recall a few basic facts from field theory. Let L/K be a field
extension, that is, L be a field and K be a subfield of L. We say that L/K is
finite if L is finite-dimensional as a vector space over K. The vector space
dimension dimK L is denoted by [L : K] and called the degree of L over K.
If L/K is finite and α ∈ L, then the trace of the K-linear map L → L given
by x 7→ αx is called the trace of α and is denoted by TrL/K(α) or simply,
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by Tr(α). It is easy to see that TrL/K is a K-linear map of L into K, and
Tr(a) = [L : K]a for all a ∈ K.

A finite field extension L/K is said to be algebraic if every α ∈ L satisfies
a nonzero polynomial in K[X]. Such a polynomial is unique if we require
it to be monic and irreducible; in that case it is called the minimal polynomial
of α over K and denoted by Irr(α,L/K). An algebraic extension L/K is
said to be separable if Irr(α,L/K) has distinct roots for every α ∈ L. Now
suppose L/K is finite separable of degree n := [L : K] and α ∈ L. The
degree, say d, of Irr(α,L/K) divides n, and the distinct roots of Irr(α,L/K),
each repeated n/d times, are called the conjugates of α w.r.t L/K. Thus,
α ∈ L has exactly n conjugates w.r.t. L/K. The sum of these n conjugates
is precisely the trace of α. Equivalently, TrL/K(α) is the sum of all σ(α)
as σ varies over all K-homomorphisms of L into an algebraic closure of K
containing L.

If L/K is a finite extension of degree n and {α1, . . . , αn} is any K-basis
of L, then the determinant of the n × n matrix

(
TrL/K(αiαj)

)
is called the

discriminant of L/K w.r.t. {α1, . . . , αn}. The vanishing of this is indepen-
dent of the choice of a K-basis. In case L/K is separable, L has a K-basis
of the form {1, α, α2, . . . , αn−1} for some α ∈ L. With respect to this basis,
the discriminant is a Vandermonde determinant and hence nonzero. Con-
sequently, the bilinear form L × L → K given by (x, y) 7→ TrL/K(xy) is
nondegenerate.

Lemma 3.20. Let A be a domain, K be the quotient field of A and L be a field
extension of K. Then we have the following.

(i) If α ∈ L is algebraic over K, then there exists c ∈ A such that c 6= 0 and
cα is integral over A. Consequently, if {α1, . . . , αn} is a K-basis of L, then
there exists d ∈ A such that d 6= 0 and {dα1, . . . , dαn} is a K-basis of L
whose elements are integral over A.

(ii) If A is normal, L/K is finite separable and α ∈ L is integral over A, then
TrL/K(α) ∈ A.

Proof. (i) If α satisfies the monic polynomial Xn+a1X
n−1+· · ·+an ∈ K[X],

then we can find a common denominator c ∈ A such that c 6= 0 and ai =
ci/c for some ci ∈ A. Multiplying the above polynomial by cn, we get a
monic polynomial in A[X] satisfied by cα.
(ii) If α ∈ L is integral over A, then so is each of its conjugate. Hence
Tr(α) is integral over A. Since Tr(α) ∈ K and A is normal, it follows that
Tr(α) ∈ A.

We are now ready to prove the Finiteness Theorem in the separable case.

Proposition 3.21. Let A be a normal domain and K be its quotient field. Let L/K
be a finite separable extension of degree n and B be the integral closure of A in L.
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Then B is contained in a free A-module generated by n elements. In particular, if
A is also noetherian, then B is a finite A-module and a noetherian ring.

Proof. Using part (i) of Lemma 3.20, we can find a K-basis {α1, . . . , αn} of
L, which is contained in B. Let {β1, . . . , βn} be a dual basis, w.r.t. the non-
degenerate bilinear form TrL/K(xy), corresponding to {α1, . . . , αn}. Given
any x ∈ B, we can write x =

∑
j bjβj for some bj ∈ K. Now Tr(αix) =∑

j bjTr(αiβj) = bi. Moreover, since αix is integral over A, it follows from
Lemma 3.20 that bi ∈ A. Thus B is contained in the A-module generated
by β1, . . . , βn. This module is free since β1, . . . , βn are linearly independent
over K.

When A is a PID, the conclusion of Proposition 3.21 can be sharpened.
using the following lemma.

Lemma 3.22. Let A be a PID, M be an A-module generated by n elements
x1, . . . , xn and let N be a submodule of M . Then N is generated by at most n
elements. In fact, we can find aij ∈ A for 1 ≤ i ≤ j ≤ n such that

N = Ay1 + · · · + Ayn where yi =
∑

j≥i

aijxj for 1 ≤ i ≤ n. (3.1)

Proof. We have M = Ax1 + · · · + Axn. Let us use induct on n. Define

I := {a ∈ A : ax1 + a2x2 + · · · + anxn ∈ N for some a2, . . . , an ∈ A}.

Then I is an ideal of A and thus I = (a11) for some a11 ∈ A. Also, there exist
a12, . . . , a1n ∈ A such that y1 ∈ N where y1 = a11x1 + a12x2 + · · · + a1nxn.
If n = 1, we have N = Ix1 = Ay1, where y1 = a11x1 and thus the result is
proved in this case. If n > 1, then let M1 = Ax2 + . . . Axn and N1 = N ∩M1.
By induction hypothesis, we can find aij ∈ A for 2 ≤ i ≤ j ≤ n such that
N1 = Ay2 + · · · + Ayn where yi =

∑
j≥i aijxj for

N1 = Ay2 + · · · + Ayn where yi =
∑

j≥i

aijxj for 2 ≤ i ≤ n.

Now if y ∈ N , then y = a1x1 + a2x2 + · · · + anxn for some a1, . . . , an ∈ A.
Moreover a1 ∈ I and thus a1 = λ1a11 for some λ1 ∈ A. Hence y−λ1y1 ∈ N1

and so y − λ1y1 = λ2y2 + · · ·+ λnyn for some λ2, . . . , λn ∈ A. It follows that
N = Ay1 + · · · + Ayn and yi =

∑
j≥i aijxj , as desired.

Corollary 3.23. Let A,K,L, n,B be as in the Finiteness Theorem. Assume that
A is a PID. Then B is a free A-module of rank n, i.e., there exist n linearly inde-
pendent elements y1, . . . , yn ∈ B such that B = Ay1 + · · · + Ayn.

Proof. Follows from Proposition 3.21 and Lemma 3.22.
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The above Corollary applied in the particular case of A = Z, shows that
the ring of integers of a number field always has a Z-basis. Such a basis is
called an integral basis of that ring or of the corresponding number field.

Now let us prove the general case of the Finiteness Theorem. Again it
may be useful to recall some pertinent facts from field theory.

A finite field extension L/K is said to be normal if Irr(α,K) has all its
roots in L for every α ∈ L. If L/K is a finite extension, then we can find
a normal extension N/K such that N contains L and no proper subfield
of N containing L is normal over K. Such an extension N is necessarily
finite over K and is unique upto a K-isomorphism; it is called the nor-
mal closure of L over K. Given any field extension L/K, the set of all K-
automorphisms of L is a group, called the Galois group of L/K and denoted
by Gal(L/K). From Galois theory, we know that if H is a finite subgroup
of Gal(L/K) and LH := {α ∈ L : σ(α) = α for all σ ∈ H} is the fixed
field of H in L, then L/LH is a finite, separable and normal extension with
Gal(L/LH) = H . If L/K is a finite normal extension and H = Gal(L/K),
then every element of LH is purely inseparable over K, i.e, every α ∈ LH

satisfies αq ∈ K where q is some power of the characteristic of K. In other
words, LH/K is a purely inseparable extension.

Theorem 3.24. Let A be a domain and an affine k-algebra, and K be its quotient
field. Let L be a finite extension of K and B be the integral closure of A in L. Then
B is a finite A-module, and hence an affine k-algebra.

