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Preface

During Decem b er 2000, I ga v e a course of ten lectures on Algebraic Num b er Theory at the Univ ersit y

of Kiel in German y . These lectures w ere aimed at giving a rapid in tro duction to some basic asp ects of

Algebraic Num b er Theory with as few prerequisites as p ossible. I had also hop ed to co v er some parts of

Algebraic Geometry based on the idea, whic h go es bac k to Dedekind, that algebraic n um b er �elds and

algebraic curv es are analogous ob jects. But in the end, I had no time to discuss an y Algebraic Geometry .

Ho w ev er, I tried to b e thorough in regard to the material discussed and most of the pro ofs w ere either

explained fully or at least sk etc hed during the lectures. These lecture notes are a b elated ful�llmen t of

the promise made to the participan ts of m y course and the Kieler Graduiertenk olleg. I hop e that they

will still b e of some use to the participan ts of m y course and other studen ts alik e.

The �rst c hapter is a brisk review of a n um b er of basic notions and results whic h are usually

co v ered in the courses on Field Theory or Galois Theory . A somewhat detailed discussion of the notion

of norm, trace and discriminan t is included here. The second c hapter b egins with a discussion of

basic constructions concerning rings, and go es on to discuss rudimen ts of no etherian rings and in tegral

extensions. Although b oth these c hapters seem to b elong to Algebra, they are mostly written with a

view to w ards Num b er Theory . Chapters 3 and 4 discuss topics suc h as Dedekind domains, rami�cation

of primes, class group and class n um b er, whic h b elong more prop erly to Algebraic Num b er Theory .

Some motiv ation and historical remarks can b e found at the b eginning of Chapter 3. Sev eral exercises

are scattered throughout these notes. Ho w ev er, I ha v e tried to a v oid the temptation of relegating as

exercises some messy steps in the pro ofs of the main theorems. A more extensiv e collection of exercises

is a v ailable in the b o oks cited in the bibliograph y , esp ecially [4 ] and [13 ].

In preparing these notes, I ha v e b orro w ed hea vily from m y notes on Field The ory and R ami�c ation

The ory for the Instructional Sc ho ol on Algebraic Num b er Theory (ISANT) held at Bom ba y Univ ersit y

in Decem b er 1994 and to a lesser exten t, from m y notes on Commutative A lgebr a for the Instructional

Conference on Com binatorial T op ology and Algebra (ICCT A) held at I IT Bom ba y in Decem b er 1993.

Nev ertheless, these notes are neither a subset nor a sup erset of the ISANT Notes or the ICCT A notes. In

order to mak e these notes self-con tained, I ha v e inserted t w o app endices in the end. The �rst app endix

con tains m y Notes on Galois The ory , whic h ha v e b een in priv ate circulation at least since Octob er 1994.

The second app endix repro duces m y recen t article in Bona Mathematic a whic h giv es a leisurely accoun t

of discriminan ts. There is a sligh t rep etition of some of the material in earlier c hapters but this article

ma y b e useful for a studen t who migh t lik e to see some connection b et w een the discriminan t in the

con text of �eld extensions and the classical discriminan t suc h as that of a quadratic.

It is a pleasure to record m y gratitude to the participan ts of m y course, esp ecially , Andreas Baltz,

Hauk e Klein and Prof. Maxim Skrigano v for their in terest, and to the Kiel graduate sc ho ol \E�cien t

Algorithms and Multiscale Metho ds" of the German Researc h F oundation (\Deutsc he F orsc h ungsge-

meinsc haft") for its supp ort. I am particularly grateful to Prof. Dr. Anand Sriv asta v for his k een

in terest and encouragemen t. Commen ts or suggestions concerning these notes are most w elcome and

ma y b e comm unicated to me b y e-mail. Corrections or future revisions to these notes will b e p osted on

m y w eb page at http://www.math.i it b.a c. in/ � s rg/ Le cn ote s. htm l and the other notes men tioned

in the ab o v e paragraph will also b e a v ailable here.

Mum bai, Jan uary 7, 2002 Sudhir Ghorpade
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Chapter 1

Field Extensions

W e b egin with a quic k review of the basic facts regarding �eld extensions. F or more details,

consult App endix A or an y of the standard texts suc h as Lang [11 ] or Jacobson [9].

1.1 Basic F acts

Supp ose L=K is a �eld extension (whic h means that L is a �eld and K is a sub�eld of L ). W e call

L=K to b e �nite if as a v ector space o v er K , L is of �nite dimension; the de gr e e of L=K , denoted

b y [ L : K ], is de�ned to b e the v ector space dimension of L o v er K . Giv en �

1

; : : : ; �

n

2 L ,

w e denote b y K ( �

1

; : : : ; �

n

) (resp: K [ �

1

; : : : ; �

n

]) the smallest sub�eld (resp: subring) of L

con taining K and the elemen ts �

1

; : : : ; �

n

. If there exist �nitely man y elemen ts �

1

; : : : ; �

n

2 L

suc h that L = K ( �

1

; : : : ; �

n

), then L=K is said to b e �nitely gener ate d . An elemen t � 2 L suc h

that L = K ( � ) is called a primitive element , and if suc h an elemen t exists, then L=K is said to

b e a simple extension. If L

0

=K is another extension, then a homomorphism � : L ! L

0

suc h that

� ( c ) = c for all c 2 K is called a K {homomorphism of L ! L

0

. Note that a K {homomorphism

is alw a ys injectiv e and if [ L : K ] = [ L

0

: K ], then it is surjectiv e. Th us if L = L

0

, then suc h maps

are called K {automorphisms of L . The set of all K {automorphisms of L is clearly a group where

the group op eration de�ned b y comp osition of maps. This is called the Galois gr oup of L=K and

is denoted b y Gal( L=K ) or G ( L=K ). Giv en an y subgroup H of the group of automorphisms of

L , w e can asso ciate a sub�eld L

H

of L de�ned b y L

H

= f � 2 L : � ( � ) = � for all � 2 H g ; this

is called the �xe d �eld of H .

An elemen t � 2 L is said to b e algebr aic o v er K if it satis�es a nonzero p olynomial with

co e�cien ts in K . Supp ose � 2 L is algebraic o v er K . Then a nonzero p olynomial of least

p ossible degree satis�ed b y � is clearly irreducible and, moreo v er, it is unique if w e require it

to b e monic; this monic irreducible p olynomial will b e denoted b y Irr( �; K ), and called the

minimal p olynomial of � o v er K . The extension L=K is said to b e algebr aic if ev ery � 2 L is

algebraic o v er K . If L=K is algebraic, then w e call it sep ar able if Irr( �; K ) has distinct ro ots

(in some extension of K ) for ev ery � 2 L , and w e call it normal if Irr( �; K ) has all its ro ots in

L for ev ery � 2 L . It ma y b e noted that if L=K is algebraic, then it is normal if and only if

an y K {homomorphism of L in to some extension L

0

of L maps L on to itself. W e call L=K to

b e a Galois extension if it is �nite, separable and normal.

T o c hec k separabilit y , one generally uses the fact that an irreducible p olynomial in K [ X ] has
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distinct ro ots i� (= if and only if ) its deriv ativ e is a nonzero p olynomial. This fact follo ws, in

turn, from the elemen tary observ ation that a ro ot � of a p olynomial f ( X ) 2 K [ X ] is a m ultiple

ro ot i� f

0

( � ) = 0. The ab o v e fact can b e used to sho w that K is p erfect (whic h means either

the c haracteristic of K is 0 or the c haracteristic of K is p 6= 0 and K = K

p

, i.e., for an y x 2 K ,

there exists y 2 K suc h that x = y

p

) i� ev ery algebraic extension of K is separable. On the

other hand, normalit y can b e c hec k ed using the fact a �nite extension of K is normal i� it is

the \splitting �eld" of some p olynomial in K [ X ]. Recall that giv en a nonconstan t p olynomial

f ( X ) 2 K [ X ], w e can �nd an extension E of K suc h that f ( X ) splits in to linear factors in

E [ X ], and E is generated o v er K b y the ro ots of f ( X ) in E . Suc h an extension is unique up

to a K {isomorphism, and is called the splitting �eld of f ( X ) o v er K . If deg f ( X ) = n , then

the degree of the splitting �eld of f ( X ) o v er K is at most n !. Th us if f ( X ) is a nonconstan t

p olynomial in K [ X ] ha ving distinct ro ots, and L is its splitting �eld o v er K , then L=K is an

example of a Galois extension. A K {automorphism of L p erm utes the ro ots of f ( X ), and this

p erm utation uniquely determines the automorphism. Th us Gal( L=K ) ma y b e though t of as

a �nite group of p erm utations. In this case, Gal( L=K ) is also called the Galois group of the

p olynomial f ( X ) or of the equation f ( X ) = 0.

Some basic results regarding �eld extensions are the follo wing.

(i) L=K is �nite ( ) L=K is algebraic and �nitely generated.

(ii) Giv en an y � 2 L , w e ha v e:

� is algebraic o v er K , K ( � ) =K is �nite , K ( � ) = K [ � ] :

Moreo v er, if � is algebraic o v er K and deg Irr ( �; K ) = n , then f 1 ; �; �

2

; : : : ; �

n � 1

g forms

a K {basis of K ( � ).

(iii) If �

1

; : : : ; �

n

2 L are algebraic, then K ( �

1

; : : : ; �

n

) is an algebraic extension of K . F ur-

ther, if �

1

; : : : ; �

n

are separable o v er K , then it is also a separable extension. In particular,

the elemen ts of L whic h are algebraic o v er K form a sub�eld of L and among these, those

whic h are separable form a smaller sub�eld.

(iv) Finiteness, algebraicit y and separabilit y are \transitiv e" prop erties. That is, if E is a

sub�eld of L con taining K , then L=K is �nite (resp: algebraic, separable) i� b oth L=E

and E =K are �nite (resp: algebraic, separable). Moreo v er, if L=K is �nite, then [ L :

K ] = [ L : E ][ E : K ]. In case of normalit y , all w e can sa y in general is that L=K is normal

implies that L=E is normal

1

. Th us, a fortiori, the same thing holds for Galois extensions.

(v) (Primitiv e Elemen t Theorem). If L=K is �nite and separable, then it is simple, i.e., there

exists � 2 L suc h that L = K ( � ).

In Num b er Theory , one has to usually deal with algebraic extensions of Q , the �eld of

rationals, or of F

p

= Z =p Z , the �nite �eld with p elemen ts. Since Q and F

p

are clearly p erfect

�elds, ev ery suc h extension is separable and th us sa ying that it is Galois amoun ts to sa ying

that it is �nite and normal.

1

Find examples to sho w that the other t w o p ossible implications are not true.
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No w w e come to the cen tral result in Galois Theory . Supp ose L=K is a Galois extension.

Then Gal( L=K ) is a �nite group of order [ L : K ] and its �xed �eld is K . In fact, w e ha v e an

inclusion{rev ersing one{to{one corresp ondence b et w een the subgroups of the Galois group of

L=K and the in termediate �elds b et w een K and L . This corresp ondence is giv en as follo ws.

Giv en an in termediate �eld E (i.e., a sub�eld of L con taining K ), the corresp onding subgroup of

Gal( L=K ) is Gal( L=E ). And giv en a subgroup H of Gal( L=K ), the corresp onding in termediate

�eld is the �xed �eld L

H

of H . Moreo v er, giv en a sub�eld E of L con taining K , the \b ottom

part" E =K is Galois i� Gal( L=E ) is a normal subgroup of Gal( L=K ), and if this is the case,

then Gal( E =K ) is isomorphic to the factor group Gal( L=K ) = Gal ( L=E ). The ab o v e result is

usually called the F undamen tal Theorem of Galois Theory .

Adjectiv es applicable to a group are generally inherited b y a Galois extension. Th us a Galois

extension is said to b e ab elian if its Galois group is ab elian, and it is said to b e cyclic if its

Galois group is cyclic.

Before ending this section, w e mak e some remarks ab out the imp ortan t notion of comp osi-

tum (or comp osite) of �elds, whic h is v ery useful in Algebraic Num b er Theory . Let E and F

b e sub�elds of the �eld L . The c omp ositum (or the c omp osite ) of E and F (in L ), denoted b y

E F , is de�ned to b e the smallest sub�eld of L con taining b oth E and F . The comp ositum of

an arbitrary family of sub�elds of L is de�ned in a similar fashion; w e use an ob vious analogue

of the ab o v e notation in case of a �nite family of sub�elds. No w supp ose K is a sub�eld of b oth

E and F , i.e., a sub�eld of the �eld E \ F . W e list b elo w some elemen tary facts concerning

comp ositum of �elds, whic h the reader ma y pro v e as exercises.

(i) If E =K is �nitely generated (resp: �nite, algebraic, separable, normal, Galois, ab elian),

then so is E F =F .

(ii) If b oth E =K and F =K are �nitely generated (resp: �nite, algebraic, separable, normal,

Galois, ab elian), then so is E F =K .

(iii) If E =K is Galois, then the map � ! � j

E

de�nes an isomorphism of Gal( E F =F ) with the

subgroup Gal( E =E \ F ) of Gal( E =K ). If b oth E =K and F =K are Galois, then the map

� ! ( � j

E

; � j

F

) de�nes an isomorphism of Gal( E F =K ) with the subgroup Gal( E =E \ F ) �

Gal( F =E \ F ) of Gal( E =K ) � Gal( F =K ). In particular, if E \ F = K , then w e ha v e natural

isomorphisms Gal( E F =F ) ' Gal( E =K ) and Gal( E F =K ) ' Gal( E =K ) � Gal( F =K ).

Observ e that in view of the ab o v e prop erties, w e can de�ne the maximal ab elian extension

of K in L (as the comp ositum of all ab elian extensions of K con tained in L ).

Exer cise 1.1. Supp ose L=K is a Galois extension. Let H

1

and H

2

b e subgroups of Gal( L=K ),

and E

1

and E

2

b e their �xed �elds resp ectiv ely . Sho w that the �xed �eld of H

1

\ H

2

is the

comp ositum E

1

E

2

whereas the �xed �eld of the smallest subgroup H of Gal( L=K ) con taining

H

1

and H

2

(note that if either H

1

or H

2

is normal, then H = H

1

H

2

) is E

1

\ E

2

.

Exer cise 1.2. Let L

1

; : : : ; L

r

b e Galois extensions of K with Galois groups G

1

; : : : ; G

r

resp ec-

tiv ely . Supp ose for 1 � i < r w e ha v e L

i +1

\ ( L

1

L

2

: : : L

i

) = K . Then sho w that the Galois

group of L

1

L

2

: : : L

r

is isomorphic to G

1

� G

2

� � � � � G

r

.

Exer cise 1.3. Supp ose L=K is Galois and Gal( L=K ) can b e written as a direct pro duct G

1

�

� � � � G

r

. Let L

i

b e the �xed �eld of the subgroup G

1

� : : : G

i � 1

� f 1 g � G

i +1

� � � � � G

r

8



of G . Sho w that L

i

=K is Galois with Gal( L

i

=K ) ' G

i

, and L

i +1

\ ( L

1

L

2

: : : L

i

) = K , and

L

1

L

2

: : : L

r

= L .

1.2 Basic Examples

In this section, w e will discuss some examples of Galois extensions, whic h are quite imp ortan t

in Num b er Theory and Algebra.

Example 1: Quadratic Extensions.

An extension of degree 2 is called a quadr atic extension . Let L=K b e a quadratic extension.

Supp ose � 2 L is an y elemen t suc h that � =2 K . Then [ K ( � ) : K ] m ust b e > 1 and it

m ust divide [ L : K ] = 2. Therefore L = K ( � ) and � satis�es an irreducible quadratic, sa y

X

2

+ bX + c , with co e�cien ts in K . The other ro ot, sa y � , of this quadratic m ust satisfy

� + � = � b , and hence it is also in L . So L=K is normal. Also if c har K 6= 2, then clearly

� 6= � and so L=K is separable as w ell. Th us a quadratic extension is alw a ys a Galois extension

except p ossibly in c haracteristic t w o. No w assume that c har K 6= 2. Then Gal( L=K ) is a group

of order 2, and the noniden tit y elemen t in it is the automorphism of L whic h maps � to � .

Using the (Shreedharac hary a's) form ula for ro ots of quadratic p olynomial, w e can replace �

b y

p

a so that L = K (

p

a ), where a is some elemen t of K and

p

a denotes an elemen t of L

whose square is a . With this, w e can write L = f r + s

p

a : r ; s 2 K g and Gal( L=K ) = f id ; � g ,

where id denotes the iden tit y automorphism of L and � is the K {automorphism de�ned b y

� ( r + s

p

a ) = r � s

p

a .

If K = Q and L is a sub�eld of C suc h that [ L : Q ] = 2, then it is called a quadr atic �eld .

In general, a sub�eld of C whic h is of �nite degree o v er Q is kno wn as an algebr aic numb er �eld

or simply , a numb er �eld . In view of the ab o v e discussion, w e easily see that if L is a quadratic

�eld, then there exists a unique squarefree in teger m , with m 6= 0 ; 1, suc h that L = Q (

p

m ). W e

sa y that L is a r e al quadr atic �eld or imaginary quadr atic �eld according as m > 0 or m < 0.

Exer cise 1.4. Supp ose L=K is a biquadr atic extension , i.e., L = K ( �; � ) where �; � are elemen ts

of L whic h are not in K but whose squares are distinct elemen ts of K . Assume that c har K 6= 2.

Sho w that L=K is a Galois extension and compute its Galois group.

Example 2: Cyclotomic Extensions.

Let k b e a �eld and n b e a p ositiv e in teger. An elemen t ! 2 k suc h that !

n

= 1 is called

an n

th

ro ot of unit y (in k ). Let �

n

= �

n

( k ) denote the set of all n

th

ro ots of unit y in k . Then

�

n

is a �nite subgroup of the m ultiplicativ e group k

�

of nonzero elemen ts of k , and therefore

it is cyclic. An y generator of �

n

is called a primitive n

th

r o ot of unity in k . F or example,

if k = C , then � = �

n

= e

2 � i=n

is a primitiv e n

th

ro ot of unit y , and �

n

( C ) consists of the

n elemen ts 1 ; � ; �

2

; : : : ; �

n � 1

; among these the elemen ts �

j

where ( j; n ) = 1, are precisely the

primitiv e n

th

ro ots of unit y (v erify!). The sub�eld Q ( � ) of C generated b y � o v er Q is called

the n

th

cyclotomic �eld , and the extension Q ( � ) = Q is called a cyclotomic extension . Since the

p olynomial X

n

� 1 splits in to distinct linear factors in Q ( � )[ X ] as

X

n

� 1 =

n � 1

Y

i =0

( X � �

i

)

9



w e see that Q ( � ) = Q is a Galois extension whose degree is at most n . Supp ose G = Gal( Q ( � ) = Q )

and � 2 G . Then � ( � ) m ust also b e a ro ot of X

n

� 1, and therefore � ( � ) = �

j

for some in teger

j = j ( � ). It is clear that � uniquely determines j ( � ) mo dulo n . Hence the map � ! j ( � ) is

injectiv e. Moreo v er, if � ; � 2 G , then w e ha v e j ( � � ) = j ( � ) j ( � )(mo d n ). Since G is a group,

w e see that j ( � )(mo d n ) is a unit in Z =n Z , and � ! j ( � ) de�nes an injectiv e homomorphism

of G in to ( Z =n Z )

�

, the m ultiplicativ e group of units

2

in Z =n Z . It follo ws that G is ab elian and

its order is at most ' ( n ), where ' is the Euler totien t function de�ned b y

' ( n ) = the n um b er of p ositiv e in tegers � n and relativ ely prime to n:

W e will no w sho w that the order of G , i.e., [ Q ( � ) : Q ], is exactly equal to ' ( n ), whic h will imply

that the Galois group of Q ( � ) = Q is naturally isomorphic to ( Z =n Z )

�

. F or this, w e need the

follo wing elemen tary fact whic h will b e pro v ed later in Section 2.4.

F A CT: If a monic p olynomial with in teger co e�cien ts factors as f ( X ) g ( X ) , where f ( X ) and

g ( X ) are monic p olynomials with rational co e�cien ts, then the co e�cien ts of f ( X ) and g ( X )

m ust b e in tegers.

T o pro v e the earlier assertion, let �

n

( X ) denote the minimal p olynomial of � = �

n

o v er Q .

Then it m ust divide X

n

� 1 in Q [ X ]. Hence b y the F A CT ab o v e, �

n

( X ) m ust ha v e in teger

co e�cien ts and X

n

� 1 = �

n

( X ) g ( X ), for some monic p olynomial g ( X ) 2 Z [ X ]. No w let p b e

a prime n um b er whic h do esn't divide n and � b e a ro ot of �

n

( X ). W e claim that �

p

m ust also

b e a ro ot of �

n

( X ). T o pro v e the claim, assume the con trary . Then �

p

is a ro ot of g ( X ) and

hence � is a ro ot of g ( X

p

). Th us g ( X

p

) = �

n

( X ) h ( X ) for some h ( X ) 2 Z [ X ] (using the F A CT

once again!). No w reduce (mo d p ), i.e., consider the p olynomials �g ( X ) ;

�

h ( X ), etc obtained b y

reducing the co e�cien ts of g ( X ) ; h ( X ), etc., (mo d p ). Then (b y F ermat's little theorem!), w e

�nd that ( � g ( X ))

p

= �g ( X

p

) =

�

�

n

( X )

�

h ( X ). This implies that �g ( X ) and

�

�

n

( X ) ha v e a common

ro ot, and therefore the p olynomial X

n

�

�

1 in Z =p Z [ X ] has a m ultiple ro ot. But the latter is

imp ossible since the deriv ativ e of X

n

�

�

1 is �n X

n � 1

, whic h has zero as its only ro ot since n is

not divisible b y p . This pro v es our claim, and, as a consequence, it follo ws that �

j

is a ro ot of

�

n

( X ) for all in tegers j suc h that ( j; n ) = 1. Hence w e �nd that j G j = [ Q ( � ) : Q ] = deg �

n

( X )

is � ' ( n ). This together with the previous argumen t pro v es the equalit y . W e also �nd that

Irr ( � ; Q ) = �

n

( X ) =

Y

0 � j � n � 1

( j;n )=1

( X � �

j

) :

The ab o v e p olynomial is called the n

th

cyclotomic p olynomial . As noted ab o v e, it has in teger

co e�cien ts and its degree is ' ( n ). Collating the terms suitably in the pro duct represen tation

of X

n

� 1, w e readily see that

X

n

� 1 =

Y

d j n

�

d

( X )

2

The structure of this group is w ell{kno wn from Elemen tary Num b er Theory . T o b egin with, if n = p

e

1

1

: : : p

e

g

g

is the factorization of n as a pro duct of p o w ers of distinct primes, then b y Chinese Remainder Theorem [see, for

example. Prop. 2.3 in the next c hapter], w e ha v e ( Z =n Z )

�

' ( Z =p

e

1

1

Z )

�

� � � � � ( Z =p

e

g

g

Z )

�

. If p is a prime and

e a p ositiv e in teger, then ( Z =p

e

Z )

�

is cyclic if p is o dd or p = 2 and e � 2. If e > 2, then ( Z = 2

e

Z )

�

is the direct

pro duct of Z = 2 Z and Z = 2

e � 2

Z . In particular, ( Z =n Z )

�

is cyclic, i.e., primitiv e ro ots (mo d n ) exist i� n = 2 ; 4 ; p

e

or 2 p

e

where p is an o dd prime. See, for example, [2 ] or [8] for details.
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and so, in particular n =

P

d j n

' ( d ). The ab o v e form ula, in fact, giv es an e�cien t w a y to

compute �

n

( X ) in a recursiv e manner.

Let m and n b e relativ ely prime p ositiv e in tegers. W e kno w from Elemen tary Num b er

Theory , that ' is a m ultiplicativ e function, and th us ' ( mn ) = ' ( m ) ' ( n ). This implies that

[ Q ( �

m n

) : Q ] = [ Q ( �

m

) : Q ][ Q ( �

n

) : Q ]. Moreo v er, w e clearly ha v e that �

m

mn

is a primitiv e n

th

ro ot of unit y , �

n

mn

is a primitiv e m

th

ro ot of unit y , and �

m

�

n

is a primitiv e mn

th

ro ot of unit y .

Therefore Q ( �

mn

) m ust equal the comp ositum Q ( �

m

) Q ( �

n

). This together with the previous

equalit y sho ws that Q ( �

m

) \ Q ( �

n

) = Q .

Exer cise 1.5. If p is a prime n um b er, then sho w that

�

p

( X ) =

X

p

� 1

X � 1

= X

p � 1

+ X

p � 2

+ � � � + X + 1

and for an y e � 1, �

p

e

( X ) = �

p

( X

p

e � 1

). Use this and the Eisenstein Criterion for �

p

e

( X + 1)

to sho w directly that �

p

e

( X ) is irreducible in Q [ X ].

Exer cise 1.6. [This exercise assumes some familiarit y with Elemen tary Num b er Theory .

3

] Let

p b e an o dd prime, and � b e a primitiv e p

th

ro ot of unit y . Consider the Gauss sum g =

P

p � 1

t =1

�

t

p

�

�

t

. Sho w that g

2

= ( � 1)

( p � 1) = 2

p . Deduce that the quadratic extension Q (

p

p ) is

con tained in p

th

or (2 p )

th

cyclotomic extension. Conclude that an y quadratic extension is

con tained in some cyclotomic extension.

Example 3: Finite �elds

Let F b e a �nite �eld. Its c haracteristic m ust b e a prime n um b er, sa y p . Th us w e ma y

assume that it con tains F

p

= Z =p Z as a sub�eld. The extension F = F

p

has to b e �nite and if its

degree is m , then, eviden tly , F con tains precisely q = p

m

elemen ts. No w since F

�

= F n f 0 g

is a group of order q � 1, eac h of the q elemen ts of F satis�es the p olynomial X

q

� X . Th us

F is a splitting �eld of X

q

� X o v er F

p

. It follo ws that for an y prime p o w er q , there is, up

to isomorphism, a unique �eld of order q . Explicitly , it is the splitting �eld of X

q

� X o v er

Z =p Z . F or this reason, one uses the notation F

q

or GF ( q ) to denote a �eld of order q . No w

supp ose L is a �nite extension of F of degree n . Then L is a �nite �eld and j L j = q

n

. Also, L

is a splitting �eld o v er F

p

(and hence o v er F ) of the p olynomial X

q

n

� X whic h has distinct

ro ots (since its deriv ativ e is � 1, whic h is nev er zero). It follo ws that L=F is a Galois extension.

The map � : L ! L de�ned b y � ( � ) = �

q

is an F {automorphism of L (V erify!). Its p o w ers

id ; � ; �

2

; : : : ; �

n � 1

are distinct b ecause otherwise �

i

= id for some i with 0 < i < n and th us

ev ery x 2 L satis�es x

q

i

= x , whic h is a con tradiction since j L j = q

n

> q

i

. Moreo v er, �

n

= id .

Since Gal( L=F ) m ust ha v e order n = [ L : F ], it follo ws that the Galois group of L=F is the

cyclic group of order n generated b y � . The map � whic h is a canonical generator of the Galois

group of L=F is called the F r ob enius automorphism .

3

All y ou need to kno w really is that if p is prime and a is an in teger not divisible b y p , then the Legendre

sym b ol

�

a

p

�

is, b y de�nition, equal to 1 if a � x

2

(mo d p ) for some in teger x , and is equal to � 1 otherwise. It

is m ultiplicativ e, i.e.,

�

ab

p

�

=

�

a

p

� �

b

p

�

, and Euler's Criterion, viz.,

�

a

p

�

� a

( p � 1) = 2

(mo d p ) holds for an y o dd

prime p .
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1.3 Norm, T race and Discriminan t

In this section w e brie
y recall the notions of norm, trace and the discriminan t in the con text

of �eld extensions.

Supp ose L=K is a �nite extension of degree n . Giv en an y � 2 L , w e de�ne its tr ac e w.r.t.

L=K , denoted b y T r

L=K

( � ), to b e the trace of the K {linear transformation x 7! �x of L ! L .

The determinan t of this linear transformation is called the norm of � w.r.t L=K and is denoted

b y N

L=K

( � ). Equiv alen tly , if �( X ) = X

n

+ a

1

X

n � 1

+ � � � + a

n

is the c haracteristic p olynomial

of the ab o v e linear transformation (whic h is called the �eld p olynomial of � w.r.t. L=K ), then

T r( � ) = � a

1

and N ( � ) = ( � 1)

n

a

n

. As done here, the subscript L=K is usually dropp ed if it is

clear from the con text.

Basic prop erties of norm and trace are as follo ws.

(i) T r

L=K

is a K {linear map of L ! K . F or a 2 K , T r ( a ) = na .

(ii) N

L=K

is a m ultiplicativ e map of L ! K (i.e., N ( �� ) = N ( � ) N ( � ) for �; � 2 L ). F or

a 2 K , N ( a ) = a

n

.

(iii) If L=K is a Galois extension, then trace is the sum of the conjugates whereas the norm

is the pro duct of the conjugates. More precisely , for an y � 2 L , w e ha v e

T r

L=K

( � ) =

X

� 2 Gal ( L=K )

� ( � ) and N

L=K

( � ) =

Y

� 2 Gal ( L=K )

� ( � ) :

(iv) Norm and trace are transitiv e. That is, if E is a sub�eld of L con taining K , then for an y

� 2 L , w e ha v e

T r

L=K

( � ) = T r

E =K

(T r

L=E

( � )) and N

L=K

( � ) = N

E =K

( N

L=E

( � )) :

In fact, Prop ert y (iii) holds in a more general con text. Indeed, if L=K is separable and N is

some (�xed) normal extension of K con taining L , then ev ery � 2 L has exactly n = [ L : K ]

conjugates (w.r.t. L=K ) in N [these are, b y de�nition, the elemen ts � ( � ) as � v aries o v er all

K {homomorphisms of L ! N ]. In the case L = K ( � ), these n conjugates are distinct and they

are precisely the ro ots (in N ) of the minimal p olynomial Irr( �; K ) of � o v er K . In an y case, if

L=K is separable and �

(1)

; �

(2)

; : : : ; �

( n )

denote the conjugates of � w.r.t. L=K , then w e ha v e

T r

L=K

( � ) = �

(1)

+ �

(2)

+ � � � + �

( n )

and N

L=K

( � ) = �

(1)

�

(2)

: : : �

( n )

:

It ma y also b e noted that in the ab o v e set-up, the �eld p olynomial of � w.r.t. L=K is giv en

b y

Q

n

i =1

�

X � �

( i )

�

, and moreo v er, it equals Irr ( �; K )

[ L : K ( � )]

. F or a more detailed discussion

of the notions of norm and trace and pro ofs of the ab o v e results, one ma y refer to App endix A

or the b o oks [18 ] or [20 ].

R emark 1.7. It should b e noted that the de�nitions of trace and norm mak e sense ev en when

L is a ring con taining the �eld K as a subring suc h that L is of �nite dimension n as a v ector

space o v er K . In this generalit y , the prop erties 1 and 2 ab o v e con tin ue to hold. W e shall ha v e

an o ccasion to use trace in this general con text in some later sections.
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W e shall no w review the notion of discriminan t as it app ears in the theory of �eld extensions.

F or connection of this to the classical notions of discriminan t (suc h as that of a quadratic or a

cubic), see App endix B.

Let K b e �eld and L b e a ring whic h con tains K as a sub�eld and whic h has �nite dimension

n as a v ector space o v er K . [In most of the applications, L will b e a �eld extension of K of degree

n .] As remark ed ab o v e, the notions of trace and norm of elemen ts of L w.r.t K mak e sense in

this general set-up. Giv en an y n elemen ts �

1

; : : : ; �

n

2 L , the discriminant D

L=K

( �

1

; : : : ; �

n

)

of �

1

; : : : ; �

n

w.r.t. L=K is de�ned to b e the determinan t of the n � n matrix

�

T r

L=K

( �

i

�

j

)

�

[

1 � i; j � n ]. Note that D

L=K

( �

1

; : : : ; �

n

) is an elemen t of K .