Proof. By Noether’s Normalization Lemma, A is integral over a polynomial
ring A0 = k[X1, . . . ,Xd]. Consequently, B is integral over A0 and hence
B is the integral closure of A in L. Moreover, if B is a finite A0-module,
then clearly, it is a finite A-module. Thus, we may assume without loss of
generality that A = k[X1, . . . ,Xd]. In particular, A is a noetherian normal
domain. Now, let N be the normal closure of L over K and C be the integral
closure of A in N . If C is a finite A-module, then so is B because A is
noetherian. Thus we may also assume without loss of generality that L/K
is a finite normal extension.

Let L′ be the fixed field of Gal(L/K) in L. Then L/L′ is finite, separable
and normal, whereas L′/L is finite and purely inseparable. If L′ = K, then
the desired result follows from Proposition 3.21. If not, then the character-

istic, say p, of K is nonzero. Moreover, L′ = K(f
1/q
1 , . . . , f

1/q
r ) for some

f1, . . . , fr ∈ K, where q is a some power of p. Let k′ be the finite extension
of k obtained by adjoining to k the qth roots of the coefficients of the (nu-
merators and denominators of the) rational functions f1, . . . , fr. Then L′ is

a subfield of L′′ := k′(X
1/q
1 , . . . ,X

1/q
d ). The ring B′′ := k′[X

1/q
1 , . . . ,X

1/q
d ] is

integral over A = k[X1, . . . ,Xd] and is a f.g. A-algebra. Hence B′′ is a finite
A-module. Also, B′′ is normal (being isomorphic to a polynomial ring) and
therefore it is the integral closure of A in L′′. In particular B′ is a subring
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of B′′, and hence B′ is a finite A-module. Finally, since B is also the inte-
gral closure of B′ in L, in view of Proposition 3.21, we see that B is a finite
A-module.

Remark 3.25. Even the seemingly simplest case L = K of the above theo-
rem is not obvious. In fact, the general case can be easily reduced to this
case. In general, the integral closure of a noetherian domain in its quo-
tient field need not be noetherian. A theorem of Krull and Akizuki says
that for one dimensional noetherian domains A, the integral closure of A,
and more generally, its subrings containing A, are noetherian. In dimen-
sion two, Mori and Nagata prove that the integral closure of a noetherian
domain A is noetherian but it may have subrings containing A that are not
noetherian. In dimension three, there are counterexamples to show that the
integral closure of a noetherian domain need not be noetherian. However,
the integral closure of a noetherian domain in a finite extension of its quo-
tient field is always a Krull ring. A useful generalisation of affine k-algebras
is to an important class of rings known as Nagata rings or pseudo-geometric
rings or (noetherian) universally Japanese rings.1 For more on these matters,
see Matsumura [M1] or Nagata [Na].

Exercises

1. If a rational number satisfies a monic polynomial in Z[X], then show
that it must be an integer. Deduce that Z is a normal domain. More
generally, show that any UFD is a normal domain.

2. If B/A is an integral extension of rings, then show that B/J is integral
over A/J ∩A for every ideal J of A. Further, if S is a multiplicatively
closed subset of A, then show that S−1B is an integral extension of
S−1A.

3. Consider the subring A = Z[
√

5] of C and let α = (1 +
√

5)/2. Show
that α is in the quotient field of A and α is integral over A, but α 6∈ A.

4. If A is a normal domain and S is a multiplicatively closed subset of A
such that 0 6∈ S, then show that S−1A is a normal domain.

5. Show that if A is a domain, then A is normal if and only if A[X] is
normal.

6. If A is a domain, then show that A is integrally closed in the polyno-
mial ring A[X]. What if A is not a domain?

1A domain A is called a Krull ring if Ap is a PID for all p ∈ SpecA with ht p = 1 and
every nonzero principal ideal of A is intersection of primary ideals belonging to height 1
primes. A noetherian ring A is called a Nagata ring if for every p ∈ Spec A, the integral
closure of A/p in a finite extension of its quotient field is a finite A/p-module.
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7. Let A = k[X,Y ]/(Y 2 − X2 − X3) and write A = k[x, y] where x, y
denote the images of X,Y in A, respectively. Show that A is a domain
and the element y/x is in the quotient field of A and it is integral over
A, but y/x 6∈ A. Can you determine the integral closure of A in its
quotient field?

8. Let A = k[X,Y ]/(Y 2 − X3). Show that A is a domain, but A is not
normal. Further show that A is isomorphic to the subring k[t2, t3]
of the polynomial ring k[t], and that the integral closure of A in its
quotient field is isomorphic to k[t].

9. Let A be a domain and consider the localizations Am of A at m ∈
Max (A) as subrings of a fixed quotient field K of A. Show that if Am

is normal for each m ∈ Max (A), then so is A.

10. Prove Corollaries 3.4, 3.7 and 3.9 using the propositions preceding
them.

11. Let {Aα : α ∈ Λ} be a family of subrings of a field K such that each
Aα is a normal domain. Prove that the intersection of the Aα, as α
varies over Λ, is normal.

12. If A is a normal domain, K is its quotient field, and x is an element of
a field extension L of K such that x is integral over A, then show that
the minimal polynomial of x over K has its coefficients in A.

13. Let k be an infinite field and f ∈ k[X1, . . . ,Xn] be a nonzero polyno-
mial. Prove that there exist a1, . . . , an ∈ k such that f(a1, . . . , an) 6= 0.
Further, show that if n ≥ 1 and f is nonconstant and homogeneous,
then there exist c2, . . . , cn ∈ k such that f(1, c2, . . . , cn) 6= 0.

14. Suppose k is an algebraically closed field and f, g ∈ k[X,Y ]. Deter-
mine a primary decomposition of (f, g)k[X,Y ]. Show that if f and g
are not divisible by any nonconstant polynomial in k[X,Y ], then they
have only finitely many common zeros in k2.

15. If A is an affine k-algebra, then show that the Jacobson radical of A
(which, by definition, is the intersection of all maximal ideals of A)
coincides with the nilradical

√
(0) of A.

16. If in Lemma 3.22, we further assume that A = Z and that N contains a
Q-basis of K, then show that the conclusion can be refined as follows.
The quotient module M/N is a finite set and we can choose aij ∈ A,
for 1 ≤ i ≤ j ≤ n, satisfying (3.1) and with the additional property

aii > 0 for 1 ≤ i ≤ n and |M/N | = a11a22 · · · ann = det(aij) (3.2)

where, by convention, aij = 0 for j < i.
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Chapter 4

Dedekind Domains

In the investigation of Fermat’s last theorem and higher reciprocity laws,
mathematicians in the 19th century were led to ask if the unique factoriza-
tion property enjoyed by the integers also holds in the ring of integers in
an algebraic number field, especially in the ring of cyclotomic integers. In
1844, E. Kummer showed that this does not hold, in general. About three
years later, he showed that the unique factorization in such rings, or at least
in rings of cyclotomic integers, is possible if numbers are replaced by the
so called “ideal numbers”. Kummer’s work was simplified and furthered
by R. Dedekind1. The concept of an ideal in a ring was thus born. In effect,
Dedekind showed that the ring of integers of an algebraic number field has
the following property:

Every nonzero ideal in this ring factors uniquely as a product of prime ideals.

Integral domains with this property are now known as Dedekind domains
(or also Dedekind rings)2. In a famous paper3, Emmy Noether gave a set

1Dedekind published his ideas as a supplement to Dirichlet’s lectures on Number The-
ory, which were first published in 1863. Dedekind’s supplements occur in the third and
fourth editions, published in 1879 and 1894, of Dirichlet’s Vorlesungen über Zahlentheorie.
Another approach towards understanding and extending the ideas of Kummer was devel-
oped by L. Kronecker, whose work was apparently completed in 1859 but was not pub-
lished until 1882. For more historical details, see the article “The Genesis of Ideal Theory”
by H. Edwards, published in Archives for History of Exact Sciences, Vol. 23 (1980), and
the articles by P. Ribenboim and H. Edwards in “Number Theory Related to Fermat’s Last
Theorem”, Birkhäuser, 1982.