Lemma 1.8. If �

1

; : : : ; �

n

2 L satisfy D

L=K

( �

1

; : : : ; �

n

) 6= 0 , then f �

1

; : : : ; �

n

g is a K {b asis

of L .

Pr o of. It su�ces to sho w that �

1

; : : : ; �

n

are linearly indep enden t o v er K . Supp ose

P

n

i =1

c

i

�

i

=

0 for some c

1

; : : : ; c

n

2 K . Multiplying the equation b y �

j

and taking the trace, w e �nd that

P

n

i =1

c

i

T r( �

i

�

j

) = 0. By h yp othesis, the matrix

�

T r

L=K

( �

i

�

j

)

�

is nonsingular. Hence it follo ws

that c

j

= 0 for j = 1 ; : : : ; n .

Lemma 1.9. If f �

1

; : : : ; �

n

g and f �

1

; : : : ; �

n

g ar e two K {b ases of L and �

i

=

P

n

j =1

a

ij

�

j

,

a

ij

2 K , then we have

D

L=K

( �

1

; : : : ; �

n

) = [det( a

ij

)]

2

D

L=K

( �

1

; : : : ; �

n

) :

In p articular, sinc e ( a

ij

) is nonsingular, D

L=K

( �

1

; : : : ; �

n

) = 0 i� D

L=K

( �

1

; : : : ; �

n

) = 0 .

Pr o of. F or an y i; j 2 f 1 ; : : : ; n g , w e ha v e

�

i

�

j

=

 

n

X

k =1

a

ik

�

k

!

�

j

=

n

X

k =1

a

ik

�

k

 

n

X

l =1

a

j l

�

l

!

=

n

X

k =1

n

X

l =1

a

ik

a

j l

�

k

�

l

:

T aking trace of b oth sides, and letting A denote the matrix ( a

ij

), w e see that

(T r( �

i

�

j

)) = A

t

(T r( �

i

�

j

)) A

and so the result follo ws.

R emarks 1.10. 1. W e shall sa y that the discriminan t of L=K is zero (or nonzero) and write

D

L=K

= 0 (or D

L=K

6= 0) if for some K {basis f �

1

; : : : ; �

n

g of L , D

L=K

( �

1

; : : : ; �

n

) is zero (or

nonzero). The last lemma justi�es this terminology .

2. Observ e that T r

L=K

( xy ) is clearly a symmetric K {bilinear form [whic h means that the

map ( x; y ) 7! T r

L=K

( xy ) of L � L ! K is a symmetric K {bilinear map]. The condition that

D

L=K

6= 0 is equiv alen t to sa ying that this form is non-degenerate. F rom Linear Algebra, one

kno ws that if the non-degeneracy condition is satis�ed, then for an y K {basis f �

1

; : : : ; �

n

g of

L , w e can �nd a \dual basis" f �

1

; : : : ; �

n

g of L o v er K suc h that T r

L=K

( �

i

�

j

) = �

ij

, where �

ij

is the usual Kronec k er delta whic h is 1 if i = j and 0 otherwise.

W e no w pro v e an imp ortan t result whic h is v ery useful in explicit computations of the

discriminan t. Here, and henceforth in this section, w e shall require L to b e a �eld.
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Theorem 1.11. If L=K is a �nite sep ar able �eld extension, then its discriminant is nonzer o.

In fact, if � is a primitive element (so that L = K ( � ) and f 1 ; �; �

2

; : : : ; �

n � 1

g is a K {b asis of

L ) and f ( X ) is its minimal p olynomial, then we have

D

L=K

(1 ; �; �

2

; : : : ; �

n � 1

) =

Y

i>j

�

�

( i )

� �

( j )

�

2

= ( � 1)

n ( n � 1) = 2

N

L=K

( f

0

( � ))

wher e �

(1)

; �

(2)

; : : : ; �

( n )

denote the c onjugates of � w.r.t. L=K and f

0

( � ) denotes the derivative

of f ( X ) evaluate d at � .

Pr o of. Since L=K is separable, the trace of an y elemen t of L equals the sum of its conjugates

w.r.t. L=K (in some �xed normal extension N of K con taining L ). Th us if f u

1

; : : : ; u

n

g is a

K {basis of L and u

i

(1)

; u

i

(2)

; : : : ; u

i

( n )

denote the conjugates of u

i

w.r.t. L=K , then w e ha v e

T r( u

i

u

j

) =

P

n

k =1

u

( k )

i

u

( k )

j

. In other w ords, the matrix ( T r ( u

i

u

j

)) equals the pro duct of the

matrix

�

u

( j )

i

�

with its transp ose. Therefore

D

L=K

( u

1

; : : : ; u

n

) =

�

�

�

�

�

�

�

�

�

�

u

(1)

1

u

(2)

1

: : : u

( n )

1

u

(1)

2

u

(2)

2

: : : u

( n )

2

.

.

.

.

.

.

.

.

.

.

.

.

u

(1)

n

u

(2)

n

: : : u

( n )

n

�

�

�

�

�

�

�

�

�

�

2

:

In case u

1

; u

2

; : : : ; u

n

are 1 ; �; : : : ; �

( n � 1)

resp ectiv ely , then the determinan t ab o v e is a V ander-

monde determinan t and the RHS b ecomes

�

�

�

�

�

�

�

�

�

1 1 : : : 1

�

(1)

�

(2)

: : : �

( n )

.

.

.

.

.

.

.

.

.

.

.

.

�

�

n � 1

�

(1)

�

�

n � 1

�

(2)

: : :

�

�

n � 1

�

( n )

�

�

�

�

�

�

�

�

�

2

=

Y

i>j

�

�

( i )

� �

( j )

�

2

= ( � 1)

n ( n � 1) = 2

Y

i 6= j

�

�

( i )

� �

( j )

�

:

Moreo v er, w e clearly ha v e

f ( X ) =

n

Y

i =1

�

X � �

( i )

�

; f

0

( X ) =

n

X

i =1

Y

j 6= i

�

X � �

( j )

�

; and N

L=K

( f

0

( � )) =

n

Y

i =1

f

0

�

�

( i )

�

:

Therefore, w e obtain the desired form ulae. Our �rst assertion follo ws from the fact that if

L = K ( � ) is separable o v er K , then the conjugates �

(1)

; �

(2)

; : : : ; �

( n )

of � w.r.t L=K are

distinct.

Corollary 1.12. If L=K is a �nite sep ar able extension, then the symmetric biline ar form

T r

L=K

( xy ) is nonde gener ate.

R emark 1.13. The con v erse of the ab o v e Theorem, viz., if D

L=K

6= 0 then L=K is separable, is

also true. F or a pro of, see [20 ].
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Chapter 2

Ring Extensions

In this c hapter, w e review some basic facts from Ring Theory .

2.1 Basic Pro cesses in Ring Theory

There are three basic pro cesses in Algebra using whic h w e can obtain a new ring from a giv en

ring

1

. Let us discuss them brie
y .

P olynomial Ring: Giv en a ring A , w e can form the ring of all p olynomials in n v ariables

(sa y , X

1

; : : : ; X

n

) with co e�cien ts in A . This ring is denoted b y A [ X

1

; : : : ; X

n

]. Elemen ts of

A [ X

1

; : : : ; X

n

] lo ok lik e

f =

X

a

i

1

::: i

n

X

i

1

1

: : : X

i

n

n

; a

i

1

::: i

n

2 A;

where ( i

1

; : : : ; i

n

) v ary o v er a �nite set of nonnegativ e in tegral n {tuples. A t ypical term (ex-

cluding the co e�cien t), viz., X

i

1

1

: : : X

i

n

n

, is called a monomial ; its (usual) de gr e e is i

1

+ � � � + i

n

.

If f 6= 0, then the (total) de gr e e of f is de�ned b y deg f = max f i

1

+ � � � + i

n

: a

i

1

::: i

n

6= 0 g .

Usual con v en tion is that deg 0 = �1 . A homo gene ous p olynomial of degree d in A [ X

1

; : : : ; X

n

]

is simply a �nite A {linear com bination of monomials of degree d . The set of all homogeneous

p olynomials of degree d is denoted b y A [ X

1

; : : : ; X

n

]

d

. Note that an y f 2 A [ X

1

; : : : ; X

n

] can

b e uniquely written as f = f

0

+ f

1

+ : : : , where f

i

2 A [ X

1

; : : : ; X

n

]

i

and f

i

= 0 for i > deg f ;

w e ma y call f

i

's to b e the homo gene ous c omp onents of f . If f 6= 0 and d = deg f , then clearly

f

d

6= 0 and f = f

0

+ f

1

+ � � � + f

d

.

Quotien t Ring: That is, the residue class ring A=I obtained b y `mo ding out' an ideal I

from a ring A . This is same as taking a homomorphic image. P assing to A=I from A has the

e�ect of making I the n ull elemen t. W e ha v e a natural surjectiv e homomorphism q : A ! A=I

giv en b y q ( x ) = x + I for x 2 A . There is a one-to-one corresp ondence b et w een the ideals of A

con taining I and the ideals of A=I giv en b y J 7! q ( J ) = J =I and J

0

7! q

� 1

( J

0

).

Lo calization: That is, the ring of fractions S

� 1

A of a ring A w.r.t. a m ultiplicativ ely

closed (m : c : ) subset S of A [i.e., a subset S of A suc h that 1 2 S and a; b 2 S ) ab 2 S ].

Elemen ts of S

� 1

A are, essen tially , fractions of the t yp e

a

s

, where a 2 A and s 2 S ; the notion

of equalit y in S

� 1

A is understo o d as follo ws.

a

s

=

b

t

, u ( at � bs ) = 0, for some u 2 S .

1

here, and hereafter, b y a ring w e mean a comm utativ e ring with iden tit y .
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Quite often, w e consider S

� 1

A when A is a domain and 0 =2 S ; in this case, the notion of

equalit y (or, if y ou lik e, equiv alence) is simpler and more natural. Note that if A is a domain

and S = A n f 0 g , then S

� 1

A is nothing but the quotien t �eld of A . Imp ortan t instance of

lo calization is when S = A n p , where p is a prime ideal of A ; in this case S

� 1

A is customarily

denoted b y A

p

. P assing from A to A

p

has the e�ect of making p in to a maximal ideal that

consists of all non units; indeed, A

p

is a lo c al ring [whic h means, a ring with a unique maximal

ideal] with p A

p

as its unique maximal ideal. In general, w e ha v e a natural homomorphism

� : A ! S

� 1

A de�ned b y � ( x ) =

x

1

. This is injectiv e if S consists of nonzero divisors, and in

this case A ma y b e regarded as a subring of S

� 1

A . Giv en an ideal I of A , the ideal of S

� 1

A

generated b y � ( I ) is called the extension of I , and is denoted b y I S

� 1

A or b y S

� 1

I . F or an

ideal J of S

� 1

A , the in v erse image �

� 1

( J ) is an ideal of A and is called the con traction of J

to A . By abuse of language, the con traction of J is sometimes denoted b y J \ A . W e ha v e

S

� 1

( J \ A ) = J and S

� 1

I \ A � I , and the last inclusion can b e strict. This implies that there

is a one-to-one corresp ondence b et w een the ideals J of S

� 1

A and the ideals I of A suc h that

f a 2 A : as 2 I for some s 2 S g = I . This, in particular, giv es a one-to-one corresp ondence

b et w een the prime ideals of S

� 1

A and the prime ideals P of A suc h that P \ S = ; .

Exer cise 2.1. Sho w that lo calization comm utes with taking homomorphic images. More pre-

cisely , if I is an ideal of a ring A and S is a m : c : subset of A , then sho w that S

� 1

A=S

� 1

I is

isomorphic to

�

S

� 1

( A=I ), where

�

S denotes the image of S in A=I .

Giv en ideals I

1

and I

2

in a ring A , their sum I

1

+ I

2

= f a

1

+ a

2

: a

1

2 I

1

; a

2

2 I

2

g , their

pr o duct I

1

I

2

= f

P

a

i

b

i

: a

i

2 I

1

; b

i

2 I

2

g , and in tersection I

1

\ I

2

are all ideals. Analogue of

division is giv en b y the c olon ide al ( I

1

: I

2

), whic h is de�ned to b e the ideal f a 2 A : aI

2

� I

1

g .

If I

2

equals a principal ideal ( x ), then ( I

1

: I

2

) is often denoted simply b y ( I

1

: x ). The ideals

I

1

and I

2

are said to b e c omaximal if I

1

+ I

2

= A . W e can also consider the r adic al of an ideal

I , whic h is de�ned b y

p

I = f a 2 A : a

n

2 I for some n � 1 g , and whic h is readily seen to b e

an ideal (b y Binomial Theorem!). One sa ys that I is a r adic al ide al if

p

I = I . Note that the

notions of sum and in tersections of ideals extend easily to arbitrary families of ideals.

Exer cise 2.2. Sho w that colon comm utes with in tersections. That is, if f I

i

g is a family of ideals

of a ring A , then for an y ideal J of A , w e ha v e \ ( I

i

: J ) = ( \ I

i

: J ) . F urther, if f I

i

g is a �nite

family , then sho w that

p

\ I

i

= \

p

I

i

. Giv e examples to sho w that these results do not hold

(for �nite families) if in tersections are replaced b y pro ducts.

A useful fact ab out ideals is the follo wing. The case when the ring in question is Z is

considered, for example, in Ch'in Chiu-Shao's Mathematic al T r e atise in the y ear 1247.

Prop osition 2.3 (Chinese Remainder Theorem). L et I

1

; I

2

; : : : ; I

n

ar e p airwise c omaxi-

mal ide als in a ring A (i.e., I

i

+ I

j

= A for al l i 6= j ). Then:

(i) I

1

I

2

: : : I

n

= I

1

\ I

2

\ � � � \ I

n

.

(ii) Given any x

1

; : : : ; x

n

2 A , ther e exists x 2 A such that x � x

j

(mo d I

j

) for 1 � j � n .

(iii) The map x (mo d I

1

I

2

� � � I

n

) 7! ( x (mo d I

1

) ; : : : ; x (mo d I

n

)) de�nes an isomorphism of

A=I

1

I

2

: : : I

n

onto the dir e ct sum A=I

1

� A=I

2

� � � � � A=I

n

.

Pr o of. (i) Giv en an y i 2 f 1 ; : : : ; n g , let J

i

= I

1

� � � I

i � 1

I

i +1

� � � I

n

. Since I

i

+ I

j

= A , w e can �nd

a

ij

2 I

j

suc h that a

ij

� 1(mo d I

i

), for all j 6= i . Let a

i

=

Q

j 6= i

a

ij

. Then a

i

� 1(mo d I

i

) and

a

i

2 J

i

. Th us I

i

+ J

i

= A . No w, x = x

1

a

1

+ � � � + x

n

a

n

satis�es x � x

j

(mo d I

j

) for 1 � j � n .
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(ii) Clearly , I

1

I

2

: : : I

n

� I

1

\ I

2

\ � � � \ I

n

. T o pro v e the other inclusion, w e induct on n .

The case of n = 1 is trivial. Next, if n = 2, then w e can �nd a

1

2 I

1

and a

2

2 I

2

suc h that

a

1

+ a

2

= 1. No w, a 2 I

1

\ I

2

implies that a = aa

1

+ aa

2

, and th us a 2 I

1

I

2

. Finally , if n > 2,

then as in (i), let J

1

= I

2

� � � I

n

and note that I

1

+ J

1

= A . Hence b y induction h yp othesis and

the case of t w o ideals, I

1

\ I

2

\ � � � \ I

n

= I

1

\ J

1

= I

1

J

1

= I

1

I

2

� � � I

n

.

(iii) The map x (mo d I

1

I

2

� � � I

n

) 7! ( x (mo d I

1

) ; : : : ; x (mo d I

n

)) is clearly w ell-de�ned and

a homomorphism. By (i), it is surjectiv e and b y (ii), it is injectiv e.

Exer cise 2.4. With I

1

; : : : ; I

n

and A as in Prop osition 2.3, sho w that the map in (iii) induces

an isomorphism of ( A=I

1

I

2

: : : I

n

)

�

on to the direct sum ( A=I

1

)

�

� ( A=I

2

)

�

� � � � � ( A=I

n

)

�

.

Deduce that the Euler � -function is m ultiplicativ e.

2.2 No etherian Rings and Mo dules

A ring A is said to b e no etherian if ev ery ideal of A is �nitely generated. It is easy to see that

this condition equiv alen t to either of the t w o conditions b elo w.

(i) (Ascending Chain Condition o r a.c.c.) If I

1

; I

2

; : : : are ideals of A suc h that I

1

� I

2

� : : : ,

then there exists m � 1 suc h that I

n

= I

m

for n � m .

(ii) (Maximalit y Condition) Ev ery nonempt y set of ideals of A has a maximal elemen t.

The class of no etherian rings has a sp ecial prop ert y that it is closed w.r.t. eac h of the three

fundamen tal pro cesses. Indeed, if A is a no etherian ring, then it is trivial to c hec k that b oth

A=I and S

� 1

A are no etherian, for an y ideal I of A and an y m : c : subset S of A ; moreo v er, the

follo wing basic result implies, using induction, that A [ X

1

; : : : ; X

n

] is also no etherian.

Theorem 2.5 (Hilb ert Basis Theorem). If A is a no etherian ring, then so is A [ X ] .

Pr o of. Let I b e an y ideal of A [ X ]. F or 0 6= f 2 I , let LC( f ) denote the leading co e�cien t

of f , and J = f 0 g [ f LC ( f ) : f 2 I ; f 6= 0 g . Then J is an ideal of A and so w e can �nd

f

1

; : : : ; f

r

2 I n f 0 g suc h that J = (LC( f

1

) ; : : : ; LC( f

r

)). Let d = max f deg f

i

: 1 � i � r g . F or

0 � i < d , let J

i

= f 0 g [ f LC ( f ) : f 2 I ; deg f = i g ; then J

i

is an ideal of A and so w e can �nd

f

i 1

; : : : ; f

ir

i

2 I suc h that J

i

= (LC( f

i 1

) ; : : : ; LC( f

ir

i

)). No w if I

0

is the ideal of A [ X ] generated

b y f f

1

; : : : ; f

r

g [ f f

ij

: 0 � i < d; 1 � j � r

i

g , then I

0

� I and for an y 0 6= f 2 I , there is

f

0

2 I

0

suc h that deg ( f � f

0

) < deg f . Th us an inductiv e argumen t yields I = I

0

.

A �eld as w ell as a PID (e.g., Z , the ring of in tegers) is clearly no etherian, and constructing

from these, using com binations of the three fundamen tal pro cesses, w e obtain a rather inex-

haustible source of examples of no etherian rings. Esp ecially imp ortan t among these are �nitely

generated algebras o v er a �eld or, more generally , o v er a no etherian ring. Let us recall the

relev an t de�nitions.

De�nition 2.6. Let B b e a ring and A b e a subring of B . Giv en an y b

1

; : : : ; b

n

2 B , w e denote

b y A [ b

1

; : : : ; b

n

] the smallest subring of B con taining A and the elemen ts b

1

; : : : ; b

n

. This

subring consists of all p olynomial expressions f ( b

1

; : : : ; b

n

) as f v aries o v er A [ X

1

; : : : ; X

n

]. W e

sa y that B is a �nitely gener ate d (f : g : ) A {algebr a or an A {algebr a of �nite typ e if there exist

b

1

; : : : ; b

n

2 B suc h that B = A [ b

1

; : : : ; b

n

]. Finitely generated k {algebras, where k is a �eld,

are sometimes called a�ne rings .
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A mo dule o v er a ring A or an A {mo dule is simply a v ector space except that the scalars come

from the ring A instead of a �eld. Some examples of A {mo dules are: ideals I of A , quotien t

rings A=I , lo calizations S

� 1

A , and f : g : A {algebras A [ x

1

; : : : ; x

n

]. The notions of submo dules,

quotien t mo dules, direct sums of mo dules and isomorphism of mo dules are de�ned in an ob vious

fashion. The concept of lo calization (w.r.t. m : c : subsets of A ) also carries to A {mo dules, and

an analogue of the prop ert y in Exercise 2.1 can b e v eri�ed easily . Direct sum of (isomorphic)

copies of A is called a free A {mo dule; A

n

= A � � � � � A

| {z }

n times

is referred to as the free A {mo dule of

rank n .

Let M b e an A {mo dule. Giv en submo dules f M

i

g of M , their sum

X

M

i

= f

X

x

i

: x

i

2 M

i

and all except �nitely man y x

i

's are 0 g

and their in tersection \ M

i

are also submo dules of M . Pro ducts of submo dules do esn't mak e

sense but the colon op eration has an in teresting and imp ortan t coun terpart. If M

1

; M

2

are

submo dules of M , w e de�ne ( M

1

: M

2

) to b e the ideal f a 2 A : aM

2

� M

1

g of A . The ideal

(0 : M ) is called the annihilator of M and is denoted b y Ann( M ); for x 2 M , w e ma y write

Ann ( x ) for the ideal (0 : x ), i.e., for Ann( Ax ). Note that if I is an ideal of A , then Ann ( A=I ) = I

and if Ann ( M ) � I , then M ma y b e regarded as an A=I {mo dule. Let us also note that for an y

submo dules M

1

; M

2

of M , w e alw a ys ha v e the isomorphisms ( M

1

+ M

2

) = M

2

' M

1

= ( M

1

\ M

2

),

and, if M

2

� M

1

and N is a submo dule of M

2

, ( M

1

= N ) = ( M

2

= N ) ' M

1

= M

2

.

W e sa y that M is �nitely gener ate d (f : g : ) or that M is a �nite A {mo dule if there exist

x

1

; : : : ; x

n

2 M suc h that M = Ax

1

+ � � � + Ax

n

. Note that in this case M is isomorphic to a

quotien t of A

n

. W e can, analogously , consider the a.c.c. for submo dules of M , and in the case

it is satis�ed, w e call M to b e no etherian . Artinian mo dules are de�ned similarly . Observ e that

M is no etherian i� ev ery submo dule of M is �nitely generated. In general, if M is f : g : , then a

submo dule of M needn't b e f : g : , i.e., M needn't b e no etherian. Ho w ev er, the follo wing basic

result assures that `most' f : g : mo dules are no etherian.

Lemma 2.7. Finitely gener ate d mo dules over no etherian rings ar e no etherian.

Pr o of (Sketch). First note that giv en a submo dule N of M , w e ha v e that M is no etherian i�

b oth N and M = N are no etherian. Use this and induction to sho w that if A is no etherian, then

so is A

n

, and, hence, an y of its quotien t mo dules.

Another basic fact ab out mo dules is the follo wing.

Lemma 2.8 (Nak a y ama's Lemma). L et M b e a f : g : A {mo dule and I b e an ide al of A such

that I M = M . Then ther e exists a 2 I such that (1 � a ) M = 0 . In p articular, if I 6= A and A

is a domain or a lo c al ring, then M = 0 .

Pr o of. W rite M = Ax

1

+ � � � + Ax

n

. Then x

i

=

P

n

j =1

a

ij

x

j

, for some a

ij

2 I . Let d =

det( �

ij

� a

ij

). Then d = 1 � a , for some a 2 I , and, b y Cramer's rule, dx

j

= 0 for all j .

R emark 2.9. The `determinan t tric k' in the ab o v e pro of sho ws more generally that if M and I

are as in (3.2) ab o v e and � : M ! M is an A {linear map suc h that � ( M ) � I M , then there

exist a

1

; : : : ; a

n

2 I suc h that �

n

+ a

1

�

n � 1

+ � � � + a

n

= 0. Th us Nak a y ama's Lemma ma y b e

considered as an analogue of Ca yley{Hamilton Theorem of Linear Algebra.
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2.3 In tegral Extensions

The theory of algebraic �eld extensions has a useful analogue to ring extensions, whic h is

discussed in this section.

Let B b e a ring and A b e a subring of B . W e ma y express this b y sa ying that B is a (ring)

extension of A or that B is an o v erring of A .

De�nition 2.10. An elemen t x 2 B is said to b e inte gr al o v er A if it satis�es a monic p olynomial

with co e�cien ts in A , i.e., x

n

+ a

1

x

n � 1

+ � � � + a

n

= 0 for some a

1

; : : : ; a

n

2 A . If ev ery elemen t

of B is in tegral o v er A , then w e sa y that B is an inte gr al extension of A or that B is inte gr al

o v er A .

Eviden tly , if x 2 B satis�es an in tegral equation suc h as ab o v e, then 1 ; x; x

2

; : : : ; x

n � 1

generate A [ x ] as an A {mo dule. And if B

0

is a subring of B con taining A [ x ] suc h that B

0

=

Ax

1

+ � � � + Ax

n

, then for an y b 2 B

0

, bx

i

=

P

a

ij

x

j

for some a

ij

2 A so that b satis�es the

monic p olynomial det ( X �

ij

� a

ij

) 2 A [ X ]. Th us w e obtain the follo wing criteria.

x 2 B is in tegral o v er A , A [ x ] is a �nite A {mo dule

, a subring B

0

of B con taining A [ x ] is a �nite A {mo dule.

In particular, if B is a �nite A {mo dule, then B is in tegral o v er A . The con v erse is true if w e

further assume (the necessary condition) that B is a f : g : A {algebra. This follo ws b y observing

that the ab o v e criteria implies, using induction, that if x

1

; : : : ; x

n

2 B are in tegral o v er A , then

A [ x

1

; : : : ; x

n

] is a �nite A {mo dule. This observ ation also sho ws that the elemen ts of B whic h

are in tegral o v er A form a subring, sa y C , of B . If C = B , w e sa y that A is inte gr al ly close d in

B . A domain is called inte gr al ly close d or normal if it is in tegrally closed in its quotien t �eld.

Note that if S is a m : c : subset of A , B is in tegral o v er A , and J is an ideal of B , then S

� 1

B

(resp: B =J ) is in tegral o v er S

� 1

A (resp: A=J \ A ); moreo v er, if A is a normal domain and

0 =2 S , then S

� 1

A is also a normal domain.

Exer cise 2.11. Sho w that a UFD is normal. Also sho w that if A is a domain, then A is normal

i� A [ X ] is normal. F urther, sho w that if A is a normal domain, K is its quotien t �eld, and x

is an elemen t of a �eld extension L of K , then x is in tegral o v er A implies that the minimal

p olynomial of x o v er K has its co e�cien ts in A .

Example 2.12. Let B = k [ X ; Y ] = ( Y � X

2

), and let x; y denote the images of X ; Y in B so that

B = k [ x; y ]. Let A = k [ y ]. Then x is in tegral o v er A , and hence B is in tegral o v er A . On the

other hand, if B = k [ X ; Y ] = ( X Y � 1) = k [ x; y ], then x is not in tegral o v er A = k [ y ]. It ma y b e

instructiv e to note, indirectly , that B ' k [ Y ; 1 = Y ] is not a �nite k [ Y ]{mo dule. These examples

corresp ond, roughly , to the fact that the pro jection of parab ola along the x {axis on to the y {

axis is a `�nite' map in the sense that the in v erse image of ev ery p oin t is at `�nite distance',

whereas in the case of h yp erb ola, this isn't so. Similar examples in \higher dimensions" can b e

constructed b y considering pro jections of surfaces on to planes, solids on to 3{space, and so on.

Examples of in tegral (resp: non{in tegral) extensions of Z are giv en b y subrings B of n um b er

�elds (viz., sub�elds of C of �nite degree o v er Q ) suc h that B � O

K

(resp: B 6� O

K

), where

O

K

denotes the ring of in tegers in K . Indeed, O

K

is nothing but the in tegral closure of Z in

K .

A precise de�nition of dimension for arbitrary rings can b e giv en as follo ws.
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De�nition 2.13. The (Krul l) dimension of a ring A is de�ned as

dim A = max f n : 9 distinct primes p

0

; p

1

; : : : ; p

n

of A suc h that p

0

� p

1

� � � � � p

n

g :

R emark 2.14. Observ e that a �eld has dimension 0. A PID whic h is not a �eld, in particular

Z as w ell as k [ X ], is clearly of dimension 1. It can b e pro v ed that dim k [ X

1

; : : : ; X

n

] = n . F or

more on this topic, see [1].

Some of the basic results ab out in tegral extensions are as follo ws. In the �v e results giv en

b elo w, B denotes an in tegral extension of A and p denotes a prime ideal of A .

Theorem 2.15. A is a �eld if and only if B is a �eld. A lso, if q is a prime ide al of B such

that q \ A = p , then p is maximal i� q is maximal. Mor e over, if q

0

is any prime ide al of B such

that q � q

0

and q

0

\ A = p , then q = q

0

.

Corollary 2.16. dim B � dim A . In p articular, if B is a domain and dim A � 1 , then dim A =

dim B .

Theorem 2.17 (Lying Ov er Theorem). Ther e exists a prime ide al q of B such that q \ A =

p . In p articular, p B \ A = p .

Theorem 2.18 (Going Up Theorem). If q is a prime ide al of B such that q \ A = p , and

p

0

is a prime ide al of A such that p � p

0

, then ther e exists a prime ide al q

0

of B such that q � q

0

and q

0

\ A = p .

Corollary 2.19. dim A = dim B .

Pr o ofs (Sketch). Easy manipulations with in tegral equations of relev an t elemen ts pro v es the

�rst assertion of Theorem 2.15; the second and third assertions follo w from the �rst one b y

passing to quotien t rings and lo calizations resp ectiv ely . T o pro v e Theorem 2.17, consider A

0

=

A

p

and B

0

= S

� 1

B where S = A n p . Then B

0

is an in tegral extension of A

0

and if q

0

is an y

maximal ideal of B

0

, then q

0

\ A

0

is necessarily maximal and th us q

0

\ A

0

= p A

0

. No w q = q

0

\ B

lies o v er p , and th us Theorem 2.17 is pro v ed. Theorem 2.18 follo ws b y applying Theorem 2.17

to appropriate quotien t rings.

Exer cise 2.20. Pro v e the t w o corollaries ab o v e using the results preceding them.

R emark 2.21. It ma y b e noted that Corollary 2.19 is an analogue of the simple fact that if

L=K is an algebraic extension of �elds con taining a common sub�eld k , then tr : deg :

k

L =

tr : deg :

k

K . Recall that if K is a ring con taining a �eld k , then elemen ts �

1

; : : : ; �

d

of K are said

to b e algebr aic al ly indep endent o v er k if they do not satisfy an y algebraic relation o v er k , i.e.,

f ( �

1

; : : : ; �

d

) 6= 0 for an y 0 6= f 2 k [ X

1

; : : : ; X

n

]. A subset of K is algebr aic al ly indep endent if

ev ery �nite collection of elemen ts in it are algebraically indep enden t. If K is a �eld then an y t w o

maximal algebraically indep enden t subsets ha v e the same cardinalit y , called the tr ansc endenc e

de gr e e of K =k and denoted b y tr : deg :

k

K ; suc h subsets are then called tr ansc endenc e b ases

of K =k ; note that an algebraically indep enden t subset S is a transcendence basis of K =k i�

K is algebraic o v er k ( S ), the smallest sub�eld of K con taining k and S . If B is a domain

con taining k and K is its quotien t �eld, then one sets tr : deg :

k

B = tr : deg :

k

K . Finally , note that

k [ X

1

; : : : ; X

n

] and its quotien t �eld k ( X

1

; : : : ; X

n

) are clearly of transcendence degree n o v er k .

A go o d reference for this material is [20 , Ch. 2].
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2.4 Discriminan t of a Num b er Field

In this section, w e shall �rst discuss some basic prop erties of normal domains. A k ey result

here is the so called Finiteness Theorem. This will lead to the notion of an in tegral basis and

the notion of absolute discriminan t of a n um b er �eld.

Prop osition 2.22. L et A b e a domain with K as its quotient �eld. Then we have the fol lowing.

(i) If an element � (in some extension L of K ) is algebr aic over K , then ther e exists c 2 A

such that c 6= 0 and c� is inte gr al over A . Conse quently, if f �

1

; : : : ; �

n

g is a K {b asis of

L , then ther e exists d 2 A such that d 6= 0 and f d�

1

; : : : ; d�

n

g is a K {b asis of L whose

elements ar e inte gr al over A .