2The term Dedekind domains was coined by I.S. Cohen [Duke Math. J. 17 (1950), pp.
27–42]. In fact, Cohen defines a Dedekind domain to be an integral domain in which every
nonzero proper ideals factors as a product of prime ideals, and he notes that the uniqueness
of factorization is automatic, thanks to Matsusita [Japan J. Math. 19 (1944), pp. 97–110].

3Abstrakter Aufbau der Idealtheorie in algebraischen Zahlund Funktionenkörpern, Math. Ann.
96 (1927), pp. 26–61. The Aufbau paper followed another famous paper Idealtheorie in Ring-
bereichen [Math. Ann. 83 (1921), pp. 24–66] in which rings with ascending chain condition
on ideals are studied; the term noetherian rings for such rings may have been coined by
Chevalley [Ann. Math. 44 (1943), pp. 690–708]. Emmy Noether had a great appreciation of
Dedekind’s work and her favorite expression to students was Alles steht schon bei Dedekind!
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of abstract axioms for rings whose ideal theory agrees with that of ring
of integers of an algebraic number field. This leads to a characterization of
Dedekind domains. In the next section, we will take this abstract character-
ization as the definition of a Dedekind domain, and then prove properties
such as the unique factorization of ideals as a consequence. In the sub-
sequent sections, we study the phenomenon of ramification and discuss a
number of basic results concerning it.

4.1 Dedekind Domains

An integral domain A is called a Dedekind domain if A is noetherian, normal
and every nonzero prime ideal in A is maximal. Note that the last condition
is equivalent to saying that dim A ≤ 1, or in other words, either A is a field
or A is one dimensional.

Example 4.1. Any PID is a Dedekind domain (check!). In particular, Z and
the polynomial ring k[X] over a field k are Dedekind domains.

Example 4.2. The ring Z[
√
−5], which is the ring of integers of the quadratic

field Q(
√
−5) is a Dedekind domain. Indeed, this ring is noetherian be-

ing the quotient of a polynomial ring over Z, it is normal being the ring
of integers of a number field, and it is one dimensional, being an integral
extension of Z. However, Z[

√
−5] is not a PID because, for instance, the

ideal P = (2, 1 +
√
−5) is not principal. Indeed if P were generated by a

single element a + b
√
−5, then a would have to be an even integer which

divides 1, and this is impossible. As it turns out, the fact that the Dedekind
domain Z[

√
−5] is not a PID is related to failure of unique factorization in

Z[
√
−5], which is illustrated by the two distinct factorizations 2 × 3 and

(1 +
√
−5)(1 −

√
−5) of the number 6. Note, however, that if we pass to

ideals and consider the principal ideal (6) generated by 6 in Z[
√
−5], then

there is no problem because

(6) = (2, 1 +
√
−5)(2, 1 −

√
−5)(3, 1 +

√
−5)(3, 1 −

√
−5)

and it can be seen that the ideals on the right are distinct prime ideals and
the above factorization of (6) into prime ideals is unique up to rearrange-
ment of factors.

Many more examples of Dedekind domains can be generated from the
following basic result.

Theorem 4.3 (Extension Theorem). Let A be a Dedekind domain, K its quo-
tient field, L a finite separable extension of K, and B the integral closure of A in
L. Then B is a Dedekind domain.

Proof. By Proposition 3.21, B is noetherian. It is obvious that B is normal.
Lastly, by Corollary 3.7 we see that dim B = dim A ≤ 1.
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Since Z is a Dedekind domain, we obtain as an immediate consequence
the following corollary.

Corollary 4.4. If K is a number field, then OK , the ring of integers of K, is a
Dedekind domain.

We now proceed to prove a number of basic properties of Dedekind do-
mains. In particular, we shall establish the fact about unique factorization
of ideals as products of prime ideals, which was alluded to in the beginning
of this section.

Definition 4.5. Let A be a domain and K be its quotient field. By a frac-
tionary ideal of A we mean an A-submodule J of K such that dJ ⊆ A for
some d ∈ A, d 6= 0.

Note that a finitely generated A–submodule of K is a fractionary ideal
of A. Conversely, if A is noetherian, then every fractionary ideal of A is
finitely generated.

To distinguish from fractionary ideals, the (usual) ideals of A are some-
times called the integral ideals of A. Products of fractionary ideals is defined
in the same way as the product of integral ideals, and w.r.t. this product,
the set

FA = {J : J a fractionary ideal of A and J 6= (0)}

of nonzero fractionary ideals of A is a commutative monoid with A as its
identity element. Note that FA contains the subset of nonzero principal
fractionary ideals, viz.,

PA = {Ax : x ∈ K, and x 6= (0)}

and this subset is, in fact, a group. In case A is a PID, we see easily (from
Corollary 3.23, for example) that FA = PA, and in this case FA is a group.
We will soon show that more generally, if A is any Dedekind domain, then
FA is a group.

Lemma 4.6. Every nonzero ideal of a noetherian ring A contains a finite product
of nonzero prime ideals of A.

Proof. Assume the contrary. Then the family of nonzero nonunit ideals of
A not containing a finite product of nonzero prime ideals of A is nonempty.
Let I be a maximal element of this family. Then I 6= A and I can not be
prime. Hence there exist a, b ∈ A \ I such that ab ∈ I . Now I + Aa and
I+Ab are ideals strictly larger than I , and I ⊇ (I+Aa)(I+Ab). In particular,
I + Aa and I + Ab are nonzero nonunit ideals. So by the maximality of I ,
both I + Aa and I + Ab contain a finite product of nonzero prime ideals,
and hence so does I . This is a contradiction.
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Lemma 4.7. Let A be a noetherian normal domain and K be its quotient field. If
x ∈ K and I is a nonzero ideal of A such that xI ⊆ I , then x ∈ A.

Proof. Since xI ⊆ I , we have xnI ⊆ I for n ≥ 1. Thus if we let J = A[x],
then JI ⊆ I . In particular, if d ∈ I , d 6= 0, then dJ ⊆ A. So J is a fractionary
ideal of A and since A is noetherian, J = A[x] is a f.g. A-module. Therefore,
x is integral over A and since A is normal, x ∈ A.

Lemma 4.8. Let A be a Dedekind domain and K be its quotient field. If P is any
nonzero prime ideal of A, then

P ′ = (A :K P ) = {x ∈ K : xP ⊆ A}

is a fractionary ideal of A, which strictly contains A. Moreover, PP ′ = A = P ′P .
In particular, P is invertible and P−1 = P ′.

Proof. Clearly, P ′ is an A-module. Also, dP ′ ⊆ A for any d ∈ P , d 6= 0. Thus
P ′ is a fractional ideal of A. It is clear that P ′ ⊇ A. To show that P ′ 6= A,
choose any d ∈ P , d 6= 0. By Lemma 4.6, we can find nonzero prime ideals
P1, . . . , Pn of A such that (d) ⊇ P1 · · ·Pn. Suppose n is the least positive
integer with this property. Now, P1 · · ·Pn ⊆ P , and since P is prime, we
have Pi ⊆ P for some i. But A is a 1-dimensional ring, and so Pi = P .
Define I = P1 · · ·Pi−1Pi+1 · · ·Pn (note that I = A if n = 1). Then by the
minimality of n, I 6⊆ (d). Let c ∈ I be such that c 6∈ (d). Then cd−1 6∈ A. But
PI ⊆ (d), and this implies that P (c) ⊆ (d), and so cd−1 ∈ P ′. Thus P ′ 6= A.
Next, to show that PP ′ = A, observe that P = PA ⊆ PP ′ ⊆ A. Thus PP ′

is an (integral) ideal of A containing the maximal ideal P . Hence PP ′ = A
or PP ′ = P . But if x ∈ P ′ \ A, then by Lemma 4.7, xP 6⊆ P , and hence
PP ′ 6= P . It follows that PP ′ = A.

Theorem 4.9. If A is a Dedekind domain, then FA, the set of nonzero fractionary
ideals of A, forms an abelian group (w.r.t products of fractionary ideals).

Proof. It suffices to show that every nonzero (integral) ideal of A is invert-
ible, because if J ∈ FA, then dJ is a nonzero ideal of A for some d ∈ A,
d 6= 0, and (d)(dJ)−1 is then the inverse of J .

Now if some nonzero ideal of A is not invertible, then we can find a
nonzero ideal I of A, which is not invertible and which is maximal with
this property. Clearly I 6= A and so there is a nonzero prime ideal P of
A such that I ⊆ P . By Lemma 4.8, P−1 exists and I = IA ⊆ IP−1 ⊆
PP−1 = A. Moreover, if I = IP−1, then by Lemma 4.7, P−1 ⊆ A, which
contradicts Lemma 4.8. Thus IP−1 is an ideal of A which is strictly larger
than I . So by the maximality of I , the ideal IP−1 is invertible. But then so
is I = (IP−1)P . This is a contradiction.
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Theorem 4.10. Let A be a Dedekind domain. Then every nonzero ideal I of A
can be factored as a product of prime ideals, and this factorization is unique up
to a rearrangement of the factors. More generally, every nonzero fractional ideal
J of A factors as J = pe1

1 · · · peh

h , for some nonnegative integer h, distinct prime
ideals p1, . . . , ph and nonzero integers e1, . . . , eh.4 Furthermore, the prime ideals
p1, . . . , ph and the exponents e1, . . . , eh are uniquely determined by J .

Proof. Assume for a moment that the assertion for integral ideals is proved.
Then for any J ∈ FA, there exists d ∈ A, d 6= 0 such that dJ is a nonzero
ideal of A. Now if dJ = p1 · · · pk and (d) = q1 · · · ql, where pi and qj are
prime ideals then J = p1 · · · pkq

−1
1 · · · q−1

l . Moreover, if we also have J =
P1 · · ·PmQ−1

1 · · ·Q−1
n for some prime ideals Pi and Qj (necessarily nonzero

but not necessarily distinct), then p1 · · · pkQ1 · · ·Qn = q1 · · · qlP1 · · ·Pm and
the uniqueness for factorization of integral ideals can be used. This yields
the desired results for nonzero fractional ideals.

To prove the existence of factorization of nonzero ideals of A into prime
ideals, we can proceed as in the proof of Theorem 4.9. Thus, let I be a
nonzero ideal of A which can not be factored as a product of prime ideals
and which is maximal with this property. Then I 6= A and if P is a nonzero
prime ideal containing I , then IP−1 is an ideal of A which is strictly larger
than I . So by the maximality of I , the ideal IP−1 is a product of prime
ideals. Multiplying on the right by P , we find that I is also a product of
prime ideals. This is a contradiction.

To prove the uniqueness, let I be any nonzero ideal of A and suppose
I = p1 · · · pr for some r ≥ 0 and prime ideals p1, . . . , pr . We induct on
r to show that any other factorization of I as a product of prime ideals
differs from p1 · · · pr by a rearrangement of factors. If r = 0, this is evident
since a nonempty product of prime ideals will be contained in any one of
the factors, which is a proper subset of A. Assume that r ≥ 1 and the
result holds for ideals which are products of r − 1 prime ideals. Now if
I = q1 · · · qs for some s ≥ 0 and prime ideals q1, . . . , qs, then it is clear
that s > 0. Moreover, q1 · · · qs ⊆ p1 implies that qj ⊆ p1 for some j. But
since I 6= (0), each qj is a nonzero prime ideal and hence maximal. Thus
qj = p1. Multiplying I by p−1

1 we find that p2 · · · pr = q1 · · · qj−1qj+1 · · · qs.
Thus by induction hypothesis r − 1 = s − 1 and p2, . . . pr are the same as
q1, . . . , qj−1, qj+1, . . . , qs after a rearrangement. This implies that r = s and
p1, . . . , pr equal q1, . . . , qs after a rearrangement.

Remark 4.11. Either of the following four conditions can be taken as a def-
inition for an integral domain A to be a Dedekind domain.

(1) A is noetherian, normal and every nonzero prime ideal of A is maxi-
mal.

4As per usual conventions, p−m =
(
p−1

)m
, for any positive integer m. Also, when

h = 0, a product such as p
e1

1
· · · peh

h is the empty product and it equals (1) = A.
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(2) Nonzero fractional ideals of A form a group with respect to multipli-
cation.

(3) Every nonzero ideal of A factors uniquely as a product of prime ide-
als.

(4) Every nonzero ideal of A factors as a product of prime ideals.

Note that (3) ⇒ (4) is obvious and from Theorems 4.9 and 4.10, we have
(1) ⇒ (2) and (1) ⇒ (3). Moreover, if (2) holds, then A is noetherian
because if I is a nonzero ideal of A, then II−1 = A implies that

∑n
i=1 aibi =

1 for some ai ∈ I, bi ∈ I−1, and consequently, I = (a1, . . . , an). Further, if
(2) holds, then as in the proof of Theorem 4.10, the existence of a nonzero
ideal of A which can not be factored as a product of prime ideals leads to a
contradiction. This shows that (2) ⇒ (4). Hence, to prove the equivalence
of (1), (2), (3) and (4) it suffice to show that (4) ⇒ (1). This can be done but
it needs a little bit of work; for details, we refer to [ZS, Ch. V, §6].

We have seen in Example 4.2 that a Dedekind domain need not be
a UFD. On the other hand, if a Dedekind domain A is a UFD and P is
any nonzero prime ideal of A, then P must contain an irreducible ele-
ment because otherwise there will be an infinite strictly ascending chain
(a1) ⊂ (a2) ⊂ · · · of principal ideals contained in P , contradicting that A is
noetherian. Now if p ∈ P is irreducible, then (p) is a nonzero prime ideal,
and hence maximal. Hence, P = (p). Next, by Theorem 4.10, every nonzero
ideal of A is a product of prime ideals and therefore, it is principal. Thus A
is a PID. Consequently, if a Dedekind domain A is a UFD, then FA = PA or
in other words, the quotient group FA/PA is trivial.

Definition 4.12. Let A be a Dedekind domain and K be its quotient field.
The ideal class group of A, denoted by CA, is defined to be the quotient
FA/PA. When K is a number field and A = OK is its ring of integers, CA is
often denoted by CK and called the ideal class group of K. The elements of
CK are called the ideal classes of K.

As remarked earlier, if A is a Dedekind domain, then

A is a UFD ⇐⇒ A is a PID ⇐⇒ CA is trivial.

Thus the size of the ideal class group CA is a measure of how far A is from
being a UFD. In the case when K is a number field and A = OK , it turns
out that CK is a finite (abelian) group. The order of this group is denoted
by hK and is called the class number of K.

We end this section with a result which gives a sufficient condition for
a Dedekind domain to be a PID.

Proposition 4.13. A local Dedekind domain is a PID. More generally, a Dedekind
domain that has only finitely many maximal ideals is a PID.
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Proof. Let A be a Dedekind domain with only finitely many maximal ideals,
say, P1, . . . , Pr . Note that the ideals P1, . . . , Pr , and more generally, their
powers Pm1

1 , . . . , Pmr
r are pairwise comaximal. Fix any i ∈ {1, . . . , r}. Note

that Pi 6= P 2
i (because otherwise Pi = A). So we can find ai ∈ Pi \ P 2

i . By
Chinese Remainder Theorem [cf. Prop. 1.4], there exists a ∈ A such that

a ≡ ai(mod P 2
i ) and a ≡ 1(mod Pj) for 1 ≤ j ≤ r, j 6= i.