(ii) If A is normal, and f ( X ) ; g ( X ) ar e monic p olynomials in K [ X ] such that f ( X ) g ( X ) 2

A [ X ] , then b oth f ( X ) and g ( X ) ar e in A [ X ] .

(iii) If A is normal, L=K is a �nite sep ar able extension and � 2 L is inte gr al over A , then

the c o e�cients of the minimal p olynomial of � over K as wel l as the �eld p olynomial of

� w.r.t. L=K ar e in A . In p articular, T r

L=K

( � ) 2 A and N

L=K

( � ) 2 A , and mor e over,

if f �

1

; : : : ; a

n

g is a K {b asis of L c onsisting of elements which ar e inte gr al over A , then

D

L=K

( �

1

; : : : ; �

n

) 2 A .

Pr o of. (i) If � satis�es the monic p olynomial X

n

+ a

1

X

n � 1

+ � � � + a

n

2 K [ X ], then w e can

�nd a common denominator c 2 A suc h that c 6= 0 and a

i

=

c

i

c

for some c

i

2 A . Multiplying

the ab o v e p olynomial b y c

n

, w e get a monic p olynomial in A [ X ] satis�ed b y c� .

(ii) The ro ots of f ( X ) as w ell as g ( X ) (in some extension of K ) are in tegral o v er A b ecause

they satisfy the monic p olynomial f ( X ) g ( X ) 2 A [ X ]. No w the co e�cien ts of f ( X ) as w ell as

g ( X ) are the elemen tary symmetric functions of their ro ots (up to a sign), and therefore these

are also in tegral o v er A . But the co e�cien ts are in K . It follo ws that b oth f ( X ) and g ( X ) are

in A [ X ].

(iii) If � is in tegral o v er A , then clearly so is ev ery conjugate of � w.r.t. L=K . No w an argumen t

similar to that in (ii) ab o v e sho ws that the co e�cien ts of Irr( �; K ) as w ell as the �eld p olynomial

of � w.r.t. L=K are in A .

It ma y b e observ ed that a pro of of the F A CT in Section 1.2 follo ws from (ii) ab o v e. W e are

no w ready to pro v e the follo wing imp ortan t result.

Theorem 2.23 (Finiteness Theorem). L et A b e a normal domain with quotient �eld K .

Assume that L=K is a �nite sep ar able extension of de gr e e n . L et B b e the inte gr al closur e of A

in L . Then B is c ontaine d in a fr e e A {mo dule gener ate d by n elements. In p articular, if A is

also assume d to b e no etherian, then B is a �nite A {mo dule and a no etherian ring.

Pr o of. In view of (i) in the Prop osition ab o v e, w e can �nd a K {basis f �

1

; : : : ; �

n

g of L , whic h

is con tained in B . Let f �

1

; : : : ; �

n

g b e a dual basis, w.r.t. the nondegenerate bilinear form

T r

L=K

( xy ), corresp onding to f �

1

; : : : ; �

n

g . Let x 2 B . Then x =

P

j

b

j

�

j

for some b

j

2 K .

No w T r ( �

i

x ) =

P

j

b

j

T r( �

i

�

j

) = b

i

. Moreo v er, since �

i

x is in tegral o v er A , it follo ws from the

Prop osition ab o v e that b

i

2 A . Th us B is con tained in the A {mo dule generated b y �

1

; : : : ; �

n

.

This mo dule is free since �

1

; : : : ; �

n

are linearly indep enden t o v er K .
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When A is a PID, or b etter still, when A = Z , the conclusion of Finiteness Theorem can b e

sharp ened using the follo wing lemma.

Lemma 2.24. L et A b e a PID, M b e an A {mo dule gener ate d by n elements x

1

; : : : ; x

n

, and

let N b e a submo dule of M .

(i) N is gener ate d by at most n elements. In fact, we c an �nd a

ij

2 A for 1 � i � j � n

such that

N = Ay

1

+ � � � + Ay

n

where y

i

=

X

j � i

a

ij

x

j

for 1 � i � n: (2.1)

(ii) Assume that A = Z and M is a Z -submo dule of K , wher e K is a numb er �eld with

[ K : Q ] = n . F urther assume that N c ontains a Q -b a sis of K . Then M = N is �nite and

we c an cho ose a

ij

2 A , for 1 � i � j � n , satisfying (2.1) and with the additional pr op erty

a

ii

> 0 for 1 � i � n and j M = N j = a

11

a

22

� � � a

nn

= det( a

ij

) (2.2)

wher e, by c onvention, a

ij

= 0 for j < i .

Pr o of. (i) W e ha v e M = Ax

1

+ � � � + Ax

n

. Let us use induction on n . Let

I = f a 2 A : ax

1

+ a

2

x

2

+ � � � + a

n

x

n

2 N for some a

2

; : : : ; a

n

2 A g :

Then I is an ideal of A and th us I = ( a

11

) for some a

11

2 A . Also, there exist a

12

; : : : ; a

1 n

2 A

suc h that y

1

2 N where y

1

= a

11

x

1

+ a

12

x

2

+ � � � + a

1 n

x

n

. If n = 1, w e ha v e N = I x

1

= Ay

1

,

where y

1

= a

11

x

1

and th us the result is pro v ed in this case. If n > 1, then let M

1

= Ax

2

+ : : : Ax

n

and N

1

= N \ M

1

. By induction h yp othesis, w e can �nd a

ij

2 A for 2 � i � j � n suc h that

N

1

= Ay

2

+ � � � + Ay

n

where y

i

=

X

j � i

a

ij

x

j

for 2 � i � n:

No w if y 2 N , then y = a

1

x

1

+ a

2

x

2

+ � � � + a

n

x

n

for some a

1

; : : : ; a

n

2 A . Moreo v er a

1

2 I and

th us a

1

= �

1

a

11

for some �

1

2 A . Hence y � �

1

y

1

2 N

1

and so y � �

1

y

1

= �

2

y

2

+ � � � + �

n

y

n

for

some �

2

; : : : ; �

n

2 A . It follo ws that N = Ay

1

+ � � � + Ay

n

and y

i

=

P

j � i

a

ij

x

j

, as desired.

(ii) T o b egin with, let a

ij

2 A = Z and y

i

2 N b e suc h that (2.1) holds. If N con tains

a Q - basis of K , then it is clear that K = Q y

1

+ � � � + Q y

n

and hence y

1

; : : : ; y

n

are linearly

indep enden t o v er Q . No w, if some a

ii

= 0, then w e see easily that y

i

is a Q -linear com bination

of y

i +1

; : : : ; y

n

, whic h is a con tradiction. Th us, a

ii

6= 0 for 1 � i � n and so replacing some y

i

's

b y � y

i

's, if necessary , w e can assume that a

ii

> 0 for 1 � i � n .

Giv en an y x 2 M , write x = a

1

x

1

+ � � � + a

n

x

n

, where a

1

; : : : ; a

n

2 Z . W e can �nd unique

in tegers q

1

and r

1

suc h that a

1

= a

11

q

1

+ r

1

and 0 � r

1

< a

11

. Hence

x � q

1

y

1

= r

1

x

1

+ b

2

x

2

+ � � � + b

n

x

n

for some b

2

; : : : ; b

n

2 Z :

Next, let q

2

; r

2

2 Z b e suc h that b

2

= a

22

q

2

+ r

2

and 0 � r

2

< a

22

. Hence

x � q

1

y

1

� q

2

y

2

= r

1

x

1

+ r

2

x

2

+ c

3

x

3

+ � � � + b

n

x

n

for some c

3

; : : : ; c

n

2 Z :
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Con tin uing in this w a y , w e obtain q

1

; : : : ; q

n

2 Z and r

1

; : : : ; r

n

2 Z suc h that

x � ( q

1

y

1

+ � � � + q

n

y

n

) = r

1

x

1

+ � � � + r

n

x

n

with 0 � r

i

< a

ii

:

Th us r

1

x

1

+ � � � + r

n

x

n

is a represen tativ e of x in M = N . Moreo v er, this represen tativ e is

unique b ecause the di�erence of t w o suc h represen tativ es will b e an elemen t of N of the form

s

1

x

1

+ � � � + s

n

x

n

, where s

i

2 Z with j s

i

j < a

ii

, and from (2.1) , one sees easily that if s

j

is the �rst

nonzero in teger among s

1

; : : : ; s

n

, then a

j j

divides s

j

, whic h is a con tradiction. It follo ws that

the elemen ts of M = N are in bijection with n -tuples ( r

1

; : : : ; r

n

) of in tegers with 0 � r

i

< a

ii

.

Consequen tly , j M = N j = a

11

a

22

� � � a

nn

.

Corollary 2.25. L et A; K ; L; n; B b e as in the Finiteness The or em. Assume that A is a

PID. Then B is a fr e e A {mo dule of r ank n , i.e., ther e exist n line arly indep endent elements

y

1

; : : : ; y

n

2 B such that B = Ay

1

+ � � � + Ay

n

.

Pr o of. F ollo ws from Finiteness Theorem 2.23 and Lemma 2.24 (i).

The ab o v e Corollary applied in the particular case of A = Z , sho ws that the ring of in tegers

of a n um b er �eld alw a ys has a Z {basis. Suc h a basis is called an inte gr al b asis of that ring or

of the corresp onding n um b er �eld.

In general, supp ose K is a n um b er �eld with [ K : Q ] = n , and N is a Z -submo du le of

M = O

K

suc h that N con tains a Q -basis of K . Then b y Lemma 2.24 (ii), w e see that N has

a Z -basis of n elemen ts, and w e call this an inte gr al b asis of N . Notice that if f �

1

; : : : ; �

n

g is

an in tegral basis of N � O

K

, then b y Prop osition 2.22 (iii), D

L=K

( �

1

; : : : ; �

n

) is an in teger.

F urther, if f u

1

; : : : ; u

n

g is an y Q {basis of K con tained in N , then u

i

=

P

j

a

ij

�

j

for some

n � n nonsingular matrix ( a

ij

) with en tries in Z . If d = det( a

ij

), then d 2 Z and w e ha v e

D

L=K

( u

1

; : : : ; u

n

) = d

2

D

L=K

( �

1

; : : : ; �

n

). If f u

1

; : : : ; u

n

g is also an in tegral basis of N , then

clearly d = � 1. It follo ws that an y t w o in tegral bases of N ha v e the same discriminan t, and

among all bases of K con tained in N , the discriminan t of an in tegral basis has the least absolute

v alue. W e denote the discriminan t of an in tegral basis of N b y �( N ) and call this the (absolute)

discriminant of N . In case N = O

K

, the discriminan t �( O

K

) is denoted b y d

K

and called the

(absolute) discriminant of K . The t w o discriminan ts �( N ) and d

K

= �( O

K

) are related b y

the form ula

�( N ) = jO

K

= N j

2

d

K

(2.3)

whic h is an immediate consequence of Lemmas 1.9 and 2.24 (ii) where in the latter w e tak e

x

1

; : : : ; x

n

to b e an in tegral basis of K .

There are t w o cases when the form ula (2.3) is particularly useful. One is when K = Q ( � )

is generated b y a single elemen t � whic h is in tegral o v er Z and N = Z [ � ]. In this case, if w e

kno w that �( Z [ � ]) = D

K = Q

(1 ; �; : : : ; �

n � 1

) is squarefree, then w e can conclude from (2.3) that

O

K

= Z [ � ]. Another case is when N is a nonzero ideal I of O

K

. Note that I 6= 0 implies that

I \ Z 6= 0 since A is in tegral o v er Z ; no w, if m is a nonzero in teger in I \ Z and f �

1

; : : : ; �

n

g is

a Q -basis of K con tained in O

K

, then f m�

1

; : : : ; m�

n

g is a Q -basis of K con tained in I . Th us

I do es satisfy the h yp othesis for the existence of an in tegral basis and for the form ula (2.3) to

hold with N = I . This case will b e tak en up again in Chapter 4.
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R emark 2.26. An alternativ e pro of of the existence of an in tegral basis of K can b e giv en b y

pic king a Q {basis of K con tained in O

K

whose discriminan t has the least p ossible absolute

v alue, and sho wing that this has to b e an in tegral basis. T ry this! Or see App endix B for a

pro of along these lines.

W e no w discuss t w o examples to illustrate the computation of discriminan t and determina-

tion of in tegral bases.

Example 1: Quadratic Fields.

Let K b e a quadratic �eld and O b e its ring of in tegers. As noted b efore, w e ha v e K =

Q (

p

m ), where m is a squarefree in teger. W e no w attempt to giv e a more concrete description

of O . First, note that Z [

p

m ] = f r + s

p

m : r ; s 2 Z g � O . Let x = a + b

p

m 2 O for some

a; b 2 Q . Then T r( x ) = 2 a and N ( x ) = a

2

� mb

2

(v erify!) and b oth of them m ust b e in Z .

Since m is squarefree and a

2

� mb

2

2 Z , w e see that a 2 Z if and only if b 2 Z . Th us if a =2 Z ,

then w e can �nd an o dd in teger a

1

suc h that 2 a = a

1

, and relativ ely prime in tegers b

1

and c

1

with c

1

> 1 suc h that b =

b

1

c

1

. No w

�

a

1

= 2 a 2 Z and a

2

� mb

2

2 Z

�

)

�

4 j c

2

1

a

2

1

and c

2

1

j 4 mb

2

1

�

) c

1

= 2 :

Hence b

1

is o dd and a

2

1

� mb

2

1

� 0(mo d 4). Also a

1

is o dd, and therefore, m � 1(mo d 4). It

follo ws that if m 6� 1(mo d 4), then a; b 2 Z , and so in this case, O = f a + b

p

m : a; b 2 Z g and

f 1 ;

p

m g is an in tegral basis. In the case m � 1(mo d 4), the preceding observ ations imply that

O �

�

a

1

+ b

1

p

m

2

: a

1

; b

1

are in tegers ha ving the same parit y , i.e., a

1

� b

1

(mo d 2)

�

and, moreo v er,

1+

p

m

2

2 O since it is a ro ot of X

2

� X �

m � 1

4

; therefore O = Z [

1+

p

m

2

] and

f 1 ;

1+

p

m

2

g is an in tegral basis. W e can no w compute the discriminan t of K as follo ws.

d

K

=

8

>

>

<

>

>

:

det

�

2 0

0 2 m

�

= 4 m if m � 2 ; 3(mo d 4)

det

�

2 1

1 (1 + m ) = 2

�

= m if m � 1(mo d 4) :

It ma y b e remark ed that the in teger d = d

K

determines the quadratic �eld K completely , and

the set f 1 ;

d +

p

d

2

g is alw a ys an in tegral basis of K . (V erify!)

Example 2: Cyclotomic Fields.

Let p b e an o dd prime and � = �

p

b e a primitiv e p

th

ro ot of unit y . Consider the cyclotomic

�eld K = Q ( � ). W e kno w that K = Q is a Galois extension and its Galois group is isomorphic

to ( Z =p Z )

�

, whic h is cyclic of order p � 1. The minimal p olynomial of � o v er Q is giv en b y

�

p

( X ) =

X

p

� 1

X � 1

= X

p � 1

+ X

p � 2

+ � � � + X + 1 =

p � 1

Y

i =1

�

X � �

i

�

:

W e no w try to determine O

K

, the ring of in tegers of K , and d

K

, the discriminan t of K . Let us

�rst note that since � 2 O

K

, the ring Z [ � ], whic h is generated as a Z {mo dule b y 1 ; � ; �

2

; : : : ; �

p � 1

,
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is clearly con tained in O

K

. Moreo v er, w e ha v e

D

K = Q

(1 ; � ; : : : ; �

p � 1

) = ( � 1)

( p � 1)( p � 2) = 2

N

K = Q

(�

0

p

( � )) = ( � 1)

( p � 1) = 2

N

K = Q

�

p�

p � 1

( � � 1)

�

:

Since �

p

( X ) is the minimal p olynomial of K = Q ( � ) o v er Q , w e clearly see that N

K = Q

( � ) =

( � 1)

p � 1

� 1 = 1. And since the minimal p olynomial of � � 1 is

�

p

( X + 1) =

( X + 1)

p

� 1

X

=

p

X

i =1

�

p

i

�

X

i � 1

= X

p � 1

+ pX

p � 2

+ � � � +

�

p

2

�

X + p;

w e see that N ( � � 1) = ( � 1)

p � 1

p = p . Th us N (�

0

p

( � )) =

p

p � 1

� 1

p

= p

p � 2

. On the other hand,

N ( � � 1) is the pro duct of its conjugates, and so w e obtain the iden tit y

p = ( � � 1)( �

2

� 1) : : : ( �

p � 1

� 1) ;

whic h implies that the ideal ( � � 1) O

K

\ Z con tains p Z . But ( � � 1) is not a unit in O

K

(lest

ev ery conjugate ( �

i

� 1) w ould b e a unit and hence p w ould b e a unit in Z ). So it follo ws

that ( � � 1) O

K

\ Z = p Z . No w supp ose x 2 O

K

. Then x = c

0

+ c

1

� + � � � + c

p � 1

�

p � 1

for some c

i

2 Q . W e shall no w sho w that c

i

are, in fact, in Z . T o this e�ect, consider

( � � 1) x = c

0

( � � 1) + c

1

( �

2

� � ) + � � � + c

p � 1

( �

p

� �

p � 1

). W e ha v e T r( � � 1) = � p and

T r( �

i +1

� �

i

) = 1 � 1 = 0 for 1 � i < p . Therefore c

0

p = � T r(( � � 1) x ) 2 ( � � 1) O

K

\ Z = p Z , and

so c

0

2 Z . Next, �

� 1

( x � c

0

) = �

p � 1

c

0

is an elemen t of O

K

whic h equals c

1

+ c

2

� + � � � + c

p � 1

�

p � 2

.

Using the previous argumen t, w e �nd that c

1

2 Z . Con tin uing in this w a y , w e see that c

i

2 Z

for 0 � i � p � 1. It follo ws that O

K

= Z [ � ] and f 1 ; � ; �

2

; : : : ; �

p � 1

g is an in tegral basis of O

K

.

As a consequence, w e obtain that

d

K

= D

K = Q

(1 ; � ; �

2

; : : : ; �

p � 1

) = ( � 1)

( p � 1) = 2

p

p � 2

:

Exer cise 2.27. Let n = p

e

where p is a prime and e is a p ositiv e in teger. Sho w that the ring

of in tegers of Q ( �

n

) is Z [ �

n

] and the discriminan t of Q ( �

n

) is equal to ( � 1)

' ( p ) = 2

p

p

e � 1

( pe � e � 1)

.

Deduce that, in particular, the only prime dividing this discriminan t is p and that the sign of

this discriminan t is negativ e only if n = 4 or p � 3(mo d 4).

R emark 2.28. If n is an y in teger > 1 and � = �

n

is a primitiv e n

th

ro ot of unit y , then it can b e

sho wn that the ring of in tegers of Q ( �

n

) is Z [ �

n

] and the discriminan t of Q ( �

n

) equals

( � 1)

' ( n ) = 2

n

' ( n )

Q

p j n

p

' ( n ) = ( p � 1)

:

The pro of is somewhat di�cult. In terested reader ma y see [19 ].

Exer cise 2.29 (Stickelb er ger's The or em). If K is a n um b er �eld, then d

K

� 0 or 1(mo d 4).

[Hin t: Let f u

1

; : : : ; u

n

g b e an in tegral basis of K so that d

K

=

h

det

�

u

( j )

i

� i

2

, where u

(1)

i

; : : : ; u

( n )

i

denote the conjugates of u

i

w.r.t. K = Q . W rite the ab o v e determinan t as P � N , where P and

N denote the con tribution from ev en and o dd p erm utations, resp ectiv ely . Sho w that P + N

and P N are in tegers and d

K

= ( P + N )

2

� 4 P N .] V erify this congruence from the form ulae

ab o v e when K is a quadratic �eld or a cyclotomic �eld,

Exer cise 2.30. Let K = Q ( � ) where � is a ro ot of X

3

+ 2 X + 1. Sho w that �( Z [ � ]) = � 59.

Deduce that f 1 ; �; �

2

g is an in tegral basis of K .
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Chapter 3

Dedekind Domains and Rami�cation

Theory

In the in v estigation of F ermat's Last Theorem and Higher Recipro cit y La ws, mathematicians

in the 19th cen tury w ere led to ask if the unique factorization prop ert y enjo y ed b y the in tegers

also holds in the ring of in tegers in an algebraic n um b er �eld, esp ecially in the ring of cyclotomic

in tegers. In 1844, E. Kummer sho w ed that this do es not hold, in general. Ab out three y ears

later, he sho w ed that the unique factorization in suc h rings, or at least in rings of cyclotomic

in tegers, is p ossible if n um b ers are replaced b y the so called \ideal n um b ers". Kummer's w ork

w as simpli�ed and furthered b y R. Dedekind

1

. The concept of an ideal in a ring w as th us

b orn. In e�ect, Dedekind sho w ed that the ring of in tegers of an algebraic n um b er �eld has the

follo wing prop ert y:

Ev ery nonzero ideal in this ring factors uniquely as a pro duct of prime ideals.

In tegral domains with this prop ert y are no w kno wn as De dekind domains (or also De dekind

rings )

2

. In a famous pap er

3

, Emm y No ether ga v e a set of abstract axioms for rings whose

ideal theory agrees with that of ring of in tegers of an algebraic n um b er �eld. This leads

to a c haracterization of Dedekind domains. In the next section, w e will tak e this abstract

c haracterization as the de�nition of a Dedekind domain, and then pro v e prop erties suc h as

1

Dedekind published his ideas as a supplemen t to Diric hlet's lectures on Num b er Theory , whic h w ere �rst

published in 1863. Dedekind's supplemen ts o ccur in the third and fourth editions, published in 1879 and 1894, of

Diric hlet's V orlesungen •ub er Zahlenthe orie . Another approac h to w ards understanding and extending the ideas of

Kummer w as dev elop ed b y L. Kronec k er, whose w ork w as apparen tly completed in 1859 but w as not published

un til 1882. F or more historical details, see the article \The Genesis of Ideal Theory" b y H. Edw ards, published

in Arc hiv es for History of Exact Sciences, V ol. 23 (1980), and the articles b y P . Rib en b oim and H. Edw ards in

\Num b er Theory Related to F ermat's Last Theorem", Birkh• auser, 1982.

2

The term De dekind domains w as coined b y I.S. Cohen [Duk e Math. J. 17 (1950), pp. 27{42]. In fact, Cohen

de�nes a Dedekind domain to b e an in tegral domain in whic h ev ery nonzero prop er ideals factors as a pro duct

of prime ideals, and he notes that the uniqueness of factorization is automatic, thanks to the w ork of Matusita

[Japan J. Math. 19 (1944), pp. 97{110].

3

A bstr akter A ufb au der Ide althe orie in algebr aischen Zahlund F unktionenk• orp ern , Math. Ann. 96 (1927), pp.

26{61. The A ufb au pap er follo w ed another famous pap er Ide althe orie in R ingb er eichen [Math. Ann. 83 (1921),

pp. 24{66] in whic h rings with ascending c hain condition on ideals are studied; the term no etherian rings for

suc h rings w as apparen tly originated b y Chev alley [Ann. Math. 44 (1943), pp. 690{708]. Inciden tally , Emm y

No ether had a great appreciation of Dedekind's w ork and her fa v orite expression to her studen ts w as A l les steht

schon b ei De dekind !
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the unique factorization of ideals as a consequence. In the subsequen t sections, w e study the

phenomenon of rami�cation and discuss a n um b er of basic results concerning it.

3.1 Dedekind Domains

An in tegral domain A is called a De dekind domain if A is no etherian, normal and ev ery nonzero

prime ideal in A is maximal. Note that the last condition is equiv alen t to sa ying that dim A � 1,

or in other w ords, either A is a �eld or A is one dimensional.

Example 3.1. An y PID is a Dedekind domain (c hec k!). In particular, Z and the p olynomial

ring k [ X ] o v er a �eld k are Dedekind domains.

Example 3.2. The ring Z [

p

� 5], whic h is the ring of in tegers of the quadratic �eld Q (

p

� 5) is

a Dedekind domain. Indeed, this ring is no etherian b eing the quotien t of a p olynomial ring

o v er Z , it is normal b eing the ring of in tegers of a n um b er �eld, and it is one dimensional,

b eing an in tegral extension of Z . Ho w ev er, Z [

p

� 5] is not a PID b ecause, for instance, the ideal

P = (2 ; 1 +

p

� 5) is not principal. Indeed if P w ere generated b y a single elemen t a + b

p

� 5, then

a w ould ha v e to b e an ev en in teger whic h divides 1, and this is imp ossible. As it turns out, the

fact that the Dedekind domain Z [

p

� 5] is not a PID is related to failure of unique factorization

in Z [

p

� 5], whic h is illustrated b y the t w o distinct factorizations 2 � 3 and (1 +

p

� 5 )(1 �

p

� 5 )

of the n um b er 6. Note, ho w ev er, that if w e pass to ideals and consider the principal ideal (6)

generated b y 6 in Z [

p

� 5], then there is no problem b ecause

(6) = (2 ; 1 +

p

� 5)(2 ; 1 �

p

� 5)(3 ; 1 +

p

� 5)(3 ; 1 �

p

� 5)

and it can b e seen that the ideals on the righ t are distinct prime ideals and the ab o v e factor-

ization is of (6) in to prime ideals is unique up to rearrangemen t of factors.

Man y more examples of Dedekind domains can b e generated from the follo wing basic result.

Theorem 3.3 (Extension Theorem). L et A b e a De dekind domain, K its quotient �eld, L

a �nite sep ar able extension of K , and B the inte gr al closur e of A in L . Then B is a De dekind

domain.

Pr o of. By Finiteness Theorem 2.23, B is no etherian. It is ob vious that A is normal. Lastly , b y

Corollary 2.19 w e see that dim B = dim A � 1.

Since Z is a Dedekind domain, w e obtain as an immediate consequence the follo wing corol-

lary .

Corollary 3.4. If K is a numb er �eld, then O

K

, the ring of inte gers of K , is a De dekind

domain.

Exer cise 3.5. Let A b e a Dedekind domain with quotien t �eld K . If S is an y m ultiplicativ ely

closed subset of A suc h that 0 =2 S , then sho w that the lo calization S

� 1

A of A at S is a Dedekind

domain with quotien t �eld K . Moreo v er, if L is an algebraic extension of K , then sho w that

the in tegral closure of S

� 1

A in L is S

� 1

B .

W e shall no w pro ceed to pro v e a n um b er of basic prop erties of a Dedekind domain. In

particular, w e shall establish the fact ab out unique factorization of ideals as pro ducts of prime

ideals, whic h w as alluded to in the b eginning of this section.
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De�nition 3.6. Let A b e a domain and K b e its quotien t �eld. By a fr actionary ide al of A w e

mean an A -submo dule J of K suc h that dJ � A for some d 2 A , d 6= 0.

Note that a �nitely generated A {submo dule of K is a fractionary ideal of A . Con v ersely , if

A is no etherian, then ev ery fractionary ideal of A is �nitely generated.

T o distinguish from fractionary ideals, the (usual) ideals of A are sometimes called the

inte gr al ide als of A . Pro ducts of fractionary ideals is de�ned in the same w a y as the pro duct of

in tegral ideals, and w.r.t. this pro duct, the set

F

A

= f J : J a fractionary ideal of A and J 6= (0) g

nonzero fractionary ideals is a comm utativ e monoid with A as its iden tit y elemen t. Note that

F

A

con tains the subset of nonzero principal fractionary ideals, viz.,

P

A

= f Ax : x 2 K ; and x 6= (0) g

and this subset is, in fact, a group. In case A is a PID, w e see easily (from Corollary 2.25, for

example) that F

A

= P

A

, and in this case F

A

is a group. W e will so on sho w that more generally ,

if A is an y Dedekind domain, then F

A

is a group.

Lemma 3.7. Every nonzer o ide al of a no etherian ring A c ontains a �nite pr o duct of nonzer o

prime ide als of A .

Pr o of. Assume the con trary . Then the family of nonzero non unit ideals of A not con taining

a �nite pro duct of nonzero prime ideals of A is nonempt y . Let I b e a maximal elemen t of

this family . Then I 6= A and I can not b e prime. Hence there exist a; b 2 A n I suc h that

ab 2 I . No w I + Aa and I + Ab are ideals strictly larger than I , and I � ( I + Aa )( I + Ab ).

In particular, I + Aa and I + Ab are nonzero non unit ideals. So b y the maximalit y of I , b oth

I + Aa and I + Ab con tain a �nite pro duct of nonzero prime ideals, and hence so do es I . This

is a con tradiction.

Lemma 3.8. L et A b e a no etherian normal domain and K b e its quotient �eld. If x 2 K and

I is a nonzer o ide al of I such that xI � I , then x 2 A .

Pr o of. Since xI � I , w e ha v e x

n

I � I for n � 1. Th us if w e let J = A [ x ], then J I � I .

In particular, if d 2 I , d 6= 0, then dJ � A . So J is a fractionary ideal of A and since A is

no etherian, J = A [ x ] is a f.g. A -mo dule. Therefore, x is in tegral o v er A and since A is normal,

x 2 A .

Lemma 3.9. L et A b e a De dekind domain and K b e its quotient �eld. If P is any nonzer o

prime ide al of A , then

P

0

= ( A :

K

P ) = f x 2 K : xP � A g

is a fr actionary ide al of A , which strictly c ontains A . Mor e over, P P

0

= A = P

0

P . In p articular,

P is invertible and P

� 1

= P

0

.

Pr o of. Clearly , P

0

is an A -mo dule. Also, dP

0

� A for an y d 2 P , d 6= 0. Th us P

0

is a

fractional ideal of A . It is clear that P

0

� A . T o sho w that P

0

6= A , c ho ose an y d 2 P , d 6= 0.

By Lemma 3.7, w e can �nd nonzero prime ideals P

1

; : : : ; P

n

of A suc h that ( d ) � P

1

� � � P

n

.
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Supp ose n is the least p ositiv e in teger with this prop ert y . No w, P

1

� � � P

n

� P , and since P

is prime, w e ha v e P

i

� P for some i . But A is a 1-dimensional ring, and so P

i

= P . De�ne

I = P

1

� � � P

i � 1

P

i +1

� � � P

n

(note that I = A if n = 1). Then b y the minimalit y of n , I 6� ( d ). Let

c 2 I b e suc h that c 62 ( d ). Then cd

� 1

62 A . But P I � ( d ), and this implies that P ( c ) � ( d ), and

so cd

� 1

2 P

0

. Th us P

0

6= A . Next, to sho w that P P

0

= A , observ e that P = P A � P P

0

� A .

Th us P P

0

is an (in tegral) ideal of A con taining the maximal ideal P . Hence P P

0

= A or

P P

0

= P . But if x 2 P

0

n A , then b y Lemma 3.8, xP 6� P , and hence P P

0

6= P . It follo ws that

P P

0

= A .

Theorem 3.10. If A is a De dekind domain, then F

A

, the set of nonzer o fr actionary ide als of

A , forms an ab elian gr oup (w.r.t pr o ducts of fr actionary ide als).

Pr o of. It su�ces to sho w that ev ery nonzero (in tegral) ideal of A is in v ertible, b ecause if J 2 F

A

,

then dJ is a nonzero ideal of A for some d 2 A , d 6= 0, and ( d )( dJ )

� 1

is then the in v erse of J .

No w if some nonzero ideal of A is not in v ertible, then w e can �nd a nonzero ideal I of

A , whic h is not in v ertible and whic h is maximal with this prop ert y . Clearly I 6= A and so

there is a nonzero prime ideal P of A suc h that I � P . By Lemma 3.9, P

� 1

exists and

I = I A � I P

� 1

� P P

� 1

= A . Moreo v er, if I = I P

� 1

, then b y Lemma 3.8, P

� 1

� A , whic h

con tradicts Lemma 3.9. Th us I P

� 1

is an ideal of A whic h is strictly larger than I . So b y

the maximalit y of I , the ideal I P

� 1

is in v ertible. But then so is I = ( I P

� 1

) P . This is a

con tradiction.