Now, (a) is a nonzero ideal of A with (a) ⊆ Pi, and the factorization of (a)
into prime ideals can neither contain Pj for any j 6= i nor can it contain a
power of Pi with exponent 2 or more. Hence (a) = Pi. Since every nonzero
ideal of A is a product of the Pi’s, it must be principal. Thus A is a PID.

Remark 4.14. A ring with only finitely many maximal ideals is sometimes
called a semilocal ring. Thus the above Proposition says that a semilocal
Dedekind domain is a PID. In the case of local Dedekind domains, we can,
in fact, say more. Namely, a local Dedekind domain is what is called a
discrete valuation ring or a DVR. An integral domain A with quotient field
K is a discrete valuation ring if there exists a map v : K \ {0} → Z with the
properties

v(xy) = v(x)+v(y) and v(x+y) ≥ min{v(x), v(y)} for all x, y ∈ K\{0}

and A = {x ∈ K : x = 0 or v(x) ≥ 0}. The map v is called a valuation of
K and A is called its valuation ring. In case A is a local Dedekind domain,
A has only one nonzero prime ideal, i say P , and for any nonzero element
x of the quotient field of A, we can write Ax = Pn for a unique integer n,
and the map given by x 7→ n is a valuation of K whose valuation ring is A.

4.2 Extensions of Primes

In the ring OK of integers of a number field K, a prime p of Z may not
remain a prime. For instance in the ring of integers of Q(

√
−1), namely,

in the ring Z[i] 5, the rational primes 2 and 5 are no longer primes but 3
is. However, by Theorem 4.10, the ideal generated by p in this ring can be
uniquely factored as a product of prime ideals. Roughly speaking, the phe-
nomenon of a prime splitting into several primes in an extension, is known
as ramification. In this context, there is a beautiful analogue of the formula∑g

i=1 eifi = n, which holds when a monic polynomial f(X) of degree n
with coefficients in a field F , factors as f(X) = p1(X)e1 · · · pg(X)eg , where
g ≥ 0, ei > 0 and pi(X) are distinct monic irreducible polynomials in F [X]
of degree fi. We now proceed to give some relevant definitions and prove
the

∑g
i=1 eifi = n formula in the general setting of Dedekind domains.

5Elements of Z[i] are often called the Gaussian integers. These were first studied by C. F.
Gauss in his work on biquadratic reciprocity.
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In this section, we shall assume that A,K,L,B are as in the Extension
Theorem 4.3. We will also let n denote the degree of L/K.

Definition 4.15. Let p be a prime ideal of A. A prime ideal P of B is said to
lie over p if P ∩ A = p.

Since B is a Dedekind domain, for any nonzero prime ideal p of A, the
extension pB of p to B is a nonzero ideal of B and hence it can be uniquely
written as

pB =

g∏

i=1

P ei

i

where P1, P2, . . . , Pg are distinct nonzero prime ideals of B and ei are posi-
tive integers.

Definition 4.16. With p, Pi, etc. as above, the positive integer ei is called
the ramification index of Pi over p and is denoted by e(Pi/p); the field degree
[B/Pi : A/p] is called the residue degree (or the residue class degree) of Pi

over p and is denoted by f(Pi/p). If ei > 1 for some i, then we say that
p is ramified in B (or in L). Otherwise, it is said to be unramified. 6 The
extension L/K is said to be unramified if every nonzero prime ideal of A is
unramified in L.

We are now ready to prove the main result of this section.

Theorem 4.17. Let A,K,L,B be as above and n = [L : K]. Suppose p is a
nonzero prime ideal of A and we have

pB =

g∏

i=1

P ei

i

where P1, P2, . . . , Pg are distinct prime ideals of B and e1, . . . , eg are positive
integers. Then, upon letting fi = [B/Pi : A/p], we have

g∑

i=1

eifi = n.

Proof. Let S = A \ p and A′ = S−1A be the localization of A at p. Then
B′ = S−1B is the integral closure of A′ in L, and pB′ = P ′

1
e1 . . . P ′

g
eg , where

P ′
i = PiB

′. Moreover, the primes P ′
1, . . . , P

′
g are distinct, A′/pA′ ≃ A/p and

B′/P ′
i ≃ B/Pi. Thus we see that in order to prove the equality

∑
eifi = n,

we can replace A,B, p, Pi by A′, B′, p′, P ′
i respectively.

6To be accurate, we should define p to be ramified if ei > 1 for some i or B/Pi is insepa-
rable over A/p for some i. However, in number theoretic applications, A/p will usually be
a finite field and so the question of separability of residue field extensions doesn’t arise.
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In view of the observations above, we shall assume without loss of gen-
erality that A is a local Dedekind domain with p as its unique nonzero
prime ideal. Then, by the Corollary 3.23, B is a free A–module of rank
n = [L : K]. Write B = Ay1 + · · ·+Ayn, where y1, . . . , yn are some elements
of B. Now for the vector space B/pB over A/p, we clearly have

B/pB =

n∑

i=1

(A/p) yi

where yi denotes the residue class of yi mod pB. Moreover,
∑

aiyi = 0 =⇒
∑

aiyi ∈ pB =⇒ ai ∈ p

where ai ∈ A and ai denotes its residue class mod p, and the last implication
follows since {y1, . . . , yn} is a free A–basis of B. It follows that y1, . . . , yn

are linearly independent over A/p, and hence

dimA/p B/pB = n.

Now we count the same dimension by a different method. First, note that
since P1, . . . , Pg are distinct maximal ideals, P e1

1 , . . . , P
eg
g are pairwise co-

maximal. Since pB = P e1

1 · · ·P eg
g , by Chinese Remainder Theorem, we get

an isomorphism (of rings as well as of (A/p)–vector spaces)

B/pB ≃
g⊕

i=1

B/P ei

i .

Now let us find the dimension of the A/p–vector space B/P e where P = Pi

and e = ei for some i. First, we note that for any j ≥ 1, pP j ⊆ P j+1, and
hence P j/P j+1 can be considered as a vector space over A/p. We claim that
we have an isomorphism

B/P e ≃ B/P ⊕ P/P 2 ⊕ · · · ⊕ P e−1/P e.

To see this, use induction on e and the fact that for e > 1, we clearly have

B/P e−1 ≃ B/P e

P e−1/P e
.

Next, we note that B is a Dedekind domain having only finitely many
prime ideals (in fact, (0) and P1, . . . , Pg are the only primes of B), and so
B must be a PID. Let t be a generator of P , and consider the map

B/P → P j/P j+1

induced by the multiplication map x 7→ tjx of B → P j . This map is an
A/p–homomorphism, and it is clearly bijective. So

dimA/p(P
j/P j+1) = dimA/p(B/P ) = f(P/p)
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and consequently, from the above direct sum representations, we get

dimA/p(B/pB) =

g∑

i=1

dimA/p(B/P ei

i ) =

g∑

i=1

eifi,

which yields the desired identity. This completes the proof.

Examples:

1. Consider the quadratic field K = Q(i), where i denotes a square
root of −1. We know that OK is the ring Z[i] of Gaussian integers. If p is
a prime ≡ 1(mod 4), then we know (by a classical result of Fermat) that p
can be written as a sum of two squares. Thus there exist a, b ∈ Z such that
p = a2 + b2 = (a + bi)(a − bi). It can be seen that (a + bi) and (a − bi) are
distinct prime ideals in OK . Thus for the prime ideal pZ, we have g = 2,
e1 = e2 = 1 and (since

∑
eifi = 2) f1 = f2 = 1. On the other hand, it is not

difficult to see that a prime ≡ 3(mod 4) generates a prime ideal in Z[i] and
so for such a prime, we have g = 1 = e1 and f1 = 2. The case of p = 2 is
special. We have 2 = (1 + i)(1 − i). But (1 + i) and (1 − i) differ only by
a unit (namely, −i) and thus they generate the same prime ideal. So 2 is a
ramified prime and for it, we have g = 1 = f1 and e1 = 2.

The last example illustrates the following definition.