Theorem 3.11. L et A b e a De dekind domain. Then every nonzer o ide al I of A c an b e factor e d

as a pr o duct of prime ide als, and this factorization is unique up to a r e arr angement of the

factors. Mor e gener al ly, every nonzer o fr actional ide al J of A factors as J = p

e

1

1

� � � p

e

h

h

, for

some nonne gative inte ger h , distinct prime ide als p

1

; : : : ; p

h

and nonzer o inte gers e

1

; : : : ; e

h

.

4

F urthermor e, the prime ide als p

1

; : : : ; p

h

and the c orr esp onding exp onents e

1

; : : : ; e

h

ar e uniquely

determine d by J .

Pr o of. Assume for a momen t that the assertion for in tegral ideals is pro v ed. Then for an y

J 2 F

A

, there exists d 2 A , d 6= 0 suc h that dJ is a nonzero ideal of A . No w if dJ = p

1

� � � p

k

and ( d ) = q

1

� � � q

l

, where p

i

and q

j

are prime ideals then J = p

1

� � � p

k

q

� 1

1

� � � q

� 1

l

. Moreo v er,

if w e also ha v e J = P

1

� � � P

m

Q

� 1

1

� � � Q

� 1

n

for some prime ideals P

i

and Q

j

(necessarily nonzero

but not necessarily distinct), then p

1

� � � p

k

Q

1

� � � Q

n

= q

1

� � � q

l

P

1

� � � P

m

and the uniqueness for

factorization of in tegral ideals can b e used. This yields the desired results for nonzero fractional

ideals.

T o pro v e the existence of factorization of nonzero ideals of A in to prime ideals, w e can

pro ceed as in the pro of of Theorem 3.10. Th us, let I b e a nonzero ideal of A whic h can not b e

factored as a pro duct of prime ideals and whic h is maximal with this prop ert y . Then I 6= A and

if P is a nonzero prime ideal con taining I , then I P

� 1

is an ideal of A whic h is strictly larger

than I . So b y the maximalit y of I , the ideal I P

� 1

is a pro duct of prime ideals. Multiplying on

the righ t b y P , w e �nd that I is also a pro duct of prime ideals. This is a con tradiction.

T o pro v e the uniqueness, let I b e an y nonzero ideal of A and supp ose I = p

1

� � � p

r

for some

r � 0 and prime ideals p

1

; : : : ; p

r

. W e induct on r to sho w that an y other factorization of I as

4

As p er usual con v en tions, p

� m

=

�

p

� 1

�

m

, for an y p ositiv e in teger m . Also, when h = 0, a pro duct suc h as

p

e

1

1

� � � p

e

h

h

is the empt y pro duct and it equals (1) = A .
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a pro duct of prime ideals di�ers from p

1

� � � p

r

b y a rearrangemen t of factors. If r = 0, this is

eviden t since a nonempt y pro duct of prime ideals will b e con tained in an y one of the factors,

whic h is a prop er subset of A . Assume that r � 1 and the result holds for ideals whic h are

pro ducts of r � 1 prime ideals. No w if I = q

1

� � � q

s

for some s � 0 and prime ideals q

1

; : : : ; q

s

,

then it is clear that s > 0. Moreo v er, q

1

� � � q

s

� p

1

implies that q

j

� p

1

for some j . But since

I 6= (0), eac h q

j

is a nonzero prime ideal and hence maximal. Th us q

j

= p

1

. Multiplying I b y

p

� 1

1

w e �nd that p

2

� � � p

r

= q

1

� � � q

j � 1

q

j +1

� � � q

s

. Th us b y induction h yp othesis r � 1 = s � 1

and p

2

; : : : p

r

are the same as q

1

; : : : ; q

j � 1

; q

j +1

; : : : ; q

s

after a rearrangemen t. This implies that

r = s and p

1

; : : : ; p

r

equal q

1

; : : : ; q

s

after a rearrangemen t.

R emark 3.12. Either of the follo wing four conditions can b e tak en as a de�nition for an in tegral

domain A to b e a Dedekind domain.

(1) A is no etherian, normal and ev ery nonzero prime ideal of A is maximal.

(2) Nonzero fractional ideals of A form a group with resp ect to m ultiplication.

(3) Ev ery nonzero ideal of A factors uniquely as a pro duct of prime ideals.

(4) Ev ery nonzero ideal of A factors as a pro duct of prime ideals.

Note that (3) ) (4) is ob vious and from Theorems 3.10 and 3.11, w e ha v e (1) ) (2) and

(1) ) (3). Moreo v er, if (2) holds, then A is no etherian b ecause if I is a nonzero ideal of

A , then I I

� 1

= A implies that

P

n

i =1

a

i

b

i

= 1 for some a

i

2 I ; b

i

2 I

� 1

, and consequen tly ,

I = ( a

1

; : : : ; a

n

). F urther, if (2) holds, then as in the pro of of Theorem 3.11, the existence

of a nonzero ideal of A whic h can not b e factored as a pro duct of prime ideals leads to a

con tradiction. This sho ws that (2) ) (4). Hence, to pro v e the equiv alence of (1), (2), (3) and

(4) it su�ce to sho w that (4) ) (1). This can b e done but it needs a little bit of w ork; for

details, w e refer to [20 , Ch. V, x 6].

Exer cise 3.13. Use Theorem 3.11 to sho w that for ev ery nonzero prime ideal p of A , w e can

de�ne a function n

p

: F

A

! Z suc h that for an y J 2 F

A

, w e ha v e n

p

( J ) = 0 for all except

�nitely man y p , and

J =

Y

p

p

n

p

( J )

where the pro duct is o v er all nonzero prime ideals p of A . F urther sho w that J is an in tegral ideal

of A if and only if n

p

( J ) � 0 for all nonzero prime ideals p of A . Deduce that for J

1

; J

2

2 F

A

,

J

1

� J

2

( ) n

p

( J

1

) � n

p

( J

2

) for all nonzero prime ideals p of A:

Use this to sho w that if I

1

; I

2

are in tegral ideals of A , then I

1

� I

2

if and only if I

2

divides I

1

,

i.e., I

1

= I

2

I

3

for some in tegral ideal I

3

of A . Finally , for an y J

1

; J

2

2 F

A

and a nonzero prime

ideal p of A , pro v e the follo wing.

(i) n

p

( J

1

J

2

) = n

p

( J

1

) + n

p

( J

2

) and n

p

( J

1

J

� 1

2

) = n

p

( J

1

) � n

p

( J

2

).

(ii) n

p

( J

1

+ J

2

) = min f n

p

( J

1

) ; n

p

( J

2

) g and n

p

( J

1

\ J

)

2

= max f n

p

( J

1

) ; n

p

( J

2

) g .
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W e ha v e seen in Example 3.2 that a Dedekind domain need not b e a UFD. On the other

hand, if a Dedekind domain A is a UFD and P is an y nonzero prime ideal of A , then P m ust

con tain an irreducible elemen t b ecause otherwise there will b e an in�nite strictly ascending

c hain ( a

1

) � ( a

2

) � � � � of principal ideals con tained in P , con tradicting that A is no etherian.

No w if p 2 P is irreducible, then ( p ) is a nonzero prime ideal, and hence maximal. Hence,

P = ( p ). Next, b y Theorem 3.11, ev ery nonzero ideal of A is a pro duct of prime ideals and

therefore, it is principal. Th us A is a PID. Consequen tly , if a Dedekind domain A is a UFD,

then F

A

= P

A

or in other w ords, the quotien t group F

A

= P

A

is trivial.

De�nition 3.14. Let A b e a Dedekind domain and K b e its quotien t �eld. The ide al class

gr oup of A , denoted b y C

A

, is de�ned to b e the quotien t F

A

= P

A

. When K is a n um b er �eld

and A = O

K

is its ring of in tegers, C

A

is often denoted b y C

K

and called the ideal class group

of K . The elemen ts of C

K

are called the ide al classes of K .

As remark ed earlier, if A is a Dedekind domain, then

A is a UFD ( ) A is a PID ( ) C

A

is trivial :

Th us the size of the ideal class group C

A

is a measure of ho w far A is from b eing a UFD. In the

case when K is a n um b er �eld and A = O

K

, it turns out that C

K

is a �nite (ab elian) group.

The order of this group is denoted b y h

K

and is called the class numb er of K . The �niteness of

class n um b er will b e pro v ed in Chapter 4 using some general results of Mink o wski. A shorter

pro of is outlined in Exercise 4.3.

W e end this section with a result whic h giv es a su�cien t condition for a Dedekind domain

to b e a PID.

Prop osition 3.15. A lo c al De dekind domain is a PID. Mor e gener al ly, if a De dekind domain

has only �nitely many maximal ide als, then it is a PID.

Pr o of. Let A b e a Dedekind domain with only �nitely man y maximal ideals, sa y , P

1

; : : : ; P

r

.

Note that the ideals P

1

; : : : ; P

r

, and more generally , their p o w ers P

m

1

1

; : : : ; P

m

r

r

are pairwise

comaximal. Fix an y i 2 f 1 ; : : : ; r g . Note that P

i

6= P

2

i

(b ecause otherwise P

i

= A ). So w e can

�nd a

i

2 P

i

n P

2

i

. By Chinese Remainder Theorem [cf. Prop. 2.3], there exists a 2 A suc h that

a � a

i

(mo d P

2

i

) and a � 1(mo d P

j

) for 1 � j � r ; j 6= i:

No w, ( a ) is a nonzero ideal of A with ( a ) � P

i

, and the factorization of ( a ) in to prime ideals

can neither con tain P

j

for an y j 6= i nor can it con tain a p o w er of P

i

with exp onen t 2 or more.

Hence ( a ) = P

i

. Since ev ery nonzero ideal of A is a pro duct of the P

i

's, it m ust b e principal.

Th us A is a PID.

R emark 3.16. A ring with only �nitely man y maximal ideals is sometimes called a semilo c al

ring . Th us the ab o v e Prop osition sa ys that a semilo cal Dedekind domain is a PID. In the case

of lo cal Dedekind domains, w e can, in fact, sa y more. Namely , a lo cal Dedekind domain is what

is called a discrete v aluation ring or a D VR. An in tegral domain A with quotien t �eld K is a

discr ete valuation ring if there exists a map v : K n f 0 g ! Z with the prop erties

v ( xy ) = v ( x ) + v ( y ) and v ( x + y ) � min f v ( x ) ; v ( y ) g for all x; y 2 K n f 0 g

31



and A = f x 2 K : x = 0 or v ( x ) � 0 g . The map v is called a valuation of K and A is called

its valuation ring . In case A is a lo cal Dedekind domain, A has only one nonzero prime ideal,

i sa y P , and for an y nonzero elemen t x of the quotien t �eld of A , w e can write Ax = P

n

for a

unique in teger n , and the map giv en b y x 7! n is a v aluation of K whose v aluation ring is A .

Exer cise 3.17. Let A b e a Dedekind domain. If P is a nonzero prime ideal of A and e a p ositiv e

in teger, then sho w that A=P

e

is a principal ideal ring. Use this and the Chinese Remainder

Theorem to sho w that if I is an y nonzero ideal of A , then R =I is a principal ideal ring. Deduce

that ev ery ideal of A can b e generated b y t w o elemen ts.

3.2 Extensions of Primes

In the ring O

K

of in tegers of a n um b er �eld K , a prime p of Z ma y not remain a prime. F or

instance in the ring of in tegers of Q (

p

� 1), namely , in the ring Z [ i ]

5

, the rational primes 2 and

5 are no longer primes but 3 is. Ho w ev er, b y Theorem 3.11, the ideal generated b y p in this ring

can b e uniquely factored as a pro duct of prime ideals. Roughly sp eaking, the phenomenon of

a prime splitting in to sev eral primes in an extension, is kno wn as rami�cation. In this con text,

there is a b eautiful analogue of the form ula

P

g

i =1

e

i

f

i

= n , whic h holds when a monic p olynomial

f ( X ) of degree n with co e�cien ts in a �eld F , factors as f ( X ) = p

1

( X )

e

1

� � � p

g

( X )

e

g

, where

g � 0, e

i

> 0 and p

i

( X ) are distinct monic irreducible p olynomials in F [ X ] of degree f

i

. W e no w

pro ceed to giv e some relev an t de�nitions and pro v e the

P

g

i =1

e

i

f

i

= n form ula in the general

setting of Dedekind domains.

In this section, w e shall assume that A; K ; L; B are as in the Extension Theorem 3.3. W e

will also let n denote the degree of L=K .

De�nition 3.18. Let p b e a prime ideal of A . A prime ideal P of B is said to lie over p if

P \ A = p .

Since B is a Dedekind domain, for an y nonzero prime ideal p of A , the extension p B of p

to B is a nonzero ideal of B and hence it can b e uniquely written as

p B =

g

Y

i =1

P

e

i

i

where P

1

; P

2

; : : : ; P

g

are distinct nonzero prime ideals of B and e

i

are p ositiv e in tegers.

Exer cise 3.19. With p and P

i

as ab o v e, sho w that a prime ideal P of B lies o v er p i� P = P

i

for some i . Also sho w that p B \ A = p = P

e

i

i

\ A . Deduce that B = p B as w ell as B =P

e

i

i

B can

b e regarded as v ector spaces o v er the �eld A= p . F urther sho w that B =P

i

is a �eld extension of

A= p whose degree is at most n .

De�nition 3.20. With p , P

i

, etc. as ab o v e, the p ositiv e in teger e

i

is called the r ami�c ation

index of P

i

o v er p and is denoted b y e ( P

i

= p ); the �eld degree [ B =P

i

: A= p ] is called the r esidue

de gr e e (or the r esidue class de gr e e ) of P

i

o v er p and is denoted b y f ( P

i

= p ). If e

i

> 1 for some

5

Elemen ts of Z [ i ] are often called the Gaussian inte gers . These w ere �rst studied b y C. F. Gauss in his w ork

on biquadratic recipro cit y .
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i , then w e sa y that p is rami�ed in B (or in L ). Otherwise, it is said to b e unr ami�e d .

6

The

extension L=K is said to b e unr ami�e d if ev ery nonzero prime ideal of A is unrami�ed in L .

Exer cise 3.21. Let A; K ; L; B and p b e as ab o v e. Supp ose L

0

is a �nite separable extension of

L and B

0

is the in tegral closures of B in L

0

. Sho w that B

0

is the in tegral closure of A in L

0

.

F urther, if P a prime of B lying o v er p and P

0

a prime of B

0

lying o v er P , then sho w that P

0

lies o v er p and the follo wing transitivit y relations hold:

e ( P

0

= p ) = e ( P

0

=P ) e ( P = p ) and f ( P

0

= p ) = f ( P

0

=P ) f ( P = p ) :

W e are no w ready to pro v e the main result of this section.

Theorem 3.22. L et A; K ; L; B b e as ab ove and n = [ L : K ] . Supp ose p is a nonzer o prime

ide al of A and we have

p B =

g

Y

i =1

P

e

i

i

wher e P

1

; P

2

; : : : ; P

g

ar e distinct prime ide als of B and e

1

; : : : ; e

g

ar e p ositive inte gers. Then,

up on letting f

i

= [ B =P

i

: A= p ] , we have

g

X

i =1

e

i

f

i

= n:

Pr o of. Let S = A n p and A

0

= S

� 1

A b e the lo calization of A at p . Then B

0

= S

� 1

B is the

in tegral closure of A

0

in L , and p B

0

= P

0

1

e

1

: : : P

0

g

e

g

, where P

0

i

= P

i

B

0

. Moreo v er, the primes

P

0

1

; : : : ; P

0

g

are distinct, A

0

= p A

0

' A= p and B

0

=P

0

i

' B =P

i

. Th us w e see that in order to pro v e

the equalit y

P

e

i

f

i

= n , w e can replace A; B ; p ; P

i

b y A

0

; B

0

; p

0

; P

0

i

resp ectiv ely .

In view of the observ ations ab o v e, w e shall assume without loss of generalit y that A is a

lo cal Dedekind domain with p as its unique nonzero prime ideal. Then, b y the Corollary 2.25,

B is a free A {mo dule of rank n = [ L : K ]. W rite B = Ay

1

+ � � � + Ay

n

, where y

1

; : : : ; y

n

are

some elemen ts of B . No w for the v ector space B = p B o v er A= p , w e clearly ha v e

B = p B =

n

X

i =1

( A= p ) �y

i

where �y

i

denotes the residue class of y

i

mo d p B . Moreo v er,

X

�a

i

�y

i

= 0 = )

X

a

i

y

i

2 p B = ) a

i

2 p

where a

i

2 A and �a

i

denotes its residue class mo d p , and the last implication follo ws since

f y

1

; : : : ; y

n

g is a free A {basis of B . It follo ws that �y

1

; : : : ; �y

n

are linearly indep enden t o v er A= p ,

and hence

dim

A= p

B = p B = n:

6

T o b e accurate, w e should de�ne p to b e r ami�e d if e

i

> 1 for some i or B =P

i

is inseparable o v er A= p for some

i . Ho w ev er, in n um b er theoretic applications, A= p will usually b e a �nite �eld and so the question of separabilit y

of residue �eld extensions do esn't arise.
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No w w e coun t the same dimension b y a di�eren t metho d. First, note that since P

1

; : : : ; P

g

are distinct maximal ideals, P

e

1

1

; : : : ; P

e

g

g

are pairwise comaximal. Since p B = P

e

1

1

� � � P

e

g

g

, b y

Chinese Remainder Theorem, w e get an isomorphism (of rings as w ell as of ( A= p ){v ector spaces)

B = p B '

g

M

i =1

B =P

e

i

i

:

No w let us �nd the dimension of the A= p {v ector space B =P

e

where P = P

i

and e = e

i

for some

i . First, w e note that for an y j � 1, p P

j

� P

j +1

, and hence P

j

=P

j +1

can b e considered as a

v ector space o v er A= p . W e claim that w e ha v e an isomorphism

B =P

e

' B =P � P =P

2

� � � � � P

e � 1

=P

e

:

T o see this, use induction on e and the fact that for e > 1, w e clearly ha v e

B =P

e � 1

'

B =P

e

P

e � 1

=P

e

:

Next, w e note that B is a Dedekind domain ha ving only �nitely man y prime ideals (in fact, (0)

and P

1

; : : : ; P

g

are the only primes of B ), and so B m ust b e a PID. Let t b e a generator of P ,

and consider the map

B =P ! P

j

=P

j +1

induced b y the m ultiplication map x 7! t

j

x of B ! P

j

. This map is an A= p {homomorphism,

and it is clearly bijectiv e. So

dim

A= p

( P

j

=P

j +1

) = dim

A= p

( B =P ) = f ( P = p )

and consequen tly , from the ab o v e direct sum represen tations, w e get

dim

A= p

( B = p B ) =

g

X

i =1

dim

A= p

( B =P

e

i

i

) =

g

X

i =1

e

i

f

i

;

whic h yields the desired iden tit y . This completes the pro of.

Examples:

1. Consider the quadratic �eld K = Q ( i ), where i denotes a square ro ot of � 1. W e kno w

that O

K

is the ring Z [ i ] of Gaussian in tegers. If p is a prime � 1(mo d 4), then w e kno w (b y

a classical result of F ermat) that p can b e written as a sum of t w o squares. Th us there exist

a; b 2 Z suc h that p = a

2

+ b

2

= ( a + bi )( a � bi ). It can b e seen that ( a + bi ) and ( a � bi ) are

distinct prime ideals in O

K

. Th us for the prime ideal p Z , w e ha v e g = 2, e

1

= e

2

= 1 and (since

P

e

i

f

i

= 2) f

1

= f

2

= 1. On the other hand, it is not di�cult to see that a prime � 3(mo d 4)

generates a prime ideal in Z [ i ] and so for suc h a prime, w e ha v e g = 1 = e

1

and f

1

= 2. The

case of p = 2 is sp ecial. W e ha v e 2 = (1 + i )(1 � i ). But (1 + i ) and (1 � i ) di�er only b y a unit

(namely , � i ) and th us they generate the same prime ideal. So 2 is a rami�ed prime and for it,

w e ha v e g = 1 = f

1

and e

1

= 2.
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2. In Example 2 of Section 2.4, where w e discussed the p

th

cyclotomic �eld K = Q ( �

p

), w e

ha v e pro v ed the iden tit y

p = ( � � 1)( �

2

� 1) : : : ( �

p � 1

� 1) ;

and also the fact that ( � � 1) O

K

\ Z = p Z . W e note that for an y in teger i not divisible b y p , w e

can �nd an in teger j suc h that ij � 1(mo d p ), and th us ( �

i

� 1) = ( � � 1) = 1 + � + � � � + �

i � 1

2 Z [ � ]

and its in v erse ( � � 1) = ( �

i

� 1) = ( �

i

j � 1) = ( �

i

� 1) is also in Z [ � ]. Therefore, the fraction

( �

i

� 1) = ( � � 1) is a unit in Z [ � ]. Consequen tly , ( �

i

� 1) and ( � � 1) generate the same ideal,

sa y P . No w the ab o v e iden tit y together with the previous Theorem sho ws that p Z [ � ] = P

p � 1

and P is a prime ideal. Th us w e �nd that in this case g = 1 = f

1

and e

1

= p � 1 = [ K : Q ].

The last example illustrates the follo wing de�nition.

De�nition 3.23. A nonzero prime ideal p of A is said to b e total ly r ami�e d in L (or in B ) if

p B = P

n

for some prime ideal P of B .

3.3 Kummer's Theorem

In this section w e pro v e a theorem, due to Kummer, whic h sho ws ho w the decomp osition of

extended prime ideals can b e \read o� " from the factorization of a p olynomial, for a certain

class of rings. It ma y b e observ ed that the h yp othesis of this theorem is satis�ed in the case of

quadratic and cyclotomic extensions.

W e shall use the follo wing notation. Giv en a domain A and a maximal ideal p in A , w e let

�

A ,

denote the residue �eld A= p ; for an y p olynomial p ( X ) 2 A [ X ], b y �p ( X ) w e denote its reduction

mo d p , i.e., the p olynomial in

�

A [ X ] whose co e�cien ts are the p {residues of the corresp onding

co e�cien ts of p ( X ).

Theorem 3.24. L et A b e a De dekind domain, K its quotient �eld, L a �nite sep ar able exten-

sion of K , and B the inte gr al closur e of A in L . L et p b e a nonzer o prime ide al of A . Assume

that B = A [ � ] for some � 2 B . L et f ( X ) = Irr ( �; K ) . Supp ose

�

f ( X ) =

g

Y

i =1

�p

i

( X )

e

i

is the factorization of

�

f ( X ) into p owers of distinct monic irr e ducible p olynomials in

�

A [ X ] . L et

p

i

( X ) b e the monic p olynomial in A [ X ] whose r e duction mo d p is �p

i

( X ) . Then the primes in

B lying over p ar e pr e cisely given by P

1

; : : : ; P

g

wher e P

i

= p B + p

i

( � ) B . Mor e over,

p B =

g

Y

i =1

P

e

i

i

is the factorization of p B into p owers of distinct primes in B , the r ami�c ation index of P

i

over

p is the ab ove exp onent e

i

, and the r esidue de gr e e f

i

of P

i

over p is the de gr e e of the irr e ducible

factor �p

i

( X ) .

Pr o of. Fix some i with 1 � i � g . Let ��

i

b e a ro ot of �p

i

( X ). Consider the maps

A [ X ] !

�

A [ X ] !

�

A [ X ] = ( � p

i

( X )) '

�

A [ � �

i

]
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where the �rst map sends a p olynomial in A [ X ] to its reduction mo d p , and the second one is

the natural quotien t map. The comp osite of these maps is a homomorphism from A [ X ] on to

�

A [ � �

i

], and its k ernel is clearly giv en b y p A [ X ] + p

i

( X ) A [ X ]. This k ernel con tains f ( X ), and

th us w e get the induced map of A [ X ] = ( f ( X )) on to

�

A [ � �

i

]. Since B = A [ � ] ' A [ X ] = ( f ( X )),

w e get a map '

i

of B on to

�

A [ � �

i

]. Note that k er '

i

is equal to p B + p

i

( � ) B . Since �p

i

( X ) is

irreducible in

�

A [ X ], k er '

i

is a prime ideal in B whic h con tains p . It is therefore a maximal

ideal in B lying o v er p . Also

�

A is a �eld and

[ B = k er '

i

: A= p ] = dim

�

A

�

A [ � �

i

] = deg �p

i

( X ) :

No w supp ose P is an y maximal ideal of B lying o v er p . Since

f ( X ) � p

1

( X )

e

1

: : : p

g

( X )

e

g

2 p A [ X ]

and f ( � ) = 0, w e see that

p

1

( � )

e

1

: : : p

g

( � )

e

g

2 p B � P

and hence p

i

( � ) 2 P for some i , and then it follo ws that P m ust b e equal to p B + p

i

( � ) B . This

sho ws that the primes lying in B o v er p are precisely P

1

; : : : ; P

g

where P

i

= p B + p

i

( � ) B , and

that the residue degree f

i

= f ( P

i

= p ) equals deg �p

i

( X ). T o pro v e the remaining assertion, let e

0

i

denote the rami�cation index of P

i

o v er p , so that

p B = P

e

0

1

1

: : : P

e

0

g

g

:

Since P

i

= p B + p

i

( � ) B , w e ha v e

P

e

i

i

� p B + p

i

( � )

e

i

B

and hence, in view of the ab o v e observ ation that p

1

( � )

e

1

: : : p

g

( � )

e

g

2 p B , w e ha v e

P

e

1

1

: : : P

e

g

g

� p B + p

1

( � )

e

1

: : : p

g

( � )

e

g

B � p B = P

e

0

1

1

: : : P

e

0

g

g

:

Consequen tly e

i

� e

0

i

for all i . But w e kno w that

g

X

i =1

e

i

f

i

= deg f ( X ) = [ L : K ] =

g

X

i =1

e

0

i

f

i

:

Therefore e

i

= e

0

i

for all i . This completes the pro of.

R emark 3.25. If K is a n um b er �eld, then b y Primitiv e Elemen t Theorem, there exists � 2 K

suc h that K = Q ( � ). W e can also c ho ose this � to b e in O

K

. Ho w ev er, a c hoice of � for

whic h O

K

= Z [ � ] ma y not alw a ys b e p ossible. In other w ords, the h yp othesis of Kummer's

Theorem ma y not alw a ys b e satis�ed. As indicated earlier, quadratic �elds and cyclotomic

�elds do satisfy the h yp othesis of Kummer's Theorem. Exercise 2.30 giv es another example of

a n um b er �eld K = Q ( � ) for whic h O

K

= Z [ � ]. On the other hand, the follo wing exercise giv es

an example, due to Dedekind, of a n um b er �eld K for whic h do esn't satisfy the h yp othesis of

Kummer's Theorem.

Exer cise 3.26. Let � 2 C b e a ro ot of X

3

� X

2

� 2 X � 8 and K = Q ( � ) . Pro v e the follo wing:

(i) [ K : Q ] = 3; (ii) if � = ( �

2

+ � ) = 2, then �

3

� 3 �

2

� 10 � � 9 = 0, and hence � 2 O

K

; (iii)

D

K = Q

(1 ; �; �

2

) = � 4(503) and D

K = Q

(1 ; �; � ) = � 503, and hence f 1 ; �; � g is an in tegral basis

of O

K

; (iv) for an y � 2 O

K

, D

K = Q

(1 ; � ; �

2

) is an ev en in teger; (v) O

K

6= Z [ � ] for an y � 2 O

K

.
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3.4 Dedekind's Discriminan t Theorem

Supp ose w e ha v e a n um b er �eld K whose ring of in tegers O

K

is of the form Z [ � ]. Let f ( X ) b e

the minimal p olynomial of � o v er Q and p b e a rational prime

7

. Let

�

f ( X ) 2 Z =p Z [ X ] denote

the reduction of f ( X ) mo d p Z . Then, b y Kummer's Theorem, p rami�es in K i�

�

f ( X ) has a

m ultiple ro ot. No w, the p olynomial

�

f ( X ) has a m ultiple ro ot i� its (classical) discriminan t is

zero (as an elemen t of Z =p Z ). The last condition means that Disc

X

f ( X ) = � d

K

is divisible b y

p . Th us w e �nd that in this situation w e ha v e:

p rami�es in K i� p divides d

K

:

In fact, this turns out to b e true ev en in a more general situation. This section is dev oted to a

pro of of this fundamen tal result, whic h is due to Dedekind.

Theorem 3.27. L et A b e a De dekind domain and K b e its quotient �eld. L et L b e a �nite

sep ar able extension of K of de gr e e n , and B b e the inte gr al closur e of A in L . L et p b e a

nonzer o prime ide al of A . Assume that the �eld A= p is p erfe ct (which me ans that every algebr aic

extension of this �eld is sep ar able)

8

. Then we have:

p rami�es in L ( ) p � D

B = A

:

In p articular, if the ab ove assumption on the r esidue �eld is satis�e d by every nonzer o prime

ide al of A , then ther e ar e only a �nitely many prime ide als in A which r amify in L .

Pr o of. If w e consider the lo calizations A

0

= S

� 1

A and B

0

= S

� 1

B where S = A n p , then it is

readily seen that D

B

0

= A

0 = D

B = A

A

0

and p rami�es in L i� p

0

= p A

0

rami�es in L . Th us to pro v e

the �rst assertion, w e can and will assume without loss of generalit y that A is a lo cal Dedekind

domain and p is its unique maximal ideal.

Let p B = P

e

1

1

P

e

2

2

� � � P

e

g

g

, where P

1

; P

2

; : : : ; P

g

are distinct prime ideals of B and e

1

; e

2

; : : : ; e

g

are their rami�cation indices. As noted in the pro of of Theorem 3.22, w e ha v e p B \ A = p =

P

e

i

i

\ A , and w e ha v e an isomorphism of A= p {v ector spaces

B = p B '

g

M

i =1

B =P

e

i

i

:

Let us set

�

A = A= p and

�

B = B = p B . F or x 2 B , let �x denote the image of x in

�

B . Note that

w e clearly ha v e

T r

�

B =

�

A

( � x ) = T r

L=K

( x ) for all x 2 B :

No w if f �

1

; : : : ; �

n

g is an y K {basis of L con tained in B suc h that f ��

1

; : : : ; ��

n

g is an

�

A {basis

of

�

B , then using the ab o v e iden tit y for traces, w e see that

D

�

B =

�

A

( � �

1

; : : : ; ��

n

) = D

L=K

( �

1

; : : : ; �

n

) : (1)

7

It is a common practice in Num b er Theory to call the usual primes as r ational primes (and the usual in tegers

as r ational inte gers ) so as to distinguish from primes (and in tegers) in the rings of in tegers of algebraic n um b er

�elds.

8

This assumption w ould alw a ys b e satis�ed in n um b er theoretic applications since A= p w ould usually b e a

�nite �eld.
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Next, w e sho w that if

�

B '

�

B

1

� � � � �

�

B

g

, where the isomorphism is of

�

A {v ector spaces, then

w e ha v e

D

�

B =

�

A

=

g

Y

i =1

D

�

B

i

=

�

A

: (2)

T o see the ab o v e iden tit y , it su�ces to consider the case when g = 2 since the general case

w ould follo w b y induction on g . F or con v enience of notation, let us denote the elemen t of B

corresp onding to ( u; 0) 2

�

B

1

�

�

B

2

b y u itself and, similarly , the elemen t of B corresp onding to

(0 ; v ) 2

�

B

1

�

�

B

2

b y v itself. It is clear that w e can c ho ose

�

A {bases f u

1

; : : : ; u

r

g and f v

1

; : : : ; v

s

g

of

�

B

1

and

�

B

2

resp ectiv ely suc h that f u

1

; : : : ; u

r

; v

1

; : : : ; v

s

g is an

�

A {basis of

�

B . In view of the

ab o v e con v en tion, w e see that u

i

v

j

= 0. Th us T r

�

B =

�

A

( u

i

v

j

) = 0, and so

D

�

B =

�

A

( u

1

; : : : ; u

r

; v

1

; : : : ; v

s

) =

�

�

�

�

�

�

T r( u

i

u

i

0

) j 0

: : : : : : j : : : : : :

0 j T r ( v

j

v

j

0

)

�

�

�

�

�

�

= D

�

B

1

=

�

A

( u

1

; : : : ; u

r

) D

�

B

2

=

�

A

( v

1

; : : : ; v

s

) :

Since

�

A is a �eld and the non-v anishing of an y of the ab o v e discriminan ts is indep enden t of the

c hoice of the corresp onding

�

A {bases, the desired equalit y of discriminan t ideals follo ws. Th us

w e ha v e pro v ed (2).

No w supp ose p is a rami�ed prime. Then e

i

> 1 for some i and th us the ring B =P

e

i

i

con tains

a nonzero nilp oten t elemen t (whic h ma y b e tak en to b e an y elemen t of P

e

i

� 1

i

n P

e

i

i

), and hence

so do es

�

B . Let � 2 B b e suc h that

�

� 2

�

B is a nonzero nilp oten t elemen t. Extend f

�

� g to

an

�

A {basis f

�

�

1

; : : : ;

�

�

n

g of

�

B with �

1

= � . Since

�

�

1

is nilp oten t, so is

�

�

1

�

�

j

for 1 � j � n .

Hence T r (

�

�

1

�

�

j

) = 0 for 1 � j � n [b ecause if u 2

�

B is nilp oten t, then 0 is clearly the only

eigen v alue of the linear transformation x 7! ux of

�

B !

�

B and T r( u ) equals the sum of all

eigen v alues of this linear transformation]. Consequen tly , D

�

B =

�

A

(

�

�

1

; : : : ;

�

�

n

) = 0, and so D

�

B =

�

A

is

the zero ideal. Th us if f �

1

; : : : ; �

n

g is an A {basis of B (whic h exists b y Finiteness Theorem),

then f ��

1

; : : : ; ��

n

g is an

�

A {basis of

�

B and in view of (1), w e see that D

L=K

( �

1

; : : : ; �

n

) 2 p B .

It follo ws that D

B = A

� p B \ A = p .

T o pro v e the con v erse, assume that p � D

B = A

. Supp ose, if p ossible, p is unrami�ed. Then

e

i

= 1 for all i and th us

�

B is isomorphic (as an

�

A {v ector space) to the direct sum of the �elds

�

B

i

= B =P

i

. Since

�

A is p erfect, the extension

�

B

i

=

�

A is separable, and therefore D

�

B

i

=

�

A

6= 0, for

1 � i � g . Th us b y (2), w e ha v e D

�

B =

�

A

6= 0. But, in view of (1), this con tradicts the assumption

that D

B = A

� p . It follo ws that p m ust b e a rami�ed prime.

The �nal assertion ab out the n um b er of rami�ed prime is an immediate consequence of the

ab o v e c haracterization and the fact that D

B = A

is a nonzero ideal of the Dedekind domain A .

Corollary 3.28. L et K b e a numb er �eld. A r ational prime p r ami�es in K i� p divides d

K

.

In p articular, only �nitely many primes of Z r amify in K .

3.5 Rami�cation in Galois Extensions

In the case of Galois extensions, the fundamen tal iden tit y

P

e

i

f

i

= n , whic h w as pro v ed in

Section 3.2, tak es a particularly simple form. This short section is dev oted to a pro of of this

simpler iden tit y . The k ey idea in the pro of is the \norm argumen t" in the Lemma b elo w.
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Lemma 3.29. L et A b e a normal domain, K its quotient �eld, L a Galois extension of K ,

B the inte gr al closur e of A , and p a prime ide al of A . Then the primes of B lying over p ar e

c onjugates of e ach other, i.e., for any prime ide als P ; Q of B such that P \ A = p = Q \ A , we

have Q = � ( P ) for some � 2 Gal( L=K ) . In p articular, the numb er of prime ide als of B lying

over p is �nite, and , in fact, � [ L : K ] .

Pr o of. W e use a similar reduction as in the pro of of Theorem 3.22. Th us w e note that if

S = A n p , then the in tegral closure of A

0

= S

� 1

A in L is B

0

= S

� 1

B , and P B

0

and QB

0

are

prime ideals of B

0

lying o v er p A

0

. Moreo v er if QB

0

= � ( P B

0

), for some � 2 Gal( L=K ), then

w e clearly ha v e

Q = QB

0

\ B = � ( P B

0

) \ B = � ( P B

0

) \ � ( B ) = � ( P B

0

\ B ) = � ( P ) :

So w e assume without loss of generalit y that p is a maximal ideal of A . No w since B = A is

in tegral, Q and P are maximal ideals of B . Supp ose Q 6= � ( P ) for an y � 2 Gal( L=K ). By

Chinese Remainder Theorem, w e can �nd some x 2 B suc h that

x � 0(mo d Q ) and x � 1(mo d � ( P )) 8 � 2 Gal( L=K ) :

Consider the norm

N

L=K

( x ) =

Y

� 2 Gal ( L=K )

� ( x ) :

By Prop osition 2.22, this lies in A and hence in Q \ A = p . No w P is a prime ideal of B

con taining p , and th us it follo ws that � ( x ) 2 P for some � 2 Gal( L=K ). But this con tradicts

the c hoice of x .

Corollary 3.30. L et A b e a normal domain, K its quotient �eld, L a �nite sep ar able extension

of K , B the inte gr al closur e of A in L , and p a prime ide al in A . Then ther e exists only a �nite

numb er of prime ide als in B lying over p .

Pr o of. Let L

0

b e a least Galois extension of K con taining L and B

0

b e the in tegral closure of

A in L

0

. Supp ose P and Q are distinct prime ideals in B lying o v er p . Since B

0

is in tegral o v er

B , there exist prime ideals P

0

and Q

0

in B

0

lying o v er P and Q resp ectiv ely . Clearly P

0

and Q

0

are distinct and they b oth lie o v er p . Hence, b y Lemma 3.29, w e get the desired result.

Theorem 3.31. L et A b e a De dekind domain, K its quotient �eld, L a Galois extension of K ,

B the inte gr al closur e of A , and p a nonzer o prime ide al of A . Then for the primes of B lying

over p , the r ami�c ation indic es ar e the same and the r esidue de gr e es ar e the same. In other

wor ds, we have

p B = ( P

1

P

2

: : : P

g

)

e

wher e P

1

; : : : ; P

g

ar e distinct prime ide als of B , and f ( P

1

= p ) = � � � = f ( P

g

= p ) ( = f say).

Mor e over, if we let n = [ L : K ] , then we have

ef g = n:
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Pr o of. Let p B = P

e

1

1

: : : P

e

g

g

, where P

1

; : : : ; P

g

are distinct prime ideals of B , and let f

i

=

f ( P

i

= p ) for 1 � i � g . F or an y � 2 Gal( L=K ), w e clearly ha v e � ( p ) = p and � ( B ) = B , and

hence � ( p B ) = p B . By Lemma 3.29, for an y i with 1 � i � g , there exists � 2 Gal( L=K ) suc h

that � ( P

i

) = P

1

, and consequen tly , B =P

i

' � ( B ) =� ( P

i

) = B =P

1

. Th us e

i

= e

1

and f

i

= f

1

.

Since w e ha v e already sho wn that

P

g

i =1

e

i

f

i

= n , the theorem follo ws.

R emark 3.32. With the notation and assumptions as in Theorem 3.31, w e see that the rami�-

cation index e ( P = p ) of a prime P of B lying o v er p is indep enden t of the c hoice of P . Th us it

is sometimes denoted b y e

p

. Lik ewise, in the case of Galois extensions, the notation f

p

and g

p

is sometimes used.

3.6 Decomp osition and Inertia Groups

The iden tit y ef g = n , pro v ed in the last section, is a starting p oin t of a b eautiful theory of

rami�cation of primes dev elop ed b y Hilb ert. Some basic asp ects of this theory will b e discussed

in this section. In order to a v oid rep etition, w e state b elo w the notations and assumptions that

will b e used throughout this section.

Notation and Assumption: Let A b e a Dedekind domain and K b e its quotien t �eld.

Let L b e a Galois extension of K and B b e the in tegral closure of A in L . Let G denote the

Galois group of L=K . Let p b e a nonzero prime ideal of A . Let

�

A = A= p . Assume that

�

A is a

p erfect �eld.

9

Let e = e

p

; f = f

p

. and g = g

p

.

Observ e that j G j = [ L : K ] = ef g . Also note that if P is an y prime of B lying o v er p , then

the set primes of B lying o v er p is precisely f � ( P ) : � 2 Gal( L=K ) g . Th us the Galois group G

acts naturally on this set of g primes and the action is transitiv e.

De�nition 3.33. Giv en an y prime ideal P of B lying o v er p , the de c omp osition gr oup of P w.r.t.

L=K is de�ned to b e the subgroup of G consisting of automorphisms � suc h that � ( P ) = P . It

is denoted b y D

P

( L=K ) or simply b y D

P

or D if the reference to L=K and/or P is clear from

the con text. The �xed �eld of D

P

( L=K ) is called the de c omp osition �eld of P w.r.t. L=K , and

is denoted b y K

D

.

Note that D

P

( L=K ) is the stabilizer of P for the natural action of G on the set of primes

of B lying o v er p . Hence j D

P

( L=K ) j = j G j =g = ef . Th us [ L : K

D

] = ef and [ K

D

: K ] = g .

Also note that if Q is an y prime ideal of B lying o v er p , then Q = � ( P ) for some � 2 G , and

w e ha v e

� 2 D

Q

( L=K ) , � ( � ( P )) = � ( P ) , �

� 1

� � 2 D

P

( L=K )

and so D

Q

= � D

P

�

� 1

. Th us if D

P

is a normal subgroup of G (whic h, for example, is the case

if L=K is ab elian), then it dep ends only on p and it ma y b e denoted b y D

p

.

Lemma 3.34. L et P b e a prime ide al of B lying over p , and D = D

P

( L=K ) b e its de c omp osi-

tion gr oup. L et A

D

= B \ K

D

b e the inte gr al closur e of A in K

D

and let P

D

= P \ A

D

. Then

P is the only prime of B lying over P

D

, and we have

P

D

B = P

e

and f ( P =P

D

) = f :

9

In n um b er theoretic applications,

�

A will usually b e a �nite �eld and th us this assumption is v alid.
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If D is a normal sub gr oup of G , then K

D

=K is a Galois extension and p A

D

is a pr o duct of g

distinct and c onjugate primes of K

D

with r esidue de gr e e 1.

Pr o of. Since L=K

D

is Galois, the set of primes of B lying o v er P

D

is giv en b y f � ( P ) : � 2

Gal( L=K

D

) g = f P g . F urther, if e

0

= e ( P =P

D

) and f

0

= f ( P =P

D

), then w e kno w from Exercise

3.21 that e

0

j e and f

0

j f . On the other hand, e

0

f

0

= [ L : K

D

] = ef . Hence e

0

= e and f

0

= f .

This pro v es our �rst assertion, and also it sho ws that e ( P

D

= p ) = 1 and f ( P

D

= p ) = 1. If D is

normal, then clearly K

D

=K is Galois and e ( P

0

= p ) = 1 = f ( P

0

= p ), for an y prime P

0

of A

D

lying

o v er p . Since [ K

D

: K ] = g , w e obtain the desired result.

F or the remainder of this section, let us �x a prime P of B lying o v er p and let D =

D

P

( L=K ). Let

�

B = B =P . Then

�

B is a �eld extension of

�

A of degree f . By our assumption,

�

B =

�

A is separable. No w if � 2 D , then � clearly induces an

�

A {automorphism �� of

�

B . W e th us

obtain a homomorphism

� : D ! Gal(

�

B =

�

A ) de�ned b y � ( � ) = �� :

The k ernel of � is called the inertia gr oup of P w.r.t. L=K and is denoted b y T

P

( L=K ) or

simply b y T

P

or T . Clearly , T is a normal subgroup of D . Note that the inertia group can b e

alternativ ely de�ned as follo ws.

T

P

( L=K ) = f � 2 G : � ( x ) = x (mo d P ) for all x 2 B g :

The �xed �eld of T is called the inertia �eld of P w.r.t. L=K and is denoted b y K

T

. Observ e

that K � K

D

� K

T

� L , and K

T

=K

D

is a Galois extension with Galois group D =T . A b etter

description of this group and its order is giv en b y the follo wing lemma.

Lemma 3.35. The extension

�

B =

�

A of r esidue �elds is normal, and � : D ! Gal(

�

B =

�

A ) de�nes

an isomorphism of D =T onto Gal(

�

B =

�

A ) .

Pr o of. Let �� 2 B b e an y elemen t, and � 2 B b e its represen tativ e. Let f ( X ) b e the minimal

p olynomial of � o v er K . Since � 2 B , f ( X ) 2 A [ X ]. Moreo v er, since L=K is normal, L and

hence B con tains all the ro ots of f ( X ). No w f ( � ) = 0 and th us Irr ( � � ;

�

A ) divides

�

f ( X ), the

reduction of f ( X ) mo d p . It follo ws that

�

B con tains all the ro ots of Irr ( � �;

�

A ). Th us

�

B =

�

A is

normal.

Next, w e can �nd

�

� 2

�

B suc h that

�

B =

�

A (

�

� ) b ecause

�

B =

�

A is a �nite separable extension.

Let � 2 B b e a represen tativ e of B . By Chinese Remainder Theorem, w e can �nd some � 2 B

suc h that for an y � 2 G w e ha v e

� � � (mo d � ( P )) for � 2 D and � � 0(mo d � ( P )) for � =2 D :

Clearly

�

� =

�

� and th us

�

B =

�

A (

�

� ). Let 
 2 Gal(

�

B =

�

A ) b e an y elemen t. As in the previous

paragraph, w e see that 
 (

�

� ) is the image of some conjugate of � . Th us 
 (

�

� ) = � ( � ) for some

� 2 G . If � =2 D , then b y the c hoice of � w e ha v e � ( � ) 2 P , i.e., 
 ( � ) = � ( � ) =

�

0 , whic h is

imp ossible. It follo ws that 
 = �� = � ( � ). This pro v es the Theorem.
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Corollary 3.36. We have j T j = e = [ L : K

T

] and [ K

T

: K

D

] = f . F urther, if A

T

= B \ K

T

is

the inte gr al closur e of A in K

T

and P

T

= P \ A

T

, then we have

P

D

A

T

= P

T

with f ( P

T

=P

D

) = f and P

T

B = P

e

with f ( P =P

T

) = 1 :

In p articular, we se e that p is unr ami�e d in K

T

.

Pr o of. Since j D j = ef and [

�

B :

�

A ] = f , it follo ws from Lemma 3.35 that j T j = e = [ L : K

T

]

and [ K

T

: K

D

] = f . No w if w e consider the extension L=K

T

and the prime P lying o v er P

T

(i.e., replace K ; A; p b y K

T

; A

T

; P

T

resp ectiv ely), then w e ha v e D

P

( L=K

T

) = T

P

( L=K

T

) =

Gal( L=K

T

) = T and the ab o v e results sho w that e ( P =P

T

) = e and e ( P =P

T

) f ( P =P

T

) = e .

The desired result follo ws from this using the transitivit y relations for rami�cation indices and

residue degrees.

Exer cise 3.37. Let E b e a sub�eld of L con taining K and A

E

= B \ E b e the in tegral closure

of A in E . Let P

E

= P \ A

E

. Sho w that D

P

( L=E ) = D

P

( L=K ) \ Gal( L=E ) and T

P

( L=E ) =

T

P

( L=K ) \ Gal( L=E ).

Exer cise 3.38. Let H b e the subgroup of G generated b y the subgroups T

P

( L=K ) as P v aries

o v er all nonzero prime ideals of B . Let E b e the �xed �eld of H . Sho w that E =K is an

unrami�ed extension.

Exer cise 3.39. F or n � 0, de�ne G

n

= f � 2 G : � ( x ) � x (mo d P

n +1

) g . Sho w that G

n

are

subgroups of G with G

0

= T . Pro v e that G

n

= f 1 g for all su�cien tly large n . Also sho w that

G

0

=G

1

is isomorphic to a subgroup of the m ultiplicativ e group of nonzero elemen ts of

�

B = B =P ,

and therefore it is cyclic. F urther sho w that for n � 1, G

n

=G

n +1

is isomorphic to a subgroup

of the additiv e group

�

B . Deduce that the inertia group T is a solv able group.

R emark 3.40. Let K

p

b e the completion of K w.r.t. the v aluation of K corresp onding to

p (whose v aluation ring is A

p

), and L

P

b e the completion of L w.r.t. the v aluation of L

corresp onding to P . Then w e kno w that L

P

can b e regarded as a �eld extension of K

p

. Since K

p

is complete, there is only one prime of L

P

lying o v er the prime (or the corresp onding v aluation)

of K

p

. And since the residue �elds of these primes in the completions coincide with the residue

�elds

�

A and

�

B resp ectiv ely , it follo ws that the residue degrees are the same. Hence using the

Theorem pro v ed in the last section, w e see that the rami�cation index corresp onding to L

P

=K

p

is

precisely e , and w e ha v e ef = [ L

P

: K

p

]. Moreo v er, ev ery elemen t of the decomp osition group

D = D

P

( L=K ) extends b y con tin uit y to an K

p

{automorphism of L

P

, and since j D j = ef ,

it follo ws that Gal( L

P

=K

p

) ' D

P

( L=K ). In particular, if P is unrami�ed, then T = f 1 g

and th us D is isomorphic to Gal(

�

B =

�

A ). F urthermore, if

�

A is �nite (whic h is the case if K

is a n um b er �eld), then Gal(

�

B =

�

A ) is cyclic, and th us whenev er P is unrami�ed, w e ha v e

Gal( L

P

=K

p

) ' Gal(

�

B =

�

A ) ' Gal (

�

L

P

=

�

K

p

), where

�

L

P

and

�

K

p

denote the residue �elds of (the

v aluation rings of ) L

P

and K

p

resp ectiv ely , so that the lo cal Galois group Gal( L

P

=K

p

) is cyclic.

F or more on these matters, see [17 ]

3.7 Quadratic and Cyclotomic Extensions

In this section w e shall consider the examples of quadratic and cyclotomic �elds and try to

determine explicitly the splitting of rational primes when extended to these n um b er �elds.

42



Example 1: Quadratic Fields

Let K b e a quadratic �eld. As noted earlier, w e ha v e K = Q (

p

m ), for some uniquely

determined squarefree in teger m (with m 6= 0 ; 1). Let O b e the ring of in tegers of K . W e ha v e

also seen that

O =

(

Z [

p

m ] if m � 2 ; 3(mo d 4)

Z [

1+

p

m

2

] if m � 1(mo d 4) :

In particular, w e see that the h yp othesis of Kummer's Theorem 3.24 is satis�ed.

No w let p b e a rational prime. W e are in terested in the decomp osition of the extended ideal

p O . The form ula

P

g

i =1

e

i

f

i

= n sho ws that g as w ell as e

i

; f

i

can only b e 1 or 2, and that the

situation has to b e one of the follo wing.

(i) g = 2 ; e

1

= f

1

= e

2

= f

2

= 1 so that p O = P

1

P

2

for some distinct primes P

1

, P

2

of O

with O =P

i

' Z =p Z . In this case, w e sa y that p is a de c omp ose d (or split ) prime, or that p

de c omp oses (or splits ) in O .

(ii) g = 1 ; e

1

= 2 ; f

1

= 1 so that p O = P

2

for some prime P of O with O =P ' Z =p Z . In

this case p is a r ami�e d prime.

(iii) g = 1 ; e

1

= 1 ; f

1

= 2 so that p O = P for some prime P of O with [ O =P : Z =p Z ] = 2. In

this case, w e sa y that p is an inertial prime.

No w let's �gure out whic h one is whic h. First w e consider

Case 1 : m 6� 1(mo d 4), i.e., m � 2 ; 3(mo d 4).

In this case, O = Z [

p

m ] and f ( X ) = X

2

� m is the minimal p olynomial of

p

m o v er Q . By

Kummer's Theorem 3.24, the factorization of p O is determined b y the factorization of

�

f ( X ),

the reduction of f ( X ) mo dulo p . If p j m or p = 2, then

�

f ( X ) = X

2

or ( X � 1)

2

, and hence

( p ) O = P

2

, with P = ( p;

p

m ) or P = ( p; 1 �

p

m ), and p is rami�ed. If p 6 j m and p 6= 2, then

�

f ( X ) is either irreducible in ( Z =p Z )[ X ] or has t w o distinct ro ots in Z =p Z (wh y?). The latter is

the case if and only if m is a square mo d p , i.e., m � x

2

(mo d p ) for some in teger x . So w e kno w

whic h primes are decomp osed and whic h are inertial. The result can b e con v enien tly expressed

using the L e gendr e symb ol , whic h is de�ned th us.

10

�

m

p

�

=

8

<

:

1 if p 6 j m and m is a square mo d p

� 1 if p 6 j m and m is not a square mo d p

0 if p j m .

What w e ha v e sho wn so far is that if m � 2 ; 3(mo d 4), then

the rational prime p is

8

>

>

>

<

>

>

>

:

decomp osed if p 6= 2 and

�

m

p

�

= 1

rami�ed if p = 2 or

�

m

p

�

= 0

inertial if p 6= 2 and

�

m

p

�

= � 1 :

10

It ma y b e noted that the Legendre sym b ol can b e e�ectiv ely computed using its basic prop erties, viz.,

�

ab

p

�

=

�

a

p

� �

b

p

�

,

�

a

p

�

=

�

b

p

�

if a � b (mo d p ), and the Gauss' La w of Quadratic Recipro cit y whic h states that for an y

o dd prime p , w e ha v e

�

� 1

p

�

= ( � 1)

p � 1

2

,

�

2

p

�

= ( � 1)

p

2

� 1

8

, and last but not the least,

�

p

q

� �

q

p

�

= ( � 1)

p � 1

2

q � 1

2

,

where q is an y o dd prime.
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No w let's consider

Case 2 : m � 1(mo d 4).

In this case, O = Z

h

1+

p

m

2

i

and f ( X ) = X

2

� X �

m � 1

4

is the minimal p olynomial of

1+

p

m

2

o v er Q . If p = 2, then

�

f ( X ) has a ro ot mo d p i�

m � 1

4

� 0(mo d 2), i.e., m � 1(mo d 8) [b ecause

x

2

� x = x ( x � 1) � 0(mo d 2) for an y x 2 Z ], and in this case, eac h of the t w o distinct elemen ts

in Z = 2 Z is a ro ot of

�

f ( X ), whic h implies that 2 is a decomp osed prime. If p = 2 and m 6� 1(mo d

8), then

�

f ( X ) has to b e irreducible in ( Z = 2 Z )[ X ], and so 2 is an inertial prime. No w assume

that p 6= 2. Then the \ro ots"

1 �

p

m

2

of X

2

� X �

m � 1

4

will exist in Z =p Z if and only if

p

m

exists in Z =p Z , or equiv alen tly , m is a square mo d p . Moreo v er,

�

f ( X ) has m ultiple ro ots in

Z =p Z i� p j m . (V erify!) Th us, b y Kummer's Theorem 3.24, w e �nd that p is rami�ed i� p j m ,

and if p 6= 2 and p 6 j m , then p is decomp osed or inertial according as m is or is not a square

mo d p . So if m � 1(mo d 4), then

p is

8

>

>

>

<

>

>

>

:

decomp osed if p = 2 and m � 1(mo d 8) or if p 6= 2 and

�

m

p

�

= 1

rami�ed if p j m , i.e.,

�

m

p

�

= 0

inertial if p = 2 and m 6� 1(mo d 8) or if p 6= 2 and

�

m

p

�

= � 1 :

Recall that the discriminan t of the quadratic �eld K = Q (

p

m ) is giv en b y

d

K

=

�

4 m if m � 2 ; 3(mo d 4)

m if m � 1(mo d 4) :

No w the ab o v e observ ations concerning rami�ed primes in K can b e expressed in a uni�ed

manner as follo ws.

p is a rami�ed prime in K , p j d

K

:

This v eri�es the theorem of Dedekind, whic h w as pro v ed in Section 3.4.

Exer cise 3.41. (F ermat's Tw o Squa re Theo rem): Sho w that the ring of in tegers of the quadratic

�eld Q ( i ), where i

2

= � 1, is the ring Z [ i ] of Gaussian in tegers. Sho w that the decomp osed

primes are precisely the primes of the form 4 k + 1. Use this and the fact that Z [ i ] is a PID to

sho w that an y prime of the form 4 k + 1 can b e written as a sum of t w o squares. F urther, use

the fact that primes of the form 4 k + 3 are inertial in Z [ i ] to sho w that an y p ositiv e in teger

n , with n = p

e

1

1

: : : p

e

h

h

where p

1

; : : : ; p

h

are distinct primes and e

1

; : : : ; e

h

are p ositiv e in tegers,

can b e written as a sum of t w o squares if and only if e

i

is ev en whenev er p

i

� 3(mo d 4).

Example 2: Cyclotomic Fields

Let p b e an o dd prime n um b er and � b e a primitiv e p {th ro ot of unit y . Let O b e the ring

of in tegers of the cyclotomic �eld K = Q ( � ). W e ha v e noted earlier that the prime p is totally

rami�ed in K . In fact, w e ha v e ( p ) O = P

p � 1

where P is the prime ideal of O generated b y

( � � 1). W e also kno w that d

K

= ( � 1)

p � 1

2

p

p � 2

. Hence p is the only rami�ed prime. (This fact

can also b e seen from Kummer's Theorem 3.24 whic h is applicable since O = Z [ � ]). Let q b e a

rational prime di�eren t from p . Then q O is a pro duct of g distinct prime ideals of O . Let Q

b e a prime ideal of O lying o v er q Z , and let f = [ O =Q : F

q

] = ( p � 1) =g , where F

q

= Z =q Z .
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Then f (and hence g ) can b e determined as follo ws. If

�

� denotes the image of � in the �eld

�

O = O =Q , then w e ha v e

�

O = F

q

(

�

� ) and

�

�

p

= 1. Th us

�

� is a nonzero elemen t of

�

O

�

, whic h is

a m ultiplicativ e group of order q

f

� 1. So it follo ws that p divides q

f

� 1, i.e., q

f

� 1(mo d p ).

Moreo v er, if for some l < f , q

l

� 1(mo d p ), then

�

� w ould b e in a �eld of q

l

elemen ts and hence

this �eld ha v e to con tain

�

O = F

q

(

�

� ), whic h is a con tradiction. Therefore f is the least p ositiv e

in teger suc h that q

f

� 1(mo d p ). In this w a y f and hence g is explicitly determined. The prime

ideals lying ab o v e q Z can b e determined b y considering the factorization of X

p

� 1 in Z =q Z [ X ]

b y using Kummer's Theorem 3.24. F or example, if p = 7 and q = 5, then w e �nd that f = 6

and g = 1; moreo v er, Q = (5 ; 1 + � + �

2

+ �

3

+ �

4

+ �

5

+ �

6

) = (5) is the only prime ideal of O

lying o v er 5 Z .

Exer cise 3.42. Let p; � and K b e as ab o v e. Let H b e the unique subgroup of index 2 in the cyclic

group Gal( Q ( � ) = Q ). The �xed �eld of H , sa y E , is a quadratic �eld. Sho w that E = Q (

p

p

�

)

where p

�

= ( � 1)

p � 1

2

p . Let q b e an o dd prime di�eren t from p , f b e as ab o v e, and let g =

p � 1

f

.

Sho w that q decomp oses in E i�

�

p

�

q

�

= 1. Next, if q decomp oses in E , then sho w that g is

ev en and

�

q

p

�

= 1. [Y ou ma y use the elemen tary fact that

�

a

p

�

� a

p � 1

2

(mo d p ).] Con v ersely , if

g is ev en, then sho w that the decomp osition �eld of q con tains E , and so q decomp oses in E .

F urther, if g is o dd, then use the minimalit y of f to sho w that

�

q

p

�

= � 1. Deduce from all this

that

�

p

q

� �

q

p

�

= ( � 1)

( p � 1)

2

( q � 1)

2

.
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Chapter 4

Class Num b er and Lattices

In this c hapter, w e will concen trate on the case of (algebraic) n um b er �elds. W e shall see ho w

n um b er �elds giv e rise to lattices in R

n

in a natural w a y . W e will then pro v e some results

of Mink o wski concerning lattices and deduce some of its n um b er-theoretic consequences. In

particular, w e will sho w that the class n um b er of an y n um b er �eld is alw a ys �nite, and also

that in an y n um b er �eld other than Q , some prime (of Z ) is alw a ys rami�ed.

4.1 Norm of an ideal

Let K b e a n um b er �eld and let A = O

K

denote its ring of in tegers.

T o ev ery nonzero fractional ideal J of A , w e asso ciate a nonzero rational n um b er, denoted

N ( J ), and called the norm of J , as follo ws. F or a nonzero prime ideal p of A , w e de�ne

N ( p ) = p

f

if p 2 Z is suc h that p \ Z = p Z and f = f ( p =p Z ) = [ A= p : Z =p Z ] :

This de�nition is extended to nonzero fractional ideals b y m ultiplicativit y . Th us, if J 2 F

A

and

if J = p

e

1

1

� � � p

e

h

h

is its factorization as in Theorem 3.11, then

N ( J ) = p

e

1

f

1

1

� � � p

e

h

f

h

h

; if p

1

; : : : ; p

h

2 Z are suc h that p

i

\ Z = p

i

Z and f

i

= f ( p

i

=p

i

Z ) :

It is clear that N is m ultiplicativ e, i.e., N ( J

1

J

2

) = N ( J

1

) N ( J

2

) for an y J

1

; J

2

2 F

A

; moreo v er,

J is an in tegral ideal of A = ) N ( J ) 2 Z ; for an y J 2 F

A

.

If p is a nonzero prime ideal of A lying o v er p Z and f = f ( p =p Z ), then as in the pro of of

Theorem 3.22, w e see that for an y p ositiv e in teger e , A= p

e

is isomorphic to e copies of A= p , as

a v ector space o v er Z =p Z . Th us, N ( p

e

) = p

ef

= j A= p

e

j . Using this and the Chinese Remainder

Theorem, w e see that

N ( I ) = j A=I j ; for an y nonzero in tegral ideal I of A:

Th us, from (2.3) , w e obtain the follo wing imp ortan t relation b et w een the ideal norm and the

discriminan t:

�( I ) = N ( I )

2

d

K

for an y nonzero in tegral ideal I of A: (4.1)

46



The ideal norm b eha v es just lik e the norm of an elemen t w.r.t. K = Q when w e pass from K

to a larger n um b er �eld L . More precisely , if L=K is a �nite extension, J 2 F

A

and B = O

L

,

then J B 2 F

B

and from the transitivit y relations in Exercise 3.21, it is readily seen that

N ( J B ) = N ( J )

[ L : K ]

: (4.2)

The follo wing prop osition sho ws that in the case of principal fractional ideals the ideal norm is

essen tially the same as the norm of a generator.

Prop osition 4.1. If xA the princip al fr actionary ide al of A gener ate d by x 2 K ; x 6= 0 , then

N ( xA ) = j N

K = Q

( x ) j :

Pr o of. Let L b e a normal closure of K so that L is a �nite extension of K suc h that L= Q is

Galois. F rom (4.2) and elemen tary prop erties of the norm of an elemen t, w e ha v e

N ( xB ) = N ( xA )

[ L : K ]

and N

L= Q

( x ) = N

K = Q

( x )

[ L : K ]

where B = O

L

is the ring of in tegers of L . Hence it su�ces to sho w that N ( xB ) = j N

L= Q

( x ) j .

With this in view, w e ma y assume without loss of generalit y that K = Q is a Galois extension.