Definition 4.18. A nonzero prime ideal p of A is said to be totally ramified
in L (or in B) if pB = Pn for some prime ideal P of B.

Exercises

1. If d is a squarefree positive integer, then determine the units in the
ring Z[

√
−d].

2. Prove that in the ring Z[
√
−5], the two factorizations of 6 given by

(2)(3) and (1+
√
−5)(1−

√
−5) are indeed distinct, that is, the factors

are not associates of each other. Also show that the principal ideal (6)
admits the factorization

(6) = (2, 1 +
√
−5)(2, 1 −

√
−5)(3, 1 +

√
−5)(3, 1 −

√
−5)

and that the ideals on the right are distinct prime ideals.

3. Let i =
√
−1 and consider the ring Z[i] of Gaussian integers. Prove

that Z[i] is a normal domain. Deduce that Z[i] is a Dedekind domain.
Is Z[i] a PID? Justify your answer.
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4. Let A be a Dedekind domain with quotient field K. If S is any mul-
tiplicatively closed subset of A such that 0 /∈ S, then show that the
localization S−1A of A at S is a Dedekind domain with quotient field
K. Moreover, if L is an algebraic extension of K, then show that the
integral closure of S−1A in L is S−1B.

(i) np(J1J2) = np(J1) + np(J2) and np(J1J
−1
2 ) = np(J1) − np(J2).

(ii) np(J1 + J2) = min {np(J1), np(J2)}.

(iii) np(J1 ∩ J
)
2 = max {np(J1), np(J2)}.

5. Let A be a Dedekind domain. If P is a nonzero prime ideal of A and
e a positive integer, then show that A/P e is a principal ideal ring.
Use this and the Chinese Remainder Theorem to show that if I is any
nonzero ideal of A, then R/I is a principal ideal ring. Deduce that
every ideal of A can be generated by two elements.

6. With p and Pi as above, show that a prime ideal P of B lies over p iff
P = Pi for some i. Also show that pB∩A = p = P ei

i ∩A. Deduce that
B/pB as well as B/P ei

i B can be regarded as vector spaces over the
field A/p. Further show that B/Pi is a field extension of A/p whose
degree is at most n.

7. Let A,K,L,B and p be as above. Suppose L′ is a finite separable
extension of L and B′ is the integral closures of B in L′. Show that B′

is the integral closure of A in L′. Further, if P a prime of B lying over
p and P ′ a prime of B′ lying over P , then show that P ′ lies over p and
the following transitivity relations hold:

e(P ′/p) = e(P ′/P )e(P/p) and f(P ′/p) = f(P ′/P )f(P/p).

55



Appendix A

Primary Decomposition of
Modules

We shall discuss here an extension of the notions of associated primes and
primary decomposition to the case of modules over (noetherian) rings. The
classical case of ideals I in (noetherian) rings A corresponds, in this general
set-up, to the case of A–modules A/I ; remembering this may be helpful in
understanding some of the concepts and results below.

A.1 Associated Primes of Modules

Taking into consideration the modern viewpoint that the notion of asso-
ciated primes is more fundamental than primary decomposition, we shall
derive in this section basic results about associated primes without men-
tioning primary submodules or primary decomposition.

Throughout this section, we let A denote a ring and M an A–module.
Recall that for any x ∈ M , the annihilator of x, denoted by (0 : x), is the
ideal {a ∈ A : ax = 0} of A. On the other hand, for any a ∈ A, by (0 : a)M
we denote the submodule {x ∈ M : ax = 0} of M . The annihilator of M ,
denoted by Ann(M), is the ideal {a ∈ A : aM = 0} of A. An element
a ∈ A is said to be a zerodivisor of M if (0 : a)M 6= 0, i.e., if ax = 0 for some
x ∈ M with x 6= 0. The set of all zerodivisors of M is denoted by Z(M). An
element a ∈ A is said to be nilpotent for M if anM = 0 for some n ≥ 1. In
other words, a is nilpotent for M iff a ∈

√
Ann(M).

Definition A.1. A prime ideal p of A is called an associated prime of M if
p = (0 : x) for some x ∈ M . The set of all associated primes of M is
denoted by AssA(M), or simply by Ass(M). Minimal elements of Ass(M)
are called the minimal primes of M , and the remaining elements of Ass(M)
are called the embedded primes of M .
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Note that if p = (0 : x) ∈ Ass(M), then the map a 7→ ax of A → M
defines an embedding (i.e., an injective A–module homomorphism) A/p →֒
M . Conversely, if for p ∈ SpecA, we have an embedding A/p →֒ M , then
clearly p ∈ Ass(M). It may also be noted that if M is isomorphic to some
A–module M ′, then Ass(M) = Ass(M ′).

Lemma A.2. Let I be an ideal of A. Any maximal element of the family {(0 : y) :
y ∈ M, y 6= 0 and (0 : y) ⊇ I} is a prime ideal. In particular, if A is noetherian,
then Ass(M) 6= ∅ iff M 6= 0.

Proof. Let F := {(0 : y) : y ∈ M, y 6= 0 and (0 : y) ⊇ I} and (0 : x)
be a maximal element of F . Then (0 : x) 6= A since x 6= 0. Moreover,
if a, b ∈ A are such that ab ∈ (0 : x) and a /∈ (0 : x), then ax 6= 0 and
b ∈ (0 : ax) ⊇ (0 : x) ⊇ I . Since (0 : x) is maximal, (0 : ax) = (0 : x).
Thus b ∈ (0 : x). This proves that (0 : x) is a prime ideal. The last assertion
follows by taking I = (0).

Corollary A.3. If A is noetherian, then

Z(M) =
⋃

p∈Ass(M)

p.

Proof. It is obvious that every p ∈ Ass(M) is in Z(M). Conversely, if a ∈
Z(M), then ax = 0 for some x ∈ M with x 6= 0. Upon letting I := (0 : x) in
Lemma A.2, we see that a ∈ p for some p ∈ Ass(M).

Lemma A.4. Given any submodule N of M , we have

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪ Ass(M/N).

More generally, givem any chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M submodules
of M , we have

Ass(M) ⊆
n⋃

i=1

Ass(Mi/Mi−1).

Proof. The inclusion Ass(N) ⊆ Ass(M) is obvious. Let x ∈ M be such that
(0 : x) ∈ Ass(M). If (0 : x) /∈ Ass(N), then we claim that (0 : x) = (0 : x) ∈
Ass(M/N), where x denotes the image of x in M/N . To see this, note that
(0 : x) ⊆ (0 : x) and if a ∈ A is such that ax = 0 6= ax, then ax ∈ N and
a /∈ (0 : x). Further, since (0 : x) is prime, b ∈ (0 : ax) ⇔ ba ∈ (0 : x) ⇔
b ∈ (0 : x). Hence (0 : x) = (0 : ax) ∈ Ass(N), which is a contradiction.
Thus Ass(M) ⊆ Ass(N) ∪ Ass(M/N). The last assertion follows from this
by induction on n.

The inclusions Ass(N) ⊆ Ass(M) and Ass(M) ⊆ Ass(N)∪Ass(M/N) in
the above Lemma can, in general, be proper. This may be seen, for instance,
when A is a domain and M = A by taking N = 0 or N = a nonzero prime
ideal of A.
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Corollary A.5. Given any A-modules M1, . . . ,Mh, we have

M ≃
h⊕

i=1

Mi =⇒ Ass(M) =
h⋃

i=1

Ass(Mi).

Proof. Follows using induction on h by noting that the case of h = 2 is a
consequence of the first assertion in Lemma A.4.

Having discussed some of the properties of associated primes of quo-
tient modules, we now describe what happens to an associated prime upon
localization. Before that, let us recall that if S is multiplicativelyclosed sub-
set of A, then the map p 7→ S−1p gives a one-to-one correspondence of
{p ∈ SpecA : p ∩ S = ∅} onto SpecS−1A.