No w, supp ose p is a nonzero prime ideal of A . Let p 2 Z b e suc h that p \ Z = p Z and let

e = e ( p =p Z ) and f = f ( p =p Z ). If P

1

; : : : ; P

g

are the prime ideals of A lying o v er p Z (with, sa y ,

P

1

= p ), then from Lemma 3.29 and Theorem 3.31, it is clear that

N ( p ) A = p

f

A = ( pA )

f

= ( P

1

� � � P

g

)

ef

=

Y

� 2 Gal ( K = Q )

� ( p ) : (4.3)

Note that since A is in tegral o v er Z , w e ha v e mA \ Z = m Z . for an y m 2 Z . Th us, to pro v e the

prop osition, it su�ces to sho w that the in tegers N ( xA ) and N

K = Q

( x ) generate the same ideal

in A . Let xA = p

e

1

1

� � � p

e

h

h

b e the factorization of xA as a pro duct of p o w ers of distinct prime

ideals of A . Then, N ( xA ) A = ( N ( p

1

) A )

e

1

� � � ( N ( p

h

) A )

e

h

, and so from (4.3) , w e see that

N ( xA ) A =

h

Y

i =1

 

Y

� 2 G

� ( p

i

)

!

e

i

=

Y

� 2 G

�

 

h

Y

i =1

p

e

i

i

!

=

Y

� 2 G

� ( xA ) =

 

Y

� 2 G

� ( x )

!

A = N

K = Q

( x ) A

where G = Gal( K = Q ) denotes the Galois group of K o v er Q . This completes the pro of.

W e shall use the notion of ideal norm to pro v e the �niteness of the class n um b er of K . A

basic observ ation is the follo wing.

Lemma 4.2. If every ide al class of K c ontains an inte gr al ide al I with N ( I ) � C , wher e C is

a p ositive r e al numb er indep endent of I (but may dep end on K ), then C

K

is �nite.

Pr o of. It su�ces to sho w that that the n um b er of nonzero ideals I of A with N ( I ) = m is �nite,

for an y p ositiv e in teger m . No w, if N ( I ) = m , then the additiv e ab elian group A=I has order

m and th us ma 2 I for all a 2 A . In particular, I con tains m Z . But from Theorem 3.22, it is

clear that there are only �nitely man y ideals of A con taining m Z .
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In section 4.4, w e use some results of Mink o wski to obtain an explicit v alue of C for whic h

Lemma 4.2 holds. A crude b ound can, ho w ev er, b e obtained b y a less in tricate argumen t as

sho wn in the b o ok of Marcus [13 , Ch. 5]. W e outline it here as an exercise.

Exer cise 4.3. Let f u

1

; : : : ; u

n

g b e an in tegral basis of A . Also, let u

(1)

i

; : : : ; u

( n )

i

denote the

conjugates of u

i

w.r.t. K = Q , for 1 � i � n .

(i) Giv en an y nonzero ideal I of A , let m =

�

N ( I )

1 =n

�

b e the in teger part of N ( I )

1 =n

. Sho w

that there are ( m + 1)

n

elemen ts of the form

P

n

i =1

m

i

u

i

where m

i

2 Z with 0 � m

i

� m .

Deduce that I con tains a nonzero elemen t x suc h that x =

P

n

i =1

m

i

u

i

where m

i

2 Z with

j m

i

j � m .

(ii) Sho w that if x is as in (i) ab o v e, then

j N

K = Q

( x ) j � C N ( I ) where C =

n

Y

j =1

n

X

i =1

j u

( j )

i

j :

(iii) Sho w that ev ery ideal class of K con tains an ideal I

0

of A suc h that N ( I

0

) � C , where C

is as in (ii) ab o v e. Deduce that C

K

is �nite.

4.2 Em b eddings and Lattices

Let K b e a n um b er �eld and let n = [ K : Q ] . Since K = Q is separable and a normal closure of

K can b e found in C (in fact C also con tains an algebraic closure of K ), it follo ws that there

are exactly n distinct Q - homomorphisms of K ! C . These homomorphisms are called the

emb e ddings of K (in C ). If an em b edding � : K ! C is suc h that � ( K ) � R , then it is called

a r e al emb e dding ; otherwise it is called a c omplex emb e dding . Note that the w ord `complex' is

used here in the sense of `non-real'. In particular, if � : K ! C is a complex em b edding, then

�� : K ! C de�ned b y

�� ( u ) = � ( u ) = the complex conjugate of � ( u ) ; for u 2 K ;

is an em b edding of K di�eren t from � . It follo ws that the n um b er of complex em b eddings of

K is ev en. W e usually denote the n um b er of real em b eddings of K b y r (or b y r

1

) and the

n um b er of complex em b eddings of K b y 2 s (or b y 2 r

2

). W e ha v e r + 2 s = n . In case s = 0, the

�eld K is said to b e total ly r e al .

Example 4.4. F or K = Q (

p

2 ), w e ha v e r = 2 and s = 0, since an y em b edding is of the form

a + b

p

2 7! a � b

p

2. Th us Q (

p

2 ) is a totally real �eld. On the other hand, for K = Q ( i ) ,

w e ha v e r = 0 and s = 1. F or the cubic �eld K = Q (

3

p

2 ), w e ha v e r = 1 and s = 1, and the

em b eddings of K are essen tially giv en b y

3

p

2 7!

3

p

2 ,

3

p

2 7! !

3

p

2 and

3

p

2 7! !

2

3

p

2, where !

denotes a primitiv e cub e ro ot of unit y .

A subset L of R

n

suc h that

L = Z v

1

+ � � � + Z v

n

for some R -basis f v

1

; : : : ; v

n

g of R

n

, is called a lattic e in the Euclidean space R

n

. W e call the

set

P = f �

1

v

1

+ � � � + �

n

v

n

: 0 � �

i

< 1 for i = 1 ; : : : ; n g
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a fundamental p ar al lelotop e of L (w.r.t. the Z -basis f v

1

; : : : ; v

n

g of L ). Note that R

n

is co v ered

b y the translates of P b y elemen ts of L , i.e.,

R

n

=

a

x 2 L

x + P (4.4)

where

`

denotes disjoin t union.

It is clear that an y lattice can b e transformed to Z

n

b y an in v ertible linear transformation

of R

n

, sa y T . If T

0

is another suc h linear transformation, then T and T

0

di�er b y an in v ertible

linear transformation if Z

n

, or in other w ords, b y an elemen t of GL

n

( Z ). In particular, det T =

� det T

0

, and th us the absolute v alue j det T j is indep enden t of c hoice of T . W e call this absolute

v alue the volume of L , and denote it b y V ol( R

n

=L ). Note that the v olume of L is a p ositiv e

real n um b er. Moreo v er, from the Change of V ariables form ula for n -fold in tegrals, w e readily

see that the notion of the v olume of a lattice L is related to the classical notion of v olume of

subsets of R

n

b y the form ula

V ol( R

n

=L ) = v ol( P ) ;

where P is a fundamen tal parallelotop e of L and v ol( P ) denotes its v olume as a subset of R

n

.

Recall that for an y measurable subset E of R

n

, the v olume of E is de�ned b y

v ol( E ) =

Z

E

d�

where � denotes the Leb esgue measure on R

n

. Note that if E is compact or con tained in a

compact set, then v ol( E ) < 1 . Also note that if E

0

= �E := f �x : x 2 E g , then E

0

is

measurable and v ol( E

0

) = �

n

v ol( E ).

The follo wing result sho ws ho w n um b er �elds generate lattices, and also ho w their v olume

can b e computed.

Prop osition 4.5. L et K b e a numb er �eld of de gr e e n over Q . L et �

1

; : : : ; �

r

b e the r e al

emb e ddings and �

1

; : : : ; �

s

; ��

1

; : : : ; ��

s

b e the c omplex emb e ddings of K . De�ne f : K ! R

n

by,

f ( u ) = ( �

1

( u ) ; : : : ; �

r

( u ) ; Re �

1

( u ) ; : : : ; Re �

s

( u ) ; Im ��

1

( u ) ; : : : ; Im � �

s

( u )) for u 2 K :

Then f is inje ctive and the image of O

K

under f is a lattic e L

K

in R

n

. In p articular K emb e ds

densely in R

n

. Mor e over, if d

K

denotes the (absolute) discriminant of K , then

V ol ( R

n

=L

K

) =

p

j d

K

j

2

s

:

Mor e gener al ly, if I is any nonzer o ide al of O

K

, then f ( I ) is a lattic e L

I

in R

n

and

V ol ( R

n

=L

I

) =

p

j d

K

j

2

s

N ( I ) :

Pr o of. Let f u

1

; : : : ; u

n

g b e an in tegral basis of O

K

. The conjugates of u

i

w.r.t. K = Q are

precisely giv en b y �

1

( u ) ; : : : ; �

r

( u ) ; �

1

( u ) ; : : : ; �

s

( u ) ; ��

1

( u ) ; : : : ; ��

s

( u ). Th us from the expression

for D

L=K

( u

1

; : : : ; u

n

) in the pro of of Theorem 1.11, w e see that

d

K

=

�

1

( u

1

) : : : �

r

( u

1

) �

1

( u

1

) : : : �

s

( u

1

) ��

1

( u

1

) : : : ��

s

( u

1

)

.

.

.

.

.

.

�

1

( u

n

) : : : �

r

( u

n

) �

1

( u

n

) : : : �

s

( u

n

) ��

1

( u

n

) : : : ��

s

( u

n

)

2

:
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No w, in the n � n matrix ab o v e, let us mak e the follo wing elemen tary column op erations. First,

w e add the the ( r + s + j )-th column to the ( r + j )-th column for 1 � j � s . Next, w e m ultiply

the resulting ( r + j )-th column b y 1 = 2 and subtract it from the ( r + s + j )-th column for

1 � j � s . As a consequence, w e see that

d

K

= ( � 1)

s

2

2 s

[det ( f

i

( u

j

)) ]

2

and

p

j d

K

j = 2

s

j det ( f

i

( u

j

)) j

where f

1

; : : : ; f

n

denote the co ordinate functions of f . In particular, the determinan t on the

righ t is nonzero, and th us the v ectors f ( u

1

) ; : : : ; f ( u

n

) in R

n

are linearly indep enden t. It follo ws

that f is injectiv e and L

K

= f ( O

K

) is a lattice in R

n

with V ol ( R

n

=L

K

) = 2

� s

p

j d

K

j . The

assertion ab out K b eing densely em b edded in R

n

follo ws since f ( K ) con tains the Q - span of

f ( u

1

) ; : : : ; f ( u

n

).

In the more general case when I is a nonzero ideal of O

K

and L

I

= f ( I ), w e can pro ceed as

b efore but with f u

1

; : : : ; u

n

g replaced b y an in tegral basis of I so that d

K

is replaced b y �( I ).

The desired form ula for V ol ( R

n

=L

I

) is then a consequence of (4.1) .

R emark 4.6. 1. The ab o v e pro of sho ws that the sign of the discriminan t of a n um b er �eld with

2 s complex em b eddings is giv en b y ( � 1)

s

. This result is sometimes called Brill's Discriminan t

Theorem.

2. F rom Prop osition 4.5, it is immediate that N ( I ) = V ol( R

n

=L

I

) = V ol ( R

n

=L

K

). Sometimes

the norm of an ideal is de�ned this w a y as the quotien t of the v olumes of lattices L

I

and L

K

.

In this case, pro ving the m ultiplicativit y of ideal norm requires some e�ort. F or an approac h

along these lines, see, for example, the recen t b o ok of Swinnerton-Dy er [16 ].

De�nition 4.7. A subset S of R

n

is called symmetric if 0 2 S and moreo v er, � x 2 S whenev er

x 2 S .

Lemma 4.8. let L b e a lattic e in R

n

and S b e a c onvex, me asur able, symmetric subset of R

n

such that v ol ( S ) > 2

n

V ol( R

n

=L ) . Then S c ontains a nonzer o p oint of L . In c ase S is also

c omp act, then S c ontains a nonzer o p oint of L even when v ol ( S ) = 2

n

V ol( R

n

=L ) .

Pr o of. Let P b e a fundamen tal parallelotop e for L . Then from (4.4), w e see that giv en an y

measurable subset E of R

n

, w e ha v e E =

`

x 2 L

E \ ( x + P ). Therefore,

v ol( E ) =

X

x 2 L

v ol ( E \ ( x + P )) =

X

x 2 L

v ol (( E � x ) \ P ) : (4.5)

No w, consider E =

1

2

S . W e ha v e

v ol( E ) =

1

2

n

v ol( S ) > V ol( R

n

=L ) = v ol( P ) : (4.6)

Hence, if the sets ( E � x ) \ P w ere all disjoin t, as x v aries o v er L , then the righ tmost expression in

(4.5) w ould b e � v ol( P ), whic h con tradicts (4.6). Therefore, there exist a; b 2 S and p 2 P suc h

that p =

1

2

a � x =

1

2

b � y for some x; y 2 L , x 6= y . It follo ws that 0 6= x � y =

1

2

a +

1

2

( � b ) 2 S \ L .

In case S is compact, w e consider S

n

= S +

1

n

S , and obtain nonzero p oin ts x

n

2 S

n

\ L

from the previous case. Note that S

n

=

�

1 +

1

n

�

S � 2 S b ecause S is con v ex and 0 2 S . Th us,

x

n

2 2 S \ L for all n � 1. But 2 S \ L is �nite since S is compact. Therefore, the sequence ( x

n

)

has a constan t subsequence, whose limit is in the closure of S , whic h is S itself.
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R emark 4.9. The ab o v e lemma is sometimes referred to as Mink o wski's Con v ex Bo dy Theorem.

It is a k ey result in Mink o wski's geometric approac h to the theory of n um b ers. A leisurely

discussion of this result along with sev eral applications as w ell as references to alternativ e

pro ofs and further dev elopmen ts, can b e found in the recen t b o ok of Olds, Lax and Da vido� [14 ].

The exercise b elo w giv es t w o suc h applications. The �rst is an elemen tary theorem of Diric hlet,

whic h ma y b e regarded as a starting p oin t for the theory of Diophan tine Appro ximation (and in

particular, the study of con tin ued fractions). The second result is the celebrated F our Square

Theorem, �rst pro v ed b y Lagrange in 1770. Classical pro ofs of Diric hlet's Theorem (using

Pigeonhole principle) and Lagrange's Theorem (using F ermat's metho d of in�nite descen t) can

b e found in the b o ok of Bak er [2 ]. The applications of Mink o wski's Con v ex Bo dy Theorem with

whic h w e shall b e concerned, app ear after the exercises and in the subsequen t sections.

Exer cises 4.10. 1. Giv en an y real n um b er � and an y in teger Q > 1 sho w that there exist

in tegers p; q with 0 < q < Q and j q � � p j � 1 =Q . [Hin t: Let L = Z

2

and S b e the parallelogram

b ounded b y the lines x = � Q and y � � x = � 1 =Q , and use Lemma 4.8.]

2. Let p b e an o dd prime. First, sho w that there exist in tegers a; b suc h that p j a

2

+ b

2

+ 1.

[Hin t: The n um b ers a

2

with 0 � a � ( p � 1) = 2 are m utually incongruen t (mo d p ), and the same

holds for the n um b ers � 1 � b

2

with 0 � b � ( p � 1) = 2.] Next, sho w that p is a sum of squares

of four in tegers. [Hin t: Let L � R

4

b e the lattice spanned b y ( m; 0 ; a; b ) ; (0 ; m; b; � a ) ; (0 ; 0 ; 1 ; 0 )

and (0 ; 0 ; 0 ; 1), and S b e the op en disc in R

4

cen tered at origin and of radius

p

2 m , and use

Lemma 4.8.] Finally , use the trivial represen tation 2 = 1

2

+ 1

2

+ 0

2

+ 0

2

and Euler's iden tit y

( x

2

+ y

2

+ z

2

+ w

2

)( x

0

2

+ y

0

2

+ z

0

2

+ w

0

2

)

= ( xx

0

+ y y

0

+ z z

0

+ w w

0

)

2

+ ( xy

0

� y x

0

+ w z

0

� z w

0

)

2

+ ( xz

0

� z x

0

+ y w

0

� w y

0

)

2

+ ( xw

0

� w x

0

+ z y

0

� y z

0

)

2

to deduce that ev ery p ositiv e in teger is a sum of four squares.

Let n b e a p ositiv e in teger and r ; s b e nonnegativ e in tegers suc h that r + 2 s = n . W e de�ne

the ( r ; s ) -norm of an y x = ( x

1

; : : : ; x

n

) 2 R

n

b y

N

r ;s

( x ) = x

1

� � � x

r

�

x

2

r +1

+ x

2

r + s +1

�

� � �

�

x

2

r + s

+ x

2

n

�

:

Observ e that if K is a n um b er �eld of degree n and r ; s ha v e their usual meaning, then for

an y u 2 K w e ha v e N

K = Q

( u ) = N

r ;s

( f ( u )), where f denotes the injection of K in R

n

giv en b y

Lemma 4.5.

Corollary 4.11. L et n b e a p ositive inte ger and r ; s b e nonne gative inte gers such that r + 2 s = n .

If 
 is a c omp act, c onvex, symmetric subset of R

n

such that

v ol(
) > 0 and jN

r ;s

( a ) j � 1 for all a 2 
 ;

then every lattic e L in R

n

c ontains a nonzer o ve ctor x such that

jN

r ;s

( x ) j � 2

n

V ol ( R

n

=L )

v ol(
)

:

Pr o of. Apply Lemma 4.8 with S = � 
, where � = 2

n

p

V ol( R

n

=L ) = v ol (
) .
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4.3 Mink o wski's Theorem

W e will no w use the mac hinery dev elop ed in the previous section to pro v e the follo wing imp or-

tan t result of Mink o wski.

Theorem 4.12 (Mink o wski). L et n b e a p ositive inte ger and r ; s b e nonne gative inte gers such

that r + 2 s = n . If L is any lattic e in R

n

, then L c ontains a nonzer o ve ctor x such that

jN

r ;s

( x ) j �

n !

n

n

�

8

�

�

s

V ol( R

n

=L ) :

Pr o of. F or an y p ositiv e real n um b er t , let 


t

= 


t

( r ; s ) denote the set

f ( x

1

; : : : ; x

n

) 2 R

n

:

r

X

i =1

j x

i

j + 2

r + s

X

j = r +1

q

x

2

j

+ x

2

j + s

� t g :

It is clear that 


t

is a compact and symmetric subset of R

n

. F urther, from the Cauc h y-Sc h w artz

inequalit y , w e see that

p

( a + c )

2

+ ( b + d )

2

�

p

a

2

+ b

2

+

p

c

2

+ d

2

for an y a; b; c; d 2 R

and this, in turn, implies that if x; y 2 


t

and � 2 R with 0 � � � 1, then �x + (1 � � ) y 2 


t

.

Th us 


t

is con v ex. No w let t = n . By applying the AM-GM inequalit y to the n n um b ers

j x

1

j ; : : : ; j x

r

j ;

q

x

2

r +1

+ x

2

r + s +1

;

q

x

2

r +2

+ x

2

r + s +2

; : : : ;

q

x

2

r + s

+ x

2

n

, w e see that

jN

r ;s

( x ) j � 1 for all x 2 


n

:

No w the desired result follo ws at once b y applying Corollary 4.11 to 
 = 


n

if w e pro v e the

follo wing.

v ol(


t

) = t

n

2

r

�

�

2

�

s

1

n !

: (4.7)

T o pro v e (4.7), let V

r ;s

( t ) = v ol (


t

( r ; s )). Since 


t

= t 


1

, w e ha v e V

r ;s

( t ) = t

n

V

r ;s

(1) =

t

r +2 s

V

r ;s

(1). W e no w calculate V

r ;s

(1) using double induction on r and s . First, if r > 0, then

from the de�nitions of 


t

( r ; s ) and V

r ;s

( t ), w e see that

V

r ;s

(1) =

Z

1

� 1

V

r � 1 ;s

(1 � j x j ) dx

= 2

Z

1

0

V

r � 1 ;s

(1)(1 � x )

r � 1+2 s

dx

=

2

r + 2 s

V

r � 1 ;s

(1) :

Th us b y induction on r , w e obtain

V

r ;s

(1) =

2

r

( r + 2 s )( r � 1 + 2 s ) � � � (1 + 2 s )

V

0 ;s

(1) :
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Next, if s > 0, then

V

0 ;s

(1) =

Z Z

x

2

+ y

2

� 1 = 2

V

0 ;s � 1

(1 � 2

p

x

2

+ y

2

) dxdy

=

Z

2 �

0

Z

1 = 2

0

V

0 ;s � 1

(1 � 2 � ) � d� d�

=

Z

2 �

0

Z

1 = 2

0

V

0 ;s � 1

(1)(1 � 2 � )

2 s � 2

� d� d�

= 2 � V

0 ;s � 1

(1)

1

4(2 s )(2 s � 1)

:

Th us using induction on s and b y noting that V

0 ; 1

(1) =

R R

x

2

+ y

2

� 1 = 2

dx dy =

�

2

1

2

, w e see that

V

0 ;s

(1) = ( � = 2)

s

(1 = (2 s )!), and hence

V

r ;s

(1) =

2

r

( r + 2 s )!

V

0 ;s

(1)

�

�

2

�

s

=

�

s

2

r � s

n !

This implies (4.7), and th us the theorem is pro v ed.

4.4 Finiteness of Class Num b er and Rami�cation

Theorem 4.13. L et K b e a numb er �eld with [ K : Q ] = n and let d

K

b e its (absolute) dis-

criminant. Supp ose K has 2 s c omplex emb e ddings. Then every ide al class of K c ontains an

ide al of I of A such that

N ( I ) �

n !

n

n

�

4

�

�

s

p

j d

K

j : (4.8)

Conse quently, the ide al class gr oup C

K

of K is �nite.

Pr o of. Let I

0

b e an in tegral ideal in a giv en ideal class of K . If J

0

= ( I

0

)

� 1

, then J

0

is a

fractional ideal but w e can �nd d 2 A , d 6= 0 suc h that J :=

1

d

J

0

is an in tegral ideal. No w,

consider the map f : K ! R

n

de�ned in Prop osition 4.5, and let L

J

= f ( J ) b e the lattice in R

n

corresp onding to I . Applying Mink o wski's Theorem 4.12 to the lattice L

J

, w e see that there

exists u 2 J suc h that u 6= 0 and

N ( Au ) = j N

K = Q

( u ) j = jN

r ;s

( f ( u )) j �

n !

n

n

�

8

�

�

s

V ol( R

n

=L

J

) =

n !

n

n

�

4

�

�

s

p

j d

K

j N ( J ) :

where the last equalit y follo ws from Prop osition 4.5. Using the m ultiplicativit y of ideal norm,

w e see that if I := ( u ) J

� 1

, then

N ( I ) �

n !

n

n

�

4

�

�

s

p

j d

K

j :

Moreo v er, I = ( ud ) I

0

and th us I is an in tegral ideal in the giv en ideal class. This pro v es the

desired inequalit y . The last assertion follo ws Lemma 4.2.
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In the examples b elo w, w e sho w ho w Mink o wski's Theorem can b e e�ectiv ely used to de-

termine the class n um b er in sev eral cases.

Examples 4.14. 1. Let K = Q (

p

5 ). Then n = 2. s = 0 and d

K

= 5. Th us the Mink o wski's

inequalit y (4.8) reduces to

N ( I ) �

2!

2

2

p

5 =

p

5

2

< 2 :

Th us ev ery ideal class con tains an ideal I of A with N ( I ) = 1, i.e., I = A . It follo ws that C

K

is trivial and h

K

= 1. Notice that a similar argumen t will sho w that if K = Q (

p

2) or Q (

p

3),

then h

K

= 1.

2. Let K = Q (

p

� 5). Then n = 2. s = 1 and d

K

= � 20. Th us the Mink o wski's inequalit y

(4.8) reduces to

N ( I ) �

2!

2

2

�

4

�

�

p

20 =

2

p

20

�

= 2 : 84 : : : :

No w if N ( I ) = 2, then I m ust b e a prime ideal lying o v er 2 Z and with residue degree 1. Since

2 O

K

= (2 ; 1 +

p

� 5)(2 ; 1 �

p

� 5) = (2 ; 1 +

p

� 5 )

2

, it follo ws that there is only one p ossibilit y

for I , namely I = (2 ; 1 +

p

� 5). Th us there are at most t w o distinct ideal classes in K . Hence

h

K

� 2. But w e kno w that O

K

is not a UFD and so h

K

> 1. Th us, h

K

= 2.

3. Let K = Q (

p

17 ). Then n = 2. s = 0 and d

K

= 17. Th us the Mink o wski's inequalit y

(4.8) reduces to

N ( I ) �

2!

2

2

p

17 =

p

17

2

= 2 : 06 : : : :

Th us there are at most t w o ideal classes and h

K

� 2. Moreo v er, if N ( I ) = 2, then I m ust b e a

prime ideal lying o v er 2 Z and with residue degree 1. No w,

2 =

17 � 9

4

=

 

p

17 + 3

2

!  

p

17 � 3

2

!

and b oth the factors are irreducible elemen ts in O

K

(c hec k!). It follo ws that only ideals of O

K

with norm 2 are the principal prime ideals

�

p

17 +3

2

�

and

�

p

17 � 3

2

�

. Th us ev ery ideal class of K

con tains a principal ideal and so h

K

= 1.

Exer cise 4.15. Sho w that the class n um b er of the quadratic �eld Q (

p

d ) is 1 if d = � 1 ; � 2 ; � 3 ; � 7

or if d = 2 ; 3 ; 5.

R emark 4.16. It turns out, more generally , that the class n um b er of the imaginary quadratic

�eld Q (

p

d ) is 1, if d = � 1 ; � 2 ; � 3 ; � 7 ; � 11 ; � 19 ; � 43 ; � 67 ; � 163 . The con v erse, that these

are the only imaginary quadratic �elds with class n um b er 1, w as pro v ed indep enden tly , b y

Bak er and Stark in 1967. F or a b eautiful exp osition of this problem, kno wn as the Gauss Class

Num b er One Problem, and related results, see the article of D. Goldfeld in the Bul l. A mer.

Math. So c. 13 (1985), pp. 22{37.

W e end with a b eautiful result, usually ascrib ed to Hermite and/or Mink o wski, whic h ma y

b e view ed as an arithmetic analogue of the top ological fact that C is simply connected

1

.

1

F or more explanation, see the remarks at the end of App endix B.

54



Theorem 4.17. L et K b e a numb er �eld and d

K

b e the (absolute) discriminant of K . If

K 6= Q , then j d

K

j > 1 and c onse quently, at le ast one r ational prime must r amify in K .

Pr o of. Let n = [ K : Q ] and let r and 2 s denote, resp ectiv ely , the n um b er of real and complex

em b eddings of K . Then r � 0 and r + 2 s = n , and so s � [ n= 2], where [ n= 2] denotes the

in tegral part of n= 2. As a consequence,

n

n

n !

=

0

@

[ n= 2]

Y

i =1

n

i

1

A

0

@

n

Y

i =[ n= 2]+1

n

i

1

A

�

0

@

[ n= 2]

Y

i =1

n

( n= 2)

1

A

0

@

n

Y

i =[ n= 2]+1

1

1

A

= 2

[ n= 2]

� 2

s

:

Th us, from the Mink o wski's inequalit y (4.8) , w e see that

p

j d

K

j �

n

n

n !

�

�

4

�

s

� 2

[ n= 2]

�

�

4

�

s

�

�

�

2

�

s

:

Since K 6= Q , w e ha v e n > 1, and so

p

j d

K

j � 2

[ n= 2]

> 1 if s = 0 whereas

p

j d

K

j � ( � = 2)

s

> 1

if s > 0. Th us in an y case, j d

K

j > 1. Therefore, b y Dedekind's Discriminan t Theorem [cf.

Corollary 3.28], it follo ws that some rational prime m ust ramify in K .

R emarks 4.18. 1. If one analyzes the inequalities in the ab o v e pro of a little more carefully , then

w e can see that

j d

K

j �

�

3

�

3 �

4

�

n � 1

:

Consequen tly , n= log j d

K

j is b ounded b y a constan t indep enden t of K , and, moreo v er, giv en an y

d 2 Z , the degree of a n um b er �eld with discriminan t d is b ounded. The last assertion has b een

re�ned b y Hermite to sho w that giv en an y in teger d , there are only �nitely man y n um b er �elds

with discriminan t d . F or details concerning these �ner results, w e refer to the b o ok of Sam uel

[15 ].

2. Some of the tec hniques in this c hapter are useful to pro v e a celebrated result of Diric hlet,

whic h states that if K is a n um b er �eld with r real em b eddings and 2 s complex em b eddings,

then the group O

K

�

of units of O

K

is isomorphic to �

K

� Z

r + s � 1

, where �

K

is a �nite cyclic

group consisting of the ro ots of unit y in K . Diric hlet's Unit Theorem ma y b e regarded as a

v ast generalization of some classical observ ations concerning the solutions of the Brahmagupta-

Bhask arac hary a-P ell-F ermat equation

2

X

2

� d Y

2

= 1. F or a pro of of Diric hlet's Unit Theorem,

w e refer to the b o oks of Sam uel [15 ] or Lang [12 ].

2

F or a historical discussion of this famous equation, see the write up at the MacT utor History of Mathematics

arc hiv e: http://www-gap.dcs.st-and.a c.uk/ history/HistTopics/Pell.html , and the references therein.
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App endix A

Notes on Galois Theory

A.1 Pream ble

These notes attempt to giv e an in tro duction to some basic asp ects of Field Theory and Galois Theory .

Originally , a preliminary v ersion of a part of these notes w as prepared to supplemen t the lectures of the

author on Galois Theory and Rami�cation Theory at the All India Summer Sc ho ol in Num b er Theory

held at Pune in June 1991. Subsequen tly , the �rst 6 sections of the Pune Notes w ere separated and

sligh tly revised to form these \Notes on Galois Theory". These notes w ere, then, used for the pre-

conference distribution to the participan ts of the NBHM sp onsored Instructional Sc ho ol on Algebraic

Num b er Theory (Univ ersit y of Bom ba y , Decem b er 1994) at the request of the organizers. A few minor

revisions ha v e tak en place in the subsequen t y ears.

The main aim of these notes has alw a ys b een to pro vide a geo desic, y et complete, presen tation

starting from the de�nition of �eld extensions and concluding with the F undamen tal Theorem of Galois

Theory . Some additional material on separable extensions and a section on Norms and T races is also

included, and some historical commen ts app ear as fo otnotes. The prerequisite for these notes is basic

kno wledge of Abstract Algebra and Linear Algebra not b ey ond the con ten ts of usual undergraduate

courses in these sub jects. No formal bac kground in Galois Theory is assumed. While a complete pro of

of the F undamen tal Theorem of Galois Theory is giv en here, w e do not discuss further results suc h

as Galois' theorem on solv abilit y of equations b y radicals. An annotated list of references for Galois

Theory app ears at the end of Section 5. By w a y of references for the last section, viz., Norms and

T races, w e recommend V an der W aerden's \Algebra" (F. Ungar Pub. Co., 1949) and Zariski{Sam uel's

\Comm utativ e Algebra, V ol. 1" (Springer-V erlag, 1975).

It app ears that o v er the y ears, these notes are often used b y studen ts primarily in terested in Num b er

Theory . Th us it ma y b e p ertinen t to remark at the outset that the topics discussed in these notes

are v ery useful in the study of Algebraic Num b er Theory

1

. In order to deriv e maxim um b ene�t from

these notes, the studen ts are advised to attempt all the Exercises and �ll the missing steps, if an y , in

the pro ofs giv en. The author w ould appreciate receiving commen ts, suggestions and criticism regarding

these notes.

1

In fact, questions concerning in tegers alone, can sometimes b e answ ered only with the help of �eld extensions

and certain algebraic ob jects asso ciated to them. F or instance, Kummer sho w ed that the equation X

p

+ Y

p

= Z

p

has no in teger solution for a class of o dd primes p , called regular primes, whic h include all o dd primes less than

100 except 37, 59 and 67. Ev en a con v enien t de�nition of regular primes, not to men tion the pro of of Kummer's

Theorem, in v olv es man y of the algebraic notions discussed in these lectures. Indeed, an o dd prime is r e gular if

it do esn't divide the class n um b er of the cyclotomic �eld extension Q ( �

p

) of Q . F or details, see H. Edw ards'

Springer monograph \F ermat's Last Theorem" (1977).
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A.2 Field Extensions

Let K b e a �eld

2

. By a (�eld) extension of K w e mean a �eld con taining K as a sub�eld. Let a �eld

L b e an extension of K (w e usually express this b y sa ying that L=K [read: L o v er K ] is an extension).