Lemma A.6. Suppose A is noetherian and S is a multiplicativelyclosed subset
of A. Then

AssS−1A(S−1M) = {S−1p : p ∈ Ass(M) and p ∩ S = ∅}

Proof. If p ∈ Ass(M) and S ∩ p = ∅, then we have an embedding A/p →֒
M , which induces an embedding S−1A/S−1p →֒ S−1M . And S−1p ∈
SpecS−1A since S ∩ p = ∅. Thus S−1p ∈ AssS−1A(S−1M). On the other
hand, given any p′ ∈ AssS−1A(S−1M), we have p′ = S−1p for some p ∈
SpecA with p ∩ S = ∅. Also, p′ = (0 : x

1 ) for some x ∈ M . Write
p = (a1, . . . , an). Now ai

1 · x
1 = 0 in S−1M for 1 ≤ i ≤ n, and thus there

exists t ∈ S such that taix = 0 for 1 ≤ i ≤ n. This implies that p ⊆ (0 : tx).
Further, if a ∈ (0 : tx), then a

1 ∈ (0 : x
1 ) = S−1p so that sa ∈ p for some

s ∈ S, and hence a ∈ p. Thus p ∈ Ass(M).

Note that the above result implies that if p ∈ Ass(M), then pAp ∈
AssAp

(Mp). So, in particular, Mp 6= 0.

Definition A.7. The set {p ∈ SpecA : Mp 6= 0} is called the support of M
and is denoted by Supp (M).

Lemma A.8. Supp (M) ⊆ {p ∈ SpecA : p ⊇ Ann(M)}. Moreover, if M is
f. g., then these two sets are equal.

Proof. If p ∈ SpecA and Mp 6= 0, then there is x ∈ M such that x
1 6= 0

in Mp. Now a ∈ Ann(M) ⇒ ax = 0 ⇒ a /∈ A \ p ⇒ a ∈ p. Thus
p ⊇ Ann(M). Next, suppose M is f. g. and p ∈ SpecA contains Ann(M).
Write M = Ax1 + · · · + Axn. If Mp = 0, we can find a ∈ A \ p such that
axi = 0 for 1 ≤ i ≤ n. But then aM = 0, i.e., a ∈ Ann(M), which is a
contradiction.

58



Theorem A.9. Suppose A is noetherian and M is finitely generated. Then there
exists a chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of submodules of M such that
Mi/Mi−1 ≃ A/pi, for some pi ∈ SpecA (1 ≤ i ≤ n). Moreover, for any such
chain of submodules, we have Ass(M) ⊆ {p1, . . . , pn} ⊆ Supp (M); furthermore,
the minimal elements of these three sets coincide.

Proof. The case of M = 0 is trivial. Suppose M 6= 0. Then there exists
p1 ∈ SpecA such that A/p1 is isomorphic to a submodule M1 of M . If
M1 6= M , we apply the same argument to M/M1 to find p2 ∈ SpecA,
and a submodule M2 of M such that M2 ⊇ M1 and A/p2 ≃ M2/M1.
By (3.1), M has no strictly ascending chain of submodules, and therefore
the above process must terminate. This yields the first assertion. More-
over, Ass(Mi/Mi−1) = Ass(A/pi) = {pi}, and so by Lemma A.4, we see
that Ass(M) ⊆ {p1, . . . , pn}. Since localisation commutes with homomor-
phic images, (Mi/Mi−1)pi

≃ Api
/piApi

6= 0. Hence (Mi)pi
6= 0. Thus

{p1, . . . , pn} ⊆ Supp (M). Lastly, if p ∈ Supp (M), then Mp 6= 0 and so
AssAp

(Mp) 6= ∅. Now Lemma A.6 shows that there exists q ∈ Ass(M) with
q ∩ (A \ p) = ∅, i.e., q ⊆ p. This implies the last assertion.

Corollary A.10. If A is noetherian and M is f. g., then Ass(M) is finite. Fur-
thermore, the minimal primes of M are precisely the minimal elements among the
prime ideals of A containing Ann(M).

Proof. Follows from Theorem A.9 in view of Lemma A.8.

Remark A.11. A chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of submodules of M
is sometimes called a filtration of M . Using a filtration as in Theorem A.9,
it is often possible to reduce questions about modules to questions about
integral domains.

A.2 Primary Decomposition of Modules

We continue to let A denote a ring and M an A–module. As in the case
of ideals, the primary decomposition of modules into primary submodules
will be achieved using the auxiliary notion of irreducible submodules. To
compare the notions and results discussed in this section to those in the
classical case, you may substitute A for M .

Definition A.12. Let Q be a submodule of M . We say that Q is primary if
Q 6= M and for any a ∈ A and x ∈ M , we have

ax ∈ Q and x /∈ Q =⇒ anM ⊆ Q for some n ≥ 1.

We say that Q is irreducible if Q 6= M and for any submodules N1 and N2 of
M we have

Q = N1 ∩ N2 =⇒ Q = N1 or Q = N2.
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Lemma A.13. Let Q be a submodule of M . If Q 6= M , then

Q is primary ⇐⇒ Z(M/Q) =
√

Ann(M/Q) .

Also, if Q is primary, then Ann(M/Q) is a primary ideal of A.

Proof. The first assertion is an immediate consequence of the definition. To
prove the last assertion, suppose Q is primary. Then Ann(M/Q) 6= M since
Q 6= M . If a, b ∈ A are such that ab ∈ Ann(M/Q) and b 6∈ Ann(M/Q), then
we can find x ∈ M such that bx 6∈ Q. Now, a(bx) ∈ Q and hence anM ⊆ Q,
i.e., an ∈ Ann(M/Q) for some n ≥ 1. Thus, Ann(M/Q) is a primary ideal
of A.

If Q is a primary submodule of M and we let p =
√

Ann(M/Q), then
by Lemma A.13, p is a prime ideal of A and we say that Q is p–primary.

Corollary A.14. Assume that A is noetherian and M is f. g.. Let Q be a submod-
ule of M . Then

Q is primary ⇐⇒ Ass(M/Q) is singleton.

Moreover, given any p ∈ SpecA, we have

Q is p–primary ⇐⇒ Ass(M/Q) = {p}.

Proof. An easy exercise using Corollary A.3, Corollary A.10, Exercise 3 and
Lemma A.13.

As we shall see in the sequel, the characterization of primary submod-
ules (of f. g. modules over noetherian rings) in Corollary A.14 above is ex-
tremely useful. For this reason perhaps, it is sometimes taken as a definition
of primary submodules [of arbitrary modules]. At any rate, we may tacitly
use the characterizations in Corollary A.14 of primary and p–primary sub-
modules in several of the proofs below.

Lemma A.15. Suppose A is noetherian, M is f. g., and Q1, . . . , Qr are p–primary
submodules of M , where r is a positive integer. Then Q1 ∩ · · · ∩ Qr is also p–
primary.

Proof. Clearly, Q1 ∩ · · · ∩ Qr 6= M . Moreover, there is a natural injective
homomorphism of M/Q1 ∩ · · · ∩Qr into M/Q1 ⊕ · · · ⊕M/Qr. Therefore, in
view of Lemma A.4, Corollary A.5 and Corollary A.14, we see that

∅ 6= Ass(M/Q1 ∩ · · · ∩ Qr) ⊆ Ass

(
r⊕

i=1

M/Qi

)
=

r⋃

i=1

Ass(M/Qi) = {p}.

Thus it follows from Corollary A.14 that Q1 ∩ · · · ∩ Qr is p–primary.
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Lemma A.16. If M is noetherian, then every submodule of M is a finite intersec-
tion of irreducible submodules of M .

Proof. Assume the contrary. Then we can find a maximal element, say Q,
among the submodules of M which aren’t finite intersections of irreducible
submodules of M . Now Q can’t be irreducible. Also Q 6= M (because M
is the intersection of the empty family of irreducible submodules of M ).
Hence Q = N1 ∩ N2 for some submodules N1 and N2 of M with N1 6= Q
and N2 6= Q. By maximality of Q, both N1 and N2 are finite intersections
of irreducible submodules of M . But then so is Q, which is a contradiction.