Then L can b e considered as a v ector space o v er K . The de gr e e of L o v er K , denoted b y [ L : K ], is

de�ned as

[ L : K ] = dim

K

L = the v ector space dimension of L o v er K :

If [ L : K ] < 1 , w e sa y that L is a �nite extension of K or that L is �nite o v er K . A sub�eld K of C

suc h that [ K : Q ] < 1 is called an algebr aic numb er �eld or simply a numb er �eld .

Lemma 1: Finite o v er �nite is �nite. More precisely , if L=E and E =K are �eld extensions, then

L is f inite ov er K , L is f inite ov er E and E is f inite ov er K

and, in this case, [ L : K ] = [ L : E ][ E : K ] .

Pro of: The implication \ ) " is ob vious. The rest follo ws easily from the observ ation that if f u

i

g is

an E {basis of L and f v

j

g is a K {basis of E , then f u

i

v

j

g is a K {basis of L . 2

Let L=K b e a �eld extension. An elemen t � 2 L is said to b e algebr aic o v er K if it satis�es a nonzero

p olynomial with co e�cien ts in K , i.e, 9 0 6= f ( X ) 2 K [ X ] suc h that f ( � ) = 0. Giv en � 2 L whic h is

algebraic o v er K , w e can �nd a monic p olynomial in K [ X ] of least p ossible degree, satis�ed b y � . This

is unique and is called the minimal p olynomial of � o v er K . It is easily seen to b e irreducible and w e

will denote it b y Irr( �; K ). Note that if f ( X ) is an y monic irreducible p olynomial satis�ed b y � , then

w e m ust ha v e f ( X ) =Irr( �; K ) and that it generates the ideal f g ( X ) 2 K [ X ] : g ( � ) = 0 g in K [ X ].

3

The

extension L of K is said to b e algebr aic if ev ery elemen t of L is algebraic o v er K .

Lemma 2: Finite ) algebraic. That is, if L=K is a �nite extension, then it is algebraic.

Pro of: F or an y � 2 L , there m ust exist a p ositiv e in teger n suc h that f 1 ; �; �

2

; :::; �

n

g is linearly

dep enden t o v er K , th us sho wing that � is algebraic o v er K . 2

Exercise 1: Sho w, b y an example, that the con v erse of the ab o v e lemma is not true, in general.

W e no w study extensions for whic h the con v erse is true.

De�nition: Giv en elemen ts �

1

; : : : ; �

n

in an extension L of a �eld K , w e de�ne

K [ �

1

; : : : ; �

n

] = the smallest subring of L con taining K and �

1

; : : : ; �

n

K ( �

1

; : : : ; �

n

) = the smallest sub�eld of L con taining K and �

1

; : : : ; �

n

:

Note that K [ �

1

; : : : ; �

n

] precisely consists of elemen ts of the form f ( �

1

; : : : ; �

n

) where f ( X

1

; : : : ; X

n

)

v aries o v er K [ X

1

; : : : ; X

n

] (= the ring of p olynomials in the n v ariables X

1

; : : : ; X

n

with co e�cien ts in K )

whereas K ( �

1

; : : : ; �

n

) precisely consists of elemen ts of the form

f ( �

1

;::: ;�

n

)

g ( �

1

;::: ;�

n

)

where f ( X

1

; : : : ; X

n

) ; g ( X

1

; : : : ; X

n

)

v ary o v er K [ X

1

; : : : ; X

n

] with g ( �

1

; : : : ; �

n

) 6= 0. Also note that K ( �

1

; : : : ; �

n

) is the quotien t �eld of

K [ �

1

; : : : ; �

n

] in L .

De�nition: An extension L of K is said to b e �nitely gener ate d o v er K if there exist �

1

; : : : ; �

n

in

L suc h that L = K ( �

1

; : : : ; �

n

). W e sa y that L is a simple extension of K if L = K ( � ) for some � 2 L .

F or simple extensions, the con v erse to Lemma 2 is true. In fact, w e can sa y m uc h more.

Lemma 3: Let � b e an elemen t in an o v er�eld L of a �eld K . Then:

K ( � ) =K is al g ebr aic , � is al g ebr aic ov er K , K [ � ] = K ( � ) , [ K ( � ) : K ] < 1 :

2

Fields are usually denoted b y K or k since the German w ord for �eld is K• orp er. Muc h of Mo dern Field

Theory w as created b y the German mathematician E. Steinitz; see his pap er \Algebraisc he Theorie der K• orp er",

Crelle Journal (1910), pp. 167{308, for an original exp osition.

3

It ma y b e instructiv e to v erify the observ ations made in the last few statemen ts. General Hin t: Use the

Division Algorithm in K [ X ].
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Moreo v er, if � is algebraic o v er K and f ( X ) = Irr ( �; K ) , then there exists an isomorphism of K ( � ) on to

K [ X ] = ( f ( X )) whic h maps � to X , the residue class of X , and the elemen ts of K to their residue classes.

Pro of: Without loss of generalit y , w e can and will assume that � 6= 0. The �rst assertion trivially

implies the second. No w, the map ' : K [ X ] ! L de�ned b y f ( X ) 7! f ( � ) is clearly a ring homomorphism

whose image is K [ � ]. If � is algebraic o v er K , then the k ernel of ' is a nonzero prime ideal in K [ X ]

and is hence a maximal ideal (pro v e!). So K [ � ] ' K [ X ] = k er ' is a �eld con taining K and � . Therefore

K [ � ] = K ( � ). Next, if K [ � ] = K ( � ), w e can write �

� 1

= a

0

+ a

1

� + � � � + a

r

�

r

for some a

0

; : : : ; a

r

2 K

with a

r

6= 0, whic h sho ws that �

r +1

lies in the K {linear span of 1 ; �; �

2

; : : : ; �

r

, and consequen tly so

do es �

r + j

for an y j � 1. And since 1 ; �; �

2

; : : : clearly span K [ � ] = K ( � ), it follo ws that [ K ( � ) : K ] �

r + 1 < 1 . If [ K ( � ) : K ] < 1 , Lemma 2 sho ws that K ( � ) is algebraic o v er K . Moreo v er, if � is

algebraic o v er K and f ( X ) =Irr( �; K ), then, as noted earlier, k er ' is generated b y f ( X ), from whic h

w e get the desired isomorphism b et w een K ( � ) and K [ X ] = ( f ( X )). 2

Exercise 2: If � is algebraic o v er K , then sho w that [ K ( � ) : K ] equals the degree of Irr( �; K ).

Exercise 3: T ry to giv e a more constructiv e pro of of the fact that if � is algebraic o v er K , then

K [ � ] = K ( � ) b y sho wing that for an y g ( X ) 2 K [ X ] with g ( � ) 6= 0, w e can �nd h ( X ) 2 K [ X ] suc h that

g ( � )

� 1

= h ( � ).

The follo wing lemma giv es necessary and su�cien t conditions for the con v erse to Lemma 2.

Lemma 4: Let L b e an extension of a �eld K . Then:

L is f inite ov er K , L is al g ebr aic and f initel y g ener ated ov er K :

Pro of: If L is �nite o v er K , then it is algebraic, and if u

1

; : : : ; u

n

is a K {basis of L , then clearly

L = K ( u

1

; : : : ; u

n

). Con v ersely , if L = K ( �

1

; : : : ; �

n

) for some �

1

; : : : ; �

n

2 K , then using Lemmas 1

and 3 and induction on n , it is seen that L is �nite o v er K . 2

Let us obtain some useful consequences of the ab o v e lemma.

Lemma 5: Algebraic o v er algebraic is algebraic. More precisely , if L=E and E =K are �eld exten-

sions, then:

L is al g ebr aic ov er K , L is al g ebr aic ov er E and E is al g ebr aic ov er K

Pro of: The implication \ ) " is ob vious. T o pro v e the other one, tak e an y � 2 L . Find b

0

; b

1

; : : : ; b

n

2

E , not all zero, suc h that b

0

+ b

1

� + � � � + b

n

�

n

= 0. Then � is algebraic o v er K ( b

0

; b

1

; : : : ; b

n

), and

K ( b

0

; b

1

; : : : ; b

n

) � E is algebraic o v er K . Hence, in view of Lemmas 1, 3 and 4, w e see that

[ K ( � ) : K ] � [ K ( b

0

; b

1

; : : : ; b

n

; � ) : K ]

= [ K ( b

0

; b

1

; : : : ; b

n

; � ) : K ( b

0

; b

1

; : : : ; b

n

)][ K ( b

0

; b

1

; : : : ; b

n

) : K ]

< 1

whic h sho ws that � is algebraic o v er K . 2

Lemma 6: Let L b e an extension of a �eld K and let

E = f � 2 L : � is al g ebr aic ov er K g :

Then E is a sub�eld of L con taining K .

Pro of: Clearly K � E � L . Giv en an y �; � 2 E , b y Lemma 3, w e see that

[ K ( �; � ) : K ] = [ K ( �; � ) : K ( � )][ K ( � ) : K ] < 1

and therefore ev ery elemen t of K ( �; � ) is algebraic o v er K . So � + � ; � � � ; �� 2 E and if � 6= 0, then

�

�

2 E , and hence E is a sub�eld of L . 2

Exercise 4: Giv en elemen ts �; � , algebraic o v er a �eld K , can y ou explicitly �nd p olynomials in K [ X ]

satis�ed b y � + � , �� ? Find, for instance, a p olynomial, preferably irreducible, satis�ed b y

p

2 +

p

3 .
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A.3 Splitting Fields and Normal Extensions

Galois Theory , at least in its original v ersion, has to do with ro ots of p olynomial equations. This

motiv ates m uc h of what is done in this section.

Let K b e a �eld. By a r o ot of a p olynomial f ( X ) 2 K [ X ] w e mean an elemen t � in an o v er�eld of

K suc h that f ( � ) = 0. It is easy to see that a nonzero p olynomial in K [ X ] of degree n has at most n

ro ots (V erify!). The follo wing lemma, usually attributed to Kronec k er, sho ws, b y a metho d not unlik e

witc hcraft, that ro ots can alw a ys b e found.

Lemma 7: Let f ( X ) 2 K [ X ] b e a nonconstan t p olynomial of degree n . Then there exists an

extension E of K suc h that [ E : K ] � n and f ( X ) has a ro ot in E .

Pro of: Let g ( X ) b e a monic irreducible factor of f ( X ). Then ( g ( X )), the ideal generated b y g ( X )

in K [ X ], is a maximal ideal and hence E = K [ X ] = ( g ( X )) is a �eld. Let � : K [ X ] ! E b e the canonical

homomorphism whic h maps an elemen t in K [ X ] to its residue class mo dulo ( g ( X )). Note that � j

K

is

injectiv e and hence K ma y b e regarded as a sub�eld of E . Let � = � ( X ). Then g ( � ) = g ( � ( X )) =

� ( g ( X )) = 0. Hence, f ( � ) = 0. By Lemma 3 and Exercise 2, [ E : K ] = deg g ( X ) � n . 2

Rema rk: The ab o v e pro of, though common in man y texts, is sligh tly imprecise. T o b e p edan tic,

an actual extension E of K as in the statemen t of Lemma 6 can b e constructed b y putting E =

( � ( K [ X ]) n � ( K )) [ K , where � is as in the ab o v e pro of, and b y de�ning �eld op erations on E in an

ob vious manner. Note that w e then ha v e E ' � ( K [ X ]).

T o study the ro ots of a p olynomial f ( X ) 2 K [ X ], it seems natural to b e in a nice set con taining all

the ro ots of f ( X ) and whic h, in some sense, is the smallest suc h. This is a�orded b y the follo wing.

De�nition: Let f ( X ) 2 K [ X ] b e a nonconstan t p olynomial. By a splitting �eld of f ( X ) o v er K w e

mean an extension L of K suc h that f ( X ) splits in to linear factors in L and L is generated o v er K b y

the ro ots of f ( X ) in L , i.e.,

(i) f ( X ) = c ( X � �

1

) : : : ( X � �

n

) for some c 2 K and �

1

; : : : ; �

n

2 L .

(ii) L = K ( �

1

; : : : ; �

n

).

Lemma 8: Giv en an y nonconstan t p olynomial f ( X ) 2 K [ X ] of degree n , there exists a splitting

�eld L of f ( X ) o v er K suc h that [ L : K ] � n ! .

Pro of: Induct on n . If n = 1, then L = K do es the job. F or n > 1, b y Lemma 7, w e can �nd an

extension E of K suc h that [ E : K ] � n and f ( X ) = ( X � � ) g ( X ) for some � 2 E and g ( X ) 2 E [ X ].

Since deg g ( X ) = n � 1 � 1, a splitting �eld, sa y L , of g ( X ) o v er E exists. Clearly , L is also a splitting

�eld of f ( X ) o v er K ; moreo v er, [ L : K ] = [ L : E ][ E : K ] � ( n � 1)! n = n !. 2

Notation: Giv en an y �elds K and K

0

, a homomorphism � : K ! K

0

, and a p olynomial f ( X ) 2

K [ X ], b y f

�

( X ) w e denote the corresp onding p olynomial in K

0

[ X ], i.e., if f ( X ) =

P

a

i

X

i

then f

�

( X ) =

P

� ( a

i

) X

i

. Note that f ( X ) 7! f

�

( X ) giv es a homomorphism of K [ X ] ! K

0

[ X ] whic h is an isomorphism

if � is an isomorphism.

The follo wing lemma will help us pro v e that a splitting �eld is unique up to isomorphism.

Lemma 9: Let K and K

0

b e �elds and � : K ! K

0

b e an isomorphism. Let g ( X ) 2 K [ X ] b e an

irreducible p olynomial and let � and �

0

b e ro ots of g ( X ) and g

�

( X ) in some extensions of K and K

0

resp ectiv ely . Then there exists an isomorphism � : K ( � ) ! K

0

( �

0

) suc h that � j

K

= � and � ( � ) = �

0

.

Pro of: Clearly � giv es an isomorphism of K [ X ] on to K

0

[ X ], whic h, in turn, induces an isomorphism of

K [ X ] = ( g ( X )) on to K

0

[ X ] = ( g

�

( X )). By Lemma 3, w e get an isomorphism of K ( � ) on to the former and of

K

0

( �

0

) on to the latter. By suitably comp osing these maps, w e obtain an isomorphism � : K ( � ) ! K

0

( �

0

)

suc h that � j

K

= � and � ( � ) = �

0

. 2

Note: A �eld has no prop er ideals. This means that a homomorphism of a �eld (in to a ring) is

either injectiv e or maps ev erything to 0. If L is an extension of K , b y a K { homomorphism of L w e mean

a homomorphism � : L ! L

0

, where L

0

is some extension of K , whic h is iden tit y on K , i.e., � ( c ) = c

8 c 2 K . Observ e that a K {homomorphism is alw a ys injectiv e.

4

Also observ e that, a K {homomorphism

4

Indeed, 1 2 K and � (1) = 1 6= 0.
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� : L ! L

0

, where L

0

is an extension of L , is an automorphism (= isomorphism on to itself ) of L pro vided

� ( L ) � L [since � ( L ) and L ha v e the same v ector space dimension o v er K ].

Before pro ving the uniqueness of splitting �elds, let us deduce an imp ortan t consequence of the ab o v e

lemma.

Corollary: Let � b e algebraic o v er K and f ( X ) = Irr ( �; K ) . Let L b e an y extension of K con taining

a splitting �eld of f ( X ) . Then the n um b er of K {homomorphisms of K ( � ) to L is equal to the n um b er

of distinct ro ots of f ( X ) ; in particular, this n um b er is � [ K ( � ) : K ] with equalit y holding if and only if

all ro ots of f ( X ) are distinct.

Pro of: Let �

1

; : : : ; �

r

2 L b e all p ossible distinct ro ots of f ( X ). By Lemma 9, there exist K {

isomorphisms �

i

: K ( � ) ! K ( �

i

) suc h that �

i

( � ) = �

i

(1 � i � r ). Moreo v er, if � : K ! L is an y

K {homomorphism, then f

�

( X ) = f ( X ), and hence � ( � ) = �

i

for some i , whic h sho ws that � = �

i

. The

inequalit y r � [ K ( � ) : K ] follo ws from Exercise 2. 2

Lemma 10: Let K and K

0

b e �elds and � : K ! K

0

b e an isomorphism. Let f ( X ) 2 K [ X ] b e

an y nonconstan t p olynomial and let L and L

0

b e splitting �elds of f ( X ) and f

�

( X ) o v er K and K

0

resp ectiv ely . Then there exists an isomorphism � : L ! L

0

suc h that � j

K

= � . Moreo v er, the n um b er of

suc h isomorphisms is � [ L : K ] .

Pro of: Let n = deg f ( X ) = deg f

�

( X ) � 1. W e pro ceed b y induction on n . If n = 1, w e m ust

ha v e L = K and L

0

= K

0

, so the assertion follo ws with � = � . Supp ose n > 1. Let g ( X ) b e a monic

irreducible factor of f ( X ). Let � and �

0

b e ro ots of g ( X ) and g

�

( X ) in L and L

0

resp ectiv ely . By

Lemma 9, w e can �nd a K {isomorphism � : K ( � ) ! K ( �

0

) suc h that � j

K

= � and � ( � ) = �

0

. No w

write f ( X ) = ( X � � ) h ( X ) for some h ( X ) 2 K ( � )[ X ] and note that L and L

0

are splitting �elds of

h ( X ) and h

�

( X ) o v er K ( � ) and K

0

( � ) resp ectiv ely . Using the induction h yp othesis, w e get the desired

isomorphism, and, in view of the ab o v e Corollary , also the desired inequalit y . 2

T aking K = K

0

and � to b e the iden tit y map in the ab o v e Lemma, w e get

Corollary: If f ( X ) 2 K [ X ] is a nonconstan t p olynomial, then an y t w o splitting �elds of f ( X ) o v er

K are K {isomorphic. 2

A notion closely related to splitting �elds is de�ned b elo w.

De�nition: An extension L of K suc h that whenev er an irreducible p olynomial in K [ X ] has a ro ot

in L it has all its ro ots in L , is called a normal extension .

And here is the connection.

Lemma 11: Let L=K b e a �nite extension. Then the follo wing statemen ts are equiv alen t.

(1) L is a normal extension of K .

(2) L is a splitting �eld of a p olynomial in K [ X ] .

(3) An y K {homomorphism � : L ! L

0

, where L

0

is an y extension of L , is an

automorphism of L .

Pro of: (1) ) (2) : Since L=K is �nite, w e can write L = K ( �

1

; : : : ; �

n

) for some �

1

; : : : ; �

n

2 L .

Let f

i

( X ) = Irr ( �

i

; K ) and f ( X ) =

Q

n

i =1

f

i

( X ). Then, b y our h yp othesis, all the ro ots of f ( X ) are in

L . Also L is clearly generated (o v er K ) b y these ro ots.

(2) ) (3) : Let L = K ( �

1

; : : : ; �

n

) b e a splitting �eld of some f ( X ) 2 K [ X ] where �

1

; : : : ; �

n

are the

ro ots of f ( X ) in L . If � : L ! L

0

is an y K {homomorphism, then f

�

( X ) = f ( X ) and hence � ( �

i

) m ust

b e a ro ot of f ( X ). Since � is injectiv e, it p erm utes the ro ots of f ( X ), and therefore � ( L ) = L .

(3) ) (1) : Let f ( X ) b e an y irreducible p olynomial ha ving a ro ot � 2 L . Let � b e an y other ro ot of f ( X ).

Let L

0

b e a splitting �eld of f ( X ) o v er L so that � 2 L

0

. By Lemma 9, there exists a K {isomorphism

� : K ( � ) ! K ( � ) suc h that � ( � ) = � . By Lemma 10, � can b e extended to a K {isomorphism � : L

0

! L

0

.

Let � = � j

L

. Then, b y our h yp othesis, � = � ( � ) 2 L . 2

Rema rk: The ab o v e lemma also holds for in�nite algebraic extensions pro vided in (2) w e replace \a

p olynomial" b y \a family of p olynomials". V erify!

Example: The usual form ula for the ro ots of a quadratic equation sho ws that an extension of degree

2 is alw a ys normal. Extensions of Q of degree 2 are called quadr atic �elds. If ! is a \primitiv e n {th ro ot
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of unit y" (i.e., !

n

= 1 and !

m

6= 1 for 1 � m < n ), then Q ( ! ) is a normal extension of Q (pro v e!); it is

called the cyclotomic �eld of the n {th ro ots of unit y .

Exercise 5: Pro v e that if an extension L=K is normal and E is a sub�eld of L con taining K , then

L=E is also normal.

Exercise 6: Sho w, b y an example, that normal o v er normal need not b e normal.

Exercise 7: Sho w that if L=K is an y �nite extension, then w e can �nd a le ast normal extension of K

con taining L (as a sub�eld), i.e., an extension N of L suc h that N =K is normal, and no prop er sub�eld

of N con taining L is normal o v er K ; note that an y suc h N is �nite o v er K . Sho w that an y t w o least

normal extensions of K con taining L are K {isomorphic.

A.4 Separable Extensions

Let K b e a �eld. An irreducible p olynomial in K [ X ] is said to b e sep ar able if all its ro ots (in its

splitting �eld) are distinct. An elemen t � , whic h is algebraic o v er K , is said to b e sep ar able if Irr( �; K )

is a separable p olynomial. An algebraic extension L of K is called sep ar able if ev ery elemen t of L is

separable o v er K .

Assuming an extension to b e separable can lead to nice consequences suc h as the follo wing

Lemma 12 (Primitiv e Elemen t Theorem): Finite separable extensions are simple.

Pro of: Let L=K b e a �nite separable extension. If K is �nite, then so is L , and using the w ell-kno wn

fact that the m ultiplicativ e group of the nonzero elemen ts of a �nite �eld is cyclic,

5

w e can �nd � 2 L

whic h generates N = L n f 0 g ; clearly L = K ( � ), and th us L=K is simple. No w assume that K is in�nite.

Ob viously L is �nitely generated o v er K and so it su�ces to sho w that if L = K ( �; � ), then w e can �nd

a \primitiv e elemen t" � 2 L so that L = K ( � ). Let f ( X ) = Irr ( �; K ) and g ( X ) = Irr ( � ; K ). Supp ose

�

1

; : : : ; �

m

and �

1

; : : : ; �

n

are the ro ots of f ( X ) and g ( X ) resp ectiv ely with �

1

= � and �

1

= � . By

h yp othesis, �

i

6= �

j

and �

i

6= �

j

for all i 6= j . Since K is in�nite, w e can �nd an elemen t c 2 K suc h

that

c 6=

�

i

� �

j

�

r

� �

s

for all c hoices of i; j; r ; s suc h that 1 � i; j � m; 1 � r ; s � n and r 6= s:

Let � = � + c� and h ( X ) = f ( � � cX ). Clearly h ( X ) 2 K ( � )[ X ] and h ( � ) = 0. Also h ( �

j

) 6= 0 for j � 2

lest c =

�

i

� �

� � �

j

for some i � 1. It follo ws that the GCD of g ( X ) and h ( X ) in K ( � )[ X ] m ust b e X � � .

Hence � 2 K ( � ), and consequen tly , � 2 K ( � ). Th us K ( � ) = K ( �; � ) = L . 2

Rema rk: Note that the ab o v e pro of actually sho ws that if either one of � or � is separable o v er K ,

then K ( �; � ) =K is simple.

T o c hec k separabilit y , the notion of deriv ativ es comes in handy . In Algebra, deriv ativ es can b e de�ned

in a purely formal manner (i.e., without in v olving limits) as follo ws. Giv en an y f ( X ) 2 K [ X ], let f ( X ) =

P

n

i =0

a

i

X

i

, with a

i

2 K , and de�ne the derivative of f ( X ), denoted b y f

0

( X ), b y f

0

( X ) =

P

n

i =1

ia

i

X

i � 1

.

The usual prop erties suc h as linearit y [i.e., ( af � bg )

0

= af

0

� bg

0

], pro duct rule [i.e., ( f g )

0

= f

0

g + f g

0

],

can b e easily c hec k ed using this de�nition. No w recall that an elemen t � in an extension L of K is called

a multiple r o ot of f ( X ) 2 K [ X ] if f ( X ) = ( X � � )

2

g ( X ) for some g ( X ) 2 L [ X ].

Lemma 13: Let f ( X ) b e an irreducible p olynomial in K [ X ] . Then

f ( X ) has a mul tipl e r oot , f

0

( X ) = 0 :

Pro of: If � is a m ultiple ro ot of f ( X ), then, b y the pro duct rule, f

0

( � ) = 0. But f ( X ), b eing

irreducible, is a p olynomial of the least degree satis�ed b y � , whic h con tradicts the fact that deg f

0

( X ) <

deg f ( X ) unless f

0

( X ) = 0. Con v ersely if f

0

( X ) = 0, then an y ro ot of f ( X ) is a m ultiple ro ot. 2

5

A pro of of this fact ma y b e tak en as an exercise. A hin t is to tak e the maxim um order, sa y m , of the elemen ts

of the m ultiplicativ e group, and note that the order of ev ery elemen t divides m whereas the equation X

m

= 1

has at most m solutions in the �eld.
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Exercise 8: Let Z = p Z b e the �eld of residue classes of in tegers mo dulo a prime n um b er p . Let q = p

n

and F

q

denote the splitting �eld of X

q

� X o v er Z = p Z . Sho w that F

q

is a �nite �eld con taining q elemen ts

and that it is a separable and normal extension of Z =p Z .

6

Exercise 9: Let F b e a �nite �eld. Sho w that j F j , the cardinalit y of F , m ust equal p

n

for some prime

p , and that F is isomorphic to F

p

n

.

De�nition: A �eld K is said to b e p erfe ct if either c har( K ), the c haracteristic of K , is 0, or

c har( K ) = p 6= 0 and K = K

p

, i.e., for an y � 2 K , there exists � 2 K suc h that � = �

p

.

Lemma 14: An y algebraic extension of a p erfect �eld is separable.

Pro of: Let K b e a p erfect �eld and L b e an extension of K . Let � 2 L and Irr ( �; K ) = f ( X ) =

P

n

i =0

a

i

X

i

. If � is not separable, then f ( X ) has m ultiple ro ots and hence f

0

( X ) =

P

n

i =1

ia

i

X

i � 1

= 0.

In case c har( K ) = 0, w e get a

i

= 0 for all i � 1, whic h is a con tradiction. In case c har( K ) = p 6= 0, w e

ha v e a

i

= 0 if p 6 j i . Since K is p erfect, w e can �nd b

i

2 K suc h that a

i

= b

p

i

, and th us f ( X ) = g ( X )

p

where g ( X ) =

P

p j i

b

i

X

i=p

2 K [ X ], whic h con tradicts the irreducibilit y of f ( X ). 2

Exercise 10: Pro v e that the con v erse of Lemma 14 is also true. That is, if K is a �eld suc h that ev ery

algebraic extension of K is separable, then K is p erfect.

Exercise 11: Pro v e that a �nite �eld is p erfect.

Exercise 12: Sho w that not ev erything is p erfect! More precisely , let k b e a �eld of c haracteristic

p 6= 0, and K = k ( t ) b e the �eld of rational functions in an indeterminate t o v er k . Let L b e an

algebraic extension of K con taining a ro ot of X

p

� t . Sho w that L is not separable o v er K . In particular,

inseparable (= not separable) extensions and imp erfect (= not p erfect) �elds do exist.

Exercise 13: Let L=K b e a �nite extension of degree n . Sho w that L=K is separable if and only if

there are n distinct K {homomorphisms of L in to N , for an y normal extension N =K con taining L as a

sub�eld. [Hin t: Use Lemma 12 and the Corollary to Lemma 9]. F urther sho w that if L=K is separable

and E is a sub�eld of L con taining K , then eac h K {homomorphism of E in to N has exactly [ L : E ]

distinct extensions to L .

Exercise 14: Sho w that separable o v er separable is separable. More precisely , if L=E and E =K are

algebraic extensions, then sho w that L=K is separable i� b oth L=E and E =K are separable. [Hin t: F or

the non trivial implication, reduce to the case of �nite extensions and use Exercise 13]. Deduce that if

�

1

; : : : ; �

n

are algebraic and separable o v er a �eld K , then K ( �

1

; : : : ; �

n

) is a separable extension of

K . F urther deduce that if L=K is a �nite separable extension and N is a least normal extension of

K con taining L , then N =K is also a �nite separable extension [in this case N is called a le ast Galois

extension of K con taining L ].

In Num b er Theory , the �elds o ccurring are algebraic extensions of Q or Z = p Z , and th us, in view of

Lemma 14 and Exercise 11, w e only ha v e to deal with separable extensions.

A.5 Galois Theory

Let K b e a �eld. Giv en an y p olynomial f ( X ) 2 K [ X ] ha ving distinct ro ots, the splitting �eld L of f ( X )

o v er K is a �nite, normal and separable extension. The essence of Galois theory lies in the asso ciation

of a group G , kno wn as Galois group, to suc h a p olynomial or more generally , to an extension L=K

with the ab o v e prop erties. In trinsic prop erties of the p olynomial f ( X ) (or the extension L=K ) are

nicely captured in this group. A main result of Galois Theory establishes a one{to{one corresp ondence

b et w een the subgroups of G and the sub�elds of L con taining K . This enabled Galois to obtain his

celebrated results in Theory of Equations.

7

6

Finite �elds are often called Galois �elds , and F

q

is sometimes denoted b y GF ( q ); these �elds w ere �rst

studied b y E. Galois in a pap er, published in 1830, en titled \Sur la theori � e des nom b eres".

7

Galois sho w ed that the equation f ( X ) = 0 is solv able b y radicals (lik e the quadratic equation) if and only

if G , the Galois group of f ( X ), is a solv able group. The Galois group of a general equation of degree n turns

out to b e S

n

, whic h is not solv able for n � 5, and th us general equations of degree 5 or more cannot b e solv ed

b y radicals. F or details, see an y of the references giv en at the end of this section. It ma y b e w orth noting that
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T o describ e the Galois group and the said corresp ondence, let us b egin with some

De�nitions: Let L=K b e a �eld extension.

(1) The Galois gr oup of L=K , denoted b y Gal( L=K ), is de�ned b y

Gal( L=K ) = the group of all K {automorphisms of L

(2) L=K is said to b e a Galois extension if it is �nite, normal and separable.

8

(3) F or a subgroup H of Gal( L=K ), the �xe d �eld of H , denoted b y L

H

, is de�ned b y

L

H

= f � 2 L : � ( � ) = � for all � 2 H g :

Note that Gal( L=K ) is indeed a group (with comp osition of maps as the group op eration) and that

L

H

is a sub�eld of L con taining K . Also note that if L=K is a Galois extension, then for an y sub�eld

E of L con taining K , L=E is also a Galois extension (cf. Exercise 5) and Gal( L=E ) is a subgroup of

Gal( L=K ).

Theorem 1 (F undamen tal Theorem of Galois Theory): Let L=K b e a Galois extension.

Then Gal( L=K ) is a �nite group of order [ L : K ] , and there is a bijection b et w een the sub�elds E of L

con taining K and the subgroups H of Gal ( L=K ) , giv en b y

E 7! Gal( L=E ) w ith the inv er se g iv en by H 7! L

H

:

In particular, K is the �xed �eld of Gal( L=K ) .

Note that this bijection is inclusion{rev ersing. It also has additional nice prop erties whic h can b e

deduced from the ab o v e Theorem.