Lemma A.17. Suppose A is noetherian, M is f. g., and Q is an irreducible sub-
module of M . Then Q is primary.

Proof. Since Q 6= M , Ass(M/Q) 6= ∅. Suppose Ass(M/Q) contains two
distinct prime ideals p1 = (0 : x1) and p2 = (0 : x2), where x1, x2 denote the
images in M/Q of some elements x1, x2 of M . Clearly x1 and x2 are nonzero
elements of M/Q. We claim that Ax1∩Ax2 = {0} Indeed, if ax1 = bx2, with
a, b ∈ A, is nonzero, then a /∈ (0 : x1) and b /∈ (0 : x2). Since (0 : x1) is prime,
we find that (0 : x1) = (0 : ax1) (check!). Similarly, (0 : x2) = (0 : bx2). This
gives p1 = p2, which is a contradiction. Now if y ∈ (Q + Ax1) ∩ (Q + Ax2),
then y = y1 + ax1 = y2 + bx2 for some y1, y2 ∈ Q and a, b ∈ A. But then
ax1 = bx2 in M/Q and thus y ∈ Q. It follows that Q = (Q+Ax1)∩(Q+Ax2).
Also since x1 6= 0 6= x2, we have (Q + Ax1) 6= Q 6= (Q + Ax2). This
contradicts the irreducibility of Q. Thus Ass(M/Q) is singleton so that Q is
primary.

Lemma A.18. Suppose A is noetherian, M is f. g., Q is a p–primary submodule
of M . Then the inverse image of Qp under the natural map M → Mp (given by
x 7→ x

1 ) is Q.

Proof. Suppose x ∈ M is such that x
1 ∈ Qp. Then tx ∈ Q for some t ∈ A \ p.

If x /∈ Q, then x, the image of x in M/Q, is nonzero, and thus t ∈ Z(M/Q).
Hence from Corollary A.14, we see that t ∈ p, which is a contradiction.

Remark A.19. Given any p ∈ SpecA and a submodule Q′ of Mp, the inverse
image of Q′ under the natural map M → Mp is often denoted by Q′ ∩
M . Thus Lemma A.18 can be expressed by saying that if Q is a p–primary
submodule of M , then Qp ∩ M = Q. Note that we have been tacitly using
the fact that if Q is any submodule of M and S is any multiplicativelyclosed
subset of A, then S−1Q can be regarded as a submodule of S−1M .

Theorem A.20 (Primary Decomposition Theorem for Modules). Suppose
A is noetherian, M is f. g., and N is any submodule of M . Then we have

(i) N = Q1 ∩ · · · ∩ Qh for some primary submodules Q1, . . . , Qh of M .
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(ii) In (i) above, Q1, . . . , Qh can be so chosen that Qi 6⊇ ∩j 6=iQj for 1 ≤ i ≤ h,
and p1, . . . , ph are distinct, where pi :=

√
Ann(M/Qi).

(iii) If Qi and pi are as in (ii) above, then p1, . . . , ph are unique; in fact, we have
{p1, . . . , ph} = Ass(M/N). Moreover, if pi is minimal among p1, . . . , ph,
i.e., pi 6⊇ pj for j 6= i, then the corresponding primary submodule Qi is also
unique; in fact, Qi = Npi

∩ M .

Proof. Clearly, (i) is a direct consequence of Lemma A.4 and Corollary A.5.
Given a decomposition as in (i), we can use Corollary A.3 to reduce it by
grouping together the primary submodules having the same associated
prime so as to ensure that the associated primes become distinct. Then we
can successively remove the primary submodules contained in the inter-
sections of the remaining submodules. This yields (ii). Now let Q1, . . . , Qh

be as in (ii). Fix some i with 1 ≤ i ≤ h. Let Pi = ∩j 6=iQi. Clearly, N ⊂ Pi

and N 6= Pi. Thus we have

0 6= Pi

N
=

Pi

Pi ∩ Qi
≃ Pi + Qi

Qi
→֒ M/Qi,

and hence, in view of Lemmas A.2 and A.4, we find that ∅ 6= Ass(Pi/N) ⊆
Ass(M/Qi) = {pi}. Thus {pi} = Ass(Pi/N) ⊆ Ass(M/N). On the other
hand, since N = Q1 ∩ · · · ∩ Qh, M/N is isomorphic to a submodule of
⊕h

j=1M/Qj , and so by Corollary A.5,

Ass(M/N) ⊆
h⋃

j=1

Ass(M/Qj) = {p1, . . . , ph}.

This proves that Ass(M/N) = {p1, . . . , ph}. In particular, p1, . . . , ph are
unique. Now suppose, without loss of generality, that p1 is minimal among
p1, . . . , ph. Then for j > 1, p1 6⊇ pj , i.e., (A \ p1) ∩ pj 6= ∅, and hence
by Lemma A.6, we find that AssAp1

((M/Qj)p1
) = ∅; thus by Lemma A.4,

(M/Qj)p1
= 0, i.e., Mp1

= (Qj)p1
. It follows that Np1

= (Q1)p1
∩ · · · ∩

(Qh)p1
= (Q1)p1

, and, in view of Lemma A.18 and Remark A.19, we obtain
that Q1 = (Q1)p1

∩ M = Np1
∩ M . This proves (iii).

Definition A.21. A decomposition N = Q1 ∩ · · · ∩ Qh, as in (i) above is
called a primary decomposition of N . If Q1, . . . , Qh satisfy the conditions in
(ii), then it is called an irredundant (primary) decomposition of N .

It may be remarked that the examples of primary ideals, primary de-
composition of ideals, etc., discussed in the last chapter, constitute exam-
ples in this general set–up as well. Thus the pathologies which arise in
the case of ideals [see, for instance, Example 2.12] continue to exist for f. g.
modules over noetherian rings.
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Exercises

1. Let G be a finite abelian group of order n. Suppose n = pe1

1 . . . peh

h ,
where p1, . . . , ph are distinct prime numbers and e1, . . . , eh are pos-
itive integers. Let Pi denote the pi–Sylow subgroups of G for 1 ≤
i ≤ h. Show that as a Z–module, we have Ass(Pi) = piZ for each
i = 1, . . . , h. Deduce that Ass(G) = {p1Z, . . . , phZ}. More generally,
if M is a finitely generated abelian group, then M = Zr ⊕ T for some
r ≥ 0 and some finite abelian group T . If r > 0, then show that
Ass(M) = {l0Z, l1Z, . . . , lsZ}, where l0 := 0 and l1, . . . ls are the prime
numbers dividing the order of T .

2. Show that if A is a noetherian ring, M is a f. g. A-module, and I is an
ideal of A consisting only of zerodivisors of M , then there exists some
x ∈ M such that x 6= 0 and Ix = 0.

3. Show that if A is noetherian ring and M is a f. g. A-module, then

√
Ann(M) =

⋂

p∈Ass(M)

p =
⋂

p∈Supp (M)

p =
⋂

p a minimal
prime of M

p .

4. Prove Corollary A.14.

5. Let G be a finite abelian group of order n. Let the notation be as in
the Exercise 1 above. Define Qi := P1 + · · · + Pi−1 + Pi+1 + · · · + Ph

for 1 ≤ i ≤ h. Show that Qi is piZ-primary and (0) = Q1 ∩ · · · ∩ Qh

is an irredundant primary decomposition of (0). Further, show that
each of the associated primes of (0) in G is minimal. Deduce that an
irredundant primary decomposition of (0) in G is unique. In general,
if N is a subgroup of G, i.e., a Z-submodule of G, and if we let Λ :=
{i : 1 ≤ i ≤ h and N + Qi 6= G}, then show that N = ∩i∈Λ(N + Qi) is
an irredundant primary decomposition of N , and this too is unique.
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