Corollary (Supplemen t to the F undamen tal Theorem of Galois Theory): Let L=K b e a

Galois extension and E b e a sub�eld of L con taining K . Then E =K is a �nite separable extension, and

E =K is a nor mal extension , Gal ( L=E ) is a nor mal subg r oup of Gal ( L=K )

and, in this case,

Gal( E =K ) is isomor phic to the q uotient g r oup

Gal( L=K )

Gal( L=E )

:

A pro of of the ab o v e Theorem will b e giv en b y piecing together the follo wing lemmas.

Lemma 15: Let L=E b e a Galois extension. Then Gal( L=E ) is a �nite group of order [ L : E ] and

E is its �xed �eld.

Pro of: By Primitiv e Elemen t Theorem, L = E ( � ) for some � 2 L . No w Irr( �; E ) is of degree

n = [ L : E ] and, since L=E is normal and separable, it has n distinct ro ots in L . By Corollary to Lemma

9, w e see that there are exactly n distinct E {automorphisms of L , i.e, j Gal( L=E ) j = n . If � is in the

�xed �eld of Gal( L=E ) and � 62 E , then w e can �nd �

0

2 L suc h that �

0

6= � and �

0

is a ro ot of Irr( � ; E ).

By Lemma 9, there exists an E {isomorphism � : E ( � ) ! E ( �

0

) with � ( � ) = �

0

, and, b y Lemma 10,

this can b e extended to an E {automorphism � : L ! L . No w � 2 Gal( L=E ) and � ( � ) = �

0

6= � , whic h

con tradicts the assumption on � . 2

The follo wing result is a k ey step in the pro of of the ab o v e Theorem.

Lemma 16: Let L=K b e a �eld extension and H b e a �nite subgroup of Gal ( L=K ) . Then L=L

H

is

a Galois extension and Gal ( L=L

H

) = H .

Ev ariste Galois, the in v en tor of Galois theory , did his w ork at a v ery early age. He w as b orn in Octob er 1811,

and he died t w en t y y ears and sev en mon ths later in a duel.

8

It ma y b e noted that b y a Galois extension, some authors mean an extension whic h is algebraic, normal, and

separable, i.e., they don't require it to b e �nite.
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Pro of: Let � 2 L and H = f �

1

; : : : ; �

n

g where �

1

; : : : ; �

n

are distinct elemen ts so arranged that

f � ( � ) : � 2 H g = f �

1

( � ) ; : : : ; �

m

( � ) g for some m � n . Notice that �

1

( � ) ; : : : ; �

m

( � ) are distinct and

for an y � 2 H , w e ha v e

f � �

1

( � ) ; : : : ; � �

m

( � ) g = f � � ( � ) : � 2 H g = f �

1

( � ) ; : : : ; �

m

( � ) g :

Consider the p olynomial

f ( X ) =

m

Y

i =1

( X � �

i

( � )) and note that f

�

( X ) =

m

Y

i =1

( X � � �

i

( � )) =

m

Y

i =1

( X � �

i

( � )) = f ( X ) :

So ev ery � 2 H �xes the co e�cien ts of f ( X ), and hence f ( X ) 2 L

H

[ X ]. Also f ( � ) = 0 and if

g ( X ) = Irr ( �; L

H

), then g ( �

i

( � )) = �

i

( g ( � )) = 0 for all i = 1 ; : : : ; m . Th us deg g ( X ) � deg f ( X ), and,

since g ( X ) is the minimal p olynomial of � o v er L

H

, w e ha v e g ( X ) = f ( X ). Therefore � is algebraic

and separable o v er L

H

, and moreo v er, [ L

H

( � ) : L

H

] = m � n = j H j . No w c ho ose � 2 L suc h that

[ L

H

( � ) : L

H

] is maximal. Then w e m ust ha v e L = L

H

( � ). T o see this, assume the con trary . Then w e can

�nd � 2 L suc h that � 62 L

H

and w e note that, b y Lemma 1, [ L

H

( �; � ) : L

H

] > [ L

H

( � ) : L

H

] and that,

b y Lemma 12, L

H

( �; � ) is a simple extension of L

H

. But this con tradicts the maximalit y of [ L

H

( � ) : L

H

].

Hence L = L

H

( � ) and th us L=L

H

is a Galois extension. Moreo v er, H � Gal ( L=L

H

) and, in view of

Lemma 15, w e ha v e Gal( L=L

H

) = [ L : L

H

] = deg Irr ( �; L

H

) � j H j . Therefore H = Gal( L=L

H

). 2

Rema rk: Note that the sub�eld K did not pla y an y role in the ab o v e pro of. In fact, w e could ha v e

tak en H to b e an y �nite group of automorphisms of L .

Pro of of the F undamen tal Theorem of Galois Theory: Let L=K b e a Galois extension. F rom Lemma

15, it follo ws that the comp osite of the maps giv en b y E 7! Gal ( L=E ) and H 7! L

H

is iden tit y ,

i.e., Gal( L=E ) is a subgroup of Gal( L=K ) and L

Gal( L=E )

= E . F rom Lemma 16, it follo ws that the

other comp osite is iden tit y , i.e., L

H

is a sub�eld of L con taining K , L=L

H

is a Galois extension, and

Gal( L=L

H

) = H . Th us w e ha v e a bijection as desired. 2

Pro of of the Supplemen t to FTGT: Let L=K b e a Galois extension and E b e a sub�eld of L con taining

K . The �niteness and separabilit y of E =K is ob vious. F or an y � 2 Gal( L=K ) ; � ( E ) is a sub�eld of L

con taining K , and it is easy to see that

Gal( L=� ( E )) = � Gal( L=E ) �

� 1

:

F rom Lemma 11, it follo ws that

E =K is a normal extension , � ( E ) = E for all � 2 Gal( L=K ) :

Consequen tly , if E =K is a normal extension, then Gal( L=E ) is a normal subgroup of Gal( L=K ). T o

pro v e the con v erse, note that for an y � 2 Gal ( L=K ), b y Lemma 15, w e ha v e that

the �xed �eld of Gal ( L=E ) = E and the �xed �eld of � Gal( L=E ) �

� 1

= � ( E ) :

Therefore if Gal( L=E ) is a normal subgroup of Gal( L=K ), w e ha v e � ( E ) = E for an y � 2 Gal( L=K ),

and hence E =K is normal. In the case E =K is normal, it is Galois, and the map � 7! � j

E

de�nes a

group homomorphism of Gal( L=K ) in to Gal( E =K ). By Lemma 10, an y K {automorphism of E can b e

extended to a K {automorphism of L , whic h sho ws that this group homomorphism is surjectiv e. Hence

Gal( E =K ) is isomorphic to the quotien t group Gal( L=K ) = Gal ( L=E ). 2

Rema rk: Let f ( X ) 2 K [ X ] b e a nonconstan t p olynomial of degree n ha ving distinct ro ots �

1

; : : : ; �

n

.

Let L = K ( �

1

; : : : ; �

n

) b e the splitting �eld of f ( X ) o v er K . Then Gal( L=K ) is called the Galois group

of f ( X ) o v er K , and ma y b e denoted b y G

f

. Note that a K {automorphism of L giv es a p erm utation

of the n ro ots �

1

; : : : ; �

n

, whic h uniquely determines this automorphism. Th us G

f

can b e considered as

a subgroup of S

n

, the group of all p erm utations of n sym b ols. A more concrete de�nition of G

f

, whic h

do esn't in v olv e automorphisms, is as follo ws.

G

f

= f � 2 S

n

: �( �

� (1)

; : : : ; �

� ( n )

) = 0 for all � 2 K [ X

1

; : : : ; X

n

] with �( �

1

; : : : ; �

n

) = 0 g :
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Exercise 15: Let f ( X ) and G

f

b e as in the ab o v e Remark. Pro v e that f ( X ) is irreducible if and only

if G

f

is transitiv e. [A subgroup H of S

n

is said to b e tr ansitive if for an y i; j 2 f 1 ; : : : ; n g , there exists

� 2 H suc h that � ( i ) = j .]

Exercise 16: Let F b e a �nite �eld con taining q elemen ts and E b e a �nite extension of F . Sho w that

E =F is a Galois extension and that Gal( E =F ) is cyclic; in fact, the \F rob enius map" � 7! �

q

de�nes an

F {automorphism of E , whic h generates Gal( E =F ).

De�nition: A Galois extension L=K is said to b e ab elian (resp: cyclic ) if its Galois group Gal( L=K )

is ab elian

9

(resp: cyclic).

Exercise 17: Let E and F b e sub�elds of a �eld L and K b e a sub�eld of E \ F . Let E F denote

the smallest sub�eld of L con taining E and F (this lo oks lik e f

P

�

i

�

i

: �

i

2 E ; �

i

2 F g , and is called

the c omp ositum of E and F ). Sho w that if E =K is Galois, then so is E F =F , and that � 7! � j

E

is an

injectiv e homomorphism of Gal( E F =F ) in to Gal( E =K ) whic h is an isomorphism if K = E \ F . Also

sho w that if E =K and F =K are Galois and K = E \ F , then Gal( E F =K ) ' Gal( E =K ) � Gal( F =K ).

In particular, if Gal( E =K ) and Gal( F =K ) are ab elian, then so is Gal( E F =K ), and th us one can talk of

the maximal ab elian extension of K in L .

Exercise 18: Let L=K b e a Galois extension and G = Gal( L=K ). Let H b e the comm utator subgroup

of G , i.e, the subgroup generated b y the elemen ts � � �

� 1

�

� 1

as � ; � v ary o v er elemen ts of G . Sho w that

H is a normal subgroup of G and the �xed �eld L

H

is an ab elian extension of K with Gal( L

H

=K )

isomorphic to the `ab elianization' of G , viz., G=H . F urther sho w that L

H

is, in fact, the maximal

ab elian extension of K con tained in L .

There is more to Galois Theory than what has b een discussed so far. Our ob jectiv es b eing limited, w e

ha v en't said an ything ab out computing the Galois group of a giv en p olynomial or a giv en extension. No

general metho d is kno wn. There are, ho w ev er, v arious tec hniques whic h sometimes help in determining

the Galois group. It ma y b e men tioned that one of the ma jor op en problems in the area, called the

In v erse Problem of Galois Theory or the Construction Problem of Num b er Theory , is whether an y �nite

group G is the Galois group of some (normal) extension of Q .

10

As an aid for further studies, w e giv e

b elo w a list of relev an t b o oks with some (highly sub jectiv e) remarks.

Annotated List of References for Galois Theory

Bo oks on Galois Theory , or Abstract Algebra in general, seem quite abundan t these da ys. W e will

men tion only a few.

[1] E. Artin, Galois The ory , 2nd Ed., Notre Dame Press, 1956.

a classic little text on whic h most of the mo dern treatmen ts of Galois theory are based.

[2] M. Artin, A lgebr a , Pren tice Hall Inc., 1991 (Ch. 14).

a no v el text on Algebra with a friendly in tro duction to the rudimen ts of Galois Theory .

[3] H. Edw ards, Galois The ory , Springer GTM 101, 1984.

a historically guided treatmen t; con tains a translation of Galois' original memoirs.

[4] I. Herstein, T opics in A lgebr a , 2nd Ed., John Wiley , 1975 (Ch. V).

elemen tary and rather v erb ose; w ell{suited for an undergraduate course.

9

The term `ab elian' is deriv ed from the name of the Norw egian mathematician N. H. Ab el who pro v ed, around

1829, that a certain class of equations is alw a ys solv able b y radicals. In the mo dern terminology , this is precisely

the class of equations whose Galois group is comm utativ e. The usage of `ab elian' seems to ha v e b een initiated

b y L. Kronec k er who, in 1853, announced that the ro ots of ev ery ab elian equation with in teger co e�cien ts can

b e represen ted as rational functions of ro ots of unit y , a result whic h is no w ada ys kno wn as the Kronec k er{W eb er

Theorem and is usually expressed as: ev ery ab elian extension of Q is con tained in a cyclotomic �eld . In an 1870

pap er, Kronec k er formally de�ned \abstract ab elian groups" and pro v ed what is no w kno wn as the Structure

Theorem for Finite Ab elian Groups. T o get an idea of Ab el's w ork on solv abilit y b y radicals, see V an der

W aerden's enc han ting b o ok \A History of Algebra", Springer (1985), or the article `Niels Hendric k Ab el and the

equations of �fth degree' b y M. Rosen in the A meric an Math. Monthly , V ol. 102 (1995), pp. 495{505.

10

It is not di�cult to see that the answ er is Y es if G is an ab elian group. F or recen t w ork on this problem, see

the article b y B. Matzat in the MSRI Pro ceedings on \Galois groups o v er Q " published b y Springer (1988) or

the b o ok \ Groups as Galois groups" b y H. V• olklein (Cam bridge Univ ersit y Press, 1996).
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[5] T. Hungerford, A lgebr a , Springer GTM 73, 1980 (Ch. V).

a useful reference; con tains a treatmen t applying also to in�nite extensions.

[6] N. Jacobson, Basic A lgebr a I , 2nd Ed., W. H. F reeman, 1985 (Ch. IV).

the in tro duction to the c hapter is highly readable and informativ e; the 2nd Ed. has a v aluable

section on mo d p reduction.

[7] S. Lang, A lgebr a , 2nd Ed., Addison{W esley , 1984 (Ch. VI I, VI I I).

a neat exp osition of the elemen ts of Galois theory as w ell as more adv anced material; con tains a

go o d collection of exercises.

[8] TIFR Mathematical P amphlet on Galois The ory , No. 3, 1965.

short, self{con tained, neat, and thorough; seek elsewhere for motiv ation and history .

A.6 Norms and T races

In the study of �nite �eld extensions L=K , a useful passage from L to K is pro vided b y the functions

called Norm and T race. These notions can b e used in de�ning the so called discriminan t, whic h pla ys

an imp ortan t role in Num b er Theory .

De�nition: Let L=K b e a �nite extension of degree n and � b e an y elemen t of L . Let ( a

ij

) b e an

n � n matrix, with en tries in K , corresp onding to the K {linear transformation x 7! �x of L in to itself,

i.e., for some K {basis f u

1

; : : : ; u

n

g of L , w e ha v e

�u

i

=

n

X

j =1

a

ij

u

j

i = 1 ; : : : ; n:

The tr ac e of � w.r.t. L=K , denoted b y T r

L=K

( � ) or simply T r( � ), is de�ned b y

T r( � ) =

n

X

i =1

a

ii

:

The norm of � w.r.t. L=K , denoted b y N

L=K

( � ) or simply N ( � ), is de�ned b y

N ( � ) = det( a

ij

) :

W e also de�ne the �eld p olynomial of � w.r.t. L=K

11

to b e the p olynomial �( X ) 2 K [ X ] giv en b y

�( X ) = det( X �

ij

� a

ij

) [where �

ij

is the Kronec k er delta].

Note that T r

L=K

( � ), N

L=K

( � ), and �( X ) are indep enden t of the c hoice of a K {basis of L , and dep end

only up on the extension L=K and the elemen t � .

Lemma 17: Let L=K b e a �nite extension of degree n and � 2 L . Then:

(1) T r

L=K

is a K {linear map, i.e.,

T r

L=K

( a� + b� ) = a T r

L=K

( � ) + b T r

L=K

( � ) 8 a; b 2 K ; �; � 2 L:

(2) N

L=K

is m ultiplicativ e, i.e.,

N

L=K

( �� ) = N

L=K

( � ) N

L=K

( � ) 8 �; � 2 L:

(3) F or an y a 2 K , w e ha v e

T r

L=K

( a ) = na and N

L=K

( a ) = a

n

:

11

this is sometimes called the char acteristic p olynomial of � w.r.t. L=K ; indeed, it is the c haracteristic

p olynomial of the matrix ( a

ij

) [or the corresp onding linear transformation] in the sense of Linear Algebra.

67



Pro of: Assertions (1) and (2) follo w from the fact that ( aa

ij

+ bb

ij

) and (

P

n

k =1

b

ik

a

k j

) are n � n

matrices corresp onding to the K {linear transformations x 7! ( a� + b� ) x and x 7! ( �� ) x , where ( a

ij

) and

b

( ij

) are n � n matrices corresp onding to the K {linear transformations x 7! �x and x 7! � x . Moreo v er,

for an y a 2 K , ( a�

ij

) is a matrix corresp onding to the K {linear transformation x 7! ax , and hence w e

get (3). 2

Note that a �eld p olynomial is monic of degree equal to the degree of the corresp onding extension.

Its relation to the trace and the norm is giv en in the follo wing

Lemma 18: Let L=K b e a �nite extension of degree n and � 2 L . Let �( X ) = X

n

+ a

1

X

n � 1

+ � � � + a

n

b e the �eld p olynomial of � w.r.t. L=K . Then T r

L=K

( � ) = � a

1

and N

L=K

( � ) = ( � 1)

n

a

n

.

Pro of: Let a

ij

b e a matrix corresp onding to the K {linear transformation x 7! �x of L in to itself.

Expanding det ( X �

ij

� a

ij

), it is easily seen that the co e�cien t of X

n � 1

is � ( a

11

+ � � � + a

nn

) and the

constan t co e�cien t is ( � 1)

n

det ( a

ij

). 2

Lemma 19: Let L=K b e a �nite extension, � 2 L , and �( X ) b e the �eld p olynomial of � w.r.t.

L=K . Supp ose E is a sub�eld of L con taining K suc h that � 2 E and 	( X ) is the �eld p olynomial of

� w.r.t. E =K . Then

�( X ) = 	( X )

[ L : E ]

and, in particular,

T r

L=K

( � ) = [ L : E ]

�

T r

E =K

( � )

�

and N

L=K

( � ) =

�

N

L=E

( � )

�

[ L : E ]

:

Pro of: Let f u

1

; : : : u

r

g b e an E {basis of L and f v

1

; : : : ; v

s

g b e a K {basis of E . Then f u

i

v

j

: 1 � i �

r ; 1 � j � s g , ordered lexicographically (sa y), is a K {basis of L . If ( a

j l

) is the s � s matrix suc h that

�v

j

=

s

X

l =1

a

j l

v

l

j = 1 ; : : : ; s

then, for 1 � i � r and 1 � j � s , w e ha v e

� ( u

i

v

j

) =

s

X

l =1

a

j l

( u

i

v

l

) =

X

1 � k � r

1 � l � s

a

j l

�

ik

( u

k

v

l

) :

No w ( a

j l

�

ik

) [where ( i; j ) and ( k ; l ) v ary , in a lexicographic order, o v er the set f 1 ; : : : ; r g � f 1 ; : : : ; s g ] is

the r s � r s matrix corresp onding to the K {linear transformation x 7! �x of L in to itself. The r s � r s

iden tit y matrix can b e represen ted as ( �

ik

�

j l

), and so

�( X ) = det ( X �

ik

�

j l

� a

j l

�

ik

) = det ( �

ik

[ X �

j l

� a

j l

]) = [det ( X �

j l

� a

j l

)]

r

:

Th us �( X ) = 	( X )

[ L : E ]

. The rest is eviden t. 2

Corollary: Let L=K b e a �nite extension and � 2 L . Then the �eld p olynomial �( X ) of � w.r.t.

L=K is a p o w er of the minimal p olynomial of � o v er K . In fact, �( X ) = [ Irr ( �; K )]

[ L : K ( � )]

.

Pro of: Let 	( X ) b e the �eld p olynomial of � w.r.t. K ( � ) =K . Then 	( X ) is a monic p olynomial

in K [ X ] with 	( � ) = 0 and deg 	( X ) = [ K ( � ) : K ] = deg Irr ( �; K ). Hence 	( X ) = Irr ( �; K ). Our

assertion no w follo ws from the previous Lemma. 2

Rema rk: The �eld p olynomial is usually easy to compute and, in view of the ab o v e results, it often

helps in �nding the minimal p olynomial.

W e no w pro ceed to giv e an alternativ e expression for the trace and norm.

De�nition: Tw o elemen ts � and �

0

in an extension of a �eld K are said to b e c onjugates of eac h

other if there exists a K {isomorphism of K ( � ) on to K ( �

0

) whic h maps � to �

0

.

Note that, in view of Lemma 9, � and �

0

are conjugates o v er K if and only if they ha v e the same

minimal p olynomial o v er K . Also note that � and �

0

are conjugates o v er K if and only if �

0

= � ( � ) for

some K {homomorphism � of K ( � ) in to an extension of K con taining �

0

.
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Let L=K b e a �nite separable extension of degree n , � 2 L , and N b e a normal extension of K

con taining L [suc h N exists b y Exercise 7; it can, for example, b e the least Galois extension of K

con taining L ]. By Lemma 12 and the Corollary to Lemma 9, w e see that there exist exactly n distinct

K {isomorphisms �

1

; : : : ; �

n

of L in to N . Clearly , �

i

( � ) and � are conjugates o v er K for eac h i with

1 � i � n . The n elemen ts �

1

( � ) ; : : : ; �

n

( � ) will b e called the c onjugates of � w.r.t. L=K ; these are

uniquely determined pro vided w e �x our N . Note that these n elemen ts need not b e distinct; in fact, the

n um b er of distinct conjugates among these is [ K ( � ) : K ] and eac h of these is rep eated exactly [ L : K ( � )]

times. (This follo ws from Exercise 12. V erify!)

Lemma 20: Let L=K b e a �nite separable extension of degree n and � 2 L . Fix a normal extension

N of K con taining L . Then:

(1) T r

L=K

( � ) is the sum of all conjugates of � w.r.t. L=K . In particular, if L=K is Galois, then

T r

L=K

( � ) =

X

� 2 Gal ( L=K )

� ( � ) :

(2) N

L=K

( � ) is the pro duct of all conjugates of � w.r.t. L=K . In particular, if L=K is Galois, then

N

L=K

( � ) =

Y

� 2 Gal( L=K )

� ( � ) :

Pro of: Let r = [ L : K ( � )] and s = [ K ( � ) : K ]. If �

1

; : : : ; �

r

are the distinct K {homomorphisms

of K ( � ) in to N , then �

1

( � ) ; : : : ; �

s

( � ) are precisely the distinct conjugates of � w.r.t. L=K and the

minimal p olynomial of � o v er K factors as

Irr ( �; K ) =

s

Y

j =1

( X � �

j

( � ))

No w the conjugates �

1

( � ) ; : : : ; �

n

( � ) of � w.r.t. K are nothing but �

1

( � ) ; : : : ; �

s

( � ) eac h rep eated r

times. Hence, b y the Corollary to Lemma 19, w e see that

�( X ) =

n

Y

i =1

( X � �

i

( � ))

where �( X ) denotes the �eld p olynomial of � w.r.t. L=K . In view of Lemma 18, the ab o v e iden tit y

readily implies (1) and (2). 2

Rema rk: In the ab o v e Lemma and the discussion preceding that, w e could ha v e replaced N b y an

algebraic closure

12

of K (assumed to con tain L ). Fixing an algebraic closure K of K , one can de�ne

Gal( L=K ), for an y separable extension L=K with L � K , to b e the set of all K {homomorphisms of L

in to K . With this con v en tion, the displa y ed iden tities for the trace and norm in Lemma 20 remain v alid

for an y �nite separable extension L=K . Our de�nition of Gal( L=K ) applies only to Galois extensions but

it has the adv an tage that w e don't ha v e to talk ab out algebraic closures, and that w e can legitimately

call it the Galois gr oup .

Exercise 19: Let L=K b e a �nite separable extension and E b e a sub�eld of L con taining K . Pro v e

the follo wing transitivit y prop erties of the trace and norm.

T r

L=K

= T r

E =K

� T r

L=E

and N

L=K

= N

E =K

� N

L=E

:

12

By an algebr aic closur e of a �eld K w e mean an algebraic extension K of K suc h that ev ery nonconstan t

p olynomial in K [ X ] has a ro ot in K . It can b e sho wn that ev ery �eld K has an algebraic closure with the prop ert y

that an y algebraic extension of K is isomorphic to some sub�eld of it; further an y t w o algebraic closures of K

are K {isomorphic. F or details, see Lang's \Algebra".
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App endix B

Discriminan ts in Algebra and

Arithmetic

1

W e b egin with the familiar notion of the discriminan t of a quadratic and discuss ho w it can b e extended

to more general situations. W e also outline some imp ortan t applications of the notion of discriminan t

in Algebra and Arithmetic.

B.1 Discriminan t in High Sc ho ol Algebra

Usually , w e �rst come across discriminan ts in High Sc ho ol when w e study the quadratic equation

aX

2

+ bX + c = 0 : (B.1)

The quan tit y � = b

2

� 4 ac is called the discriminan t of (B.1) and it has the quin tessen tial prop ert y:

� = 0 ( ) the equation (B.1) has a rep eated ro ot. (B.2)

Strictly sp eaking, (B.2) holds if (B.1) is a gen uine quadratic, i.e., if a 6= 0. Indeed, if a 6= 0 and if �; �

are the ro ots of (B.1), then w e ha v e

aX

2

+ bX + c = a ( X � � )( X � � ) (B.3)

or equiv alen tly

� + � =

� b

a

and �� =

c

a

:

Th us from the simple iden tit y ( � � � )

2

= ( � + � )

2

� 4 �� , it follo ws that

� = a

2

( � � � )

2

: (B.4)

Note that the ab o v e expression mak es it ob vious that the prop ert y (B.2) holds.

W e no w consider the problem of suitably de�ning the discriminan t of a general equation

f ( X ) = 0

where f is a p olynomial of degree n , i.e.,

f ( X ) = a

0

X

n

+ a

1

X

n � 1

+ � � � + a

n � 1

X + a

n

; with a

0

6= 0 : (B.5)

1

This app endix is a verb atim repro duction of an article with the same title published in Bona Mathematic a ,

V ol. 11, No. 2-3 (2000), pp. 43{62.
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Let us assume that f is a nonconstan t p olynomial, i.e., n � 1. What should the discriminan t of f b e?

Burnside and P an ton (1892) answ er this nicely b y sa ying that the discriminant ough t to b e the simplest

function of the c o e�cients in a r ational and inte gr al form, whose vanishing expr esses the c ondition for

e qual r o ots. Let �

1

; : : : ; �

n

denote the ro ots

2

of f so that

f ( X ) = a

0

( X � �

1

) : : : ( X � �

n

) : (B.6)

As a �rst guess for the discriminan t of f , it seems natural to consider an expression suc h as

V

f

=

Y

1 � i<j � n

( �

i

� �

j

) :

This is certainly a simple function whose v anishing expresses the condition for rep eated ro ots. But it

isn't really a function of the co e�cien ts, ev en in the case of a quadratic. So w e tak e a cue from (B.4),

and consider

V

2

f

=

Y

1 � i<j � n

( �

i

� �

j

)

2

:

No w this is a symmetric p olynomial function in �

1

; : : : ; �

n

, in the sense that it is unc hanged if w e p erm ute

�

1

; : : : ; �

n

. W e ha v e a fundamen tal result going bac k to Newton whic h sa ys that ev ery symmetric

p olynomial can b e expressed as a p olynomial in the `elemen tary symmetric functions'. The elementary

symmetric functions in �

1

; : : : ; �

n

are as follo ws.

e

1

= �

1

+ � � � + �

n

=

X

1 � i � n

�

i

e

2

= �

1

�

2

+ � � � + �

n � 1

�

n

=

X

1 � i<j � n

�

i

�

i

.

.

.

e

n

= �

1

: : : �

n

:

F rom (B.5) and (B.6), w e see that

e

1

=

� a

1

a

0

; e

2

=

a

2

a

0

; : : : ; e

n

=

( � 1)

n

a

n

a

0

: (B.7)

Th us it follo ws from Newton's Theorem on symmetric functions, that an y symmetric p olynomial in

�

1

; : : : ; �

n

is a p olynomial in e

1

; : : : ; e

n

, and hence it equals a p olynomial in the co e�cien ts a

0

; a

1

; : : : ; a

n

divided b y some p o w er of a

0

. In the case of V

2

f

, the degree in �

1

is 2( n � 1), and since eac h e

i

is of

degree 1 in �

1

, w e see that the degree of V

2

f

in e

1

; : : : ; e

n

is at most 2( n � 1). Th us a

2 n � 2

0

V

2

f

w ould b e

a p olynomial in a

0

; a

1

; : : : ; a

n

with in tegral co e�cien ts. W e are no w ready to mak e a formal de�nition.

De�nition B.1. The discriminant of f , denoted b y Disc( f ), is de�ned b y

Disc( f ) = a

2 n � 2

0

Y

1 � i<j � n

( �

i

� �

j

)

2

:

2

It ma y b e w orth while to digress here a bit to discuss the idea of r o ots of a p olynomial. If our p olynomial f ( X )

has complex co e�cien ts (in particular, in tegral, rational or real co e�cien ts), then the F undamen tal Theorem of

Algebra assures us that it has exactly n ro ots in C , when coun ted with m ultiplicities. Recall that � is said to

b e a ro ot of multiplicity m if f ( X ) = ( X � � )

m

g ( X ) for some p olynomial g ( X ) with g ( � ) 6= 0. In case m > 1,

w e sa y that � is a multiple r o ot or a r ep e ate d r o ot of f . In general, if A is an in tegral domain and f 2 A [ X ] (i.e.,

f is a p olynomial in X with co e�cien ts in A ), then for an y in tegral domain B con taining A as a subring, f has

at most n ro ots in B . Moreo v er, there exists a �eld L con taining A as a subring suc h that f has exactly n ro ots

in L when coun ted with m ultiplicities. Th us abstractly sp eaking, b y suitably enlarging the domain, if necessary ,

w e can alw a ys consider n elemen ts �

1

; : : : ; �

n

whic h are the ro ots of f . Here eac h ro ot is rep eated as man y times

as its m ultiplicit y .
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F rom the de�nition of Disc( f ), the follo wing result is eviden t.

Theorem B.2. Disc( f ) = 0 ( ) f has a r ep e ate d r o ot. 2

Although our de�nition of Disc( f ) meets all the basic requiremen ts, the situation is still unsatisfac-

tory b ecause for an y practical use of the ab o v e theorem, w e should not ha v e to �nd the Disc( f ) b y �rst

�nding the ro ots of f . In other w ords, it is highly desirable to ha v e a concrete expression for Disc( f )

purely in terms of the co e�cien ts a

0

; a

1

; : : : ; a

n

of f . This is not so easy (try the case of n = 3)! But w e

can giv e a nice expression for Disc( f ) if w e kno w the classical notion of resultan t. Let us quic kly recall

some basics concerning resultan ts. W e refer to [21 ] for more on this topic.

De�nition B.3. Giv en an y t w o p olynomials

f ( X ) = a

0

X

n

+ � � � + a

n

and g ( X ) = b

0

X

m

+ � � � + b

m

; (B.8)

the r esultant of f ( X ) and g ( X ) is de�ned to b e the ( m + n ) � ( m + n ) determinan t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a

0

a

1

: : : : : : : : : a

n

a

0

a

1

: : : : : : : : : a

n � 1

a

n

: : : : : : : : : : : : : : : : : : : : : : : : : : :

a

0

a

1

: : : : : : : : : a

n

b

0

b

1

: : : : : : : : : : : : b

m

b

0

b

1

: : : : : : : : : : : : b

m � 1

b

m

: : : : : : : : : : : : : : : : : : : : : : : : : : :

b

0

b

1

: : : : : : : : : : : : b

m

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

9

>

>

=

>

>

;

m ro ws

n ro ws

where the blanks b efore a

0

; b

0

and after a

n

; b

m

are to b e �lled with zeros. It is denoted b y Res

X

( f ; g ; n; m )

or simply b y Res ( f ; g ).

An imp ortan t fact ab out resultan ts is the follo wing.

Theorem B.4 (Pro duct F orm ula). L et f ( X ) and �

1

; : : : ; �

n

b e as in (B.5) and (B.6). A lso let

g ( X ) = b

0

X

m

+ b

1

X

m � 1

+ � � � + b

m

b e a p olynomial in X . Then

Res( f ; g ) = a

m

0

n

Y

i =1

g ( �

i

) :

Mor e over, if b

0

6= 0 and if �

1

; : : : ; �

n

ar e the r o ots of g so that g ( X ) = b

0

Q

m

j =1

( X � �

j

) , then

Res( f ; g ) = ( � 1)

mn

b

n

0

m

Y

j =1

f ( �

j

) = a

m

0

b

n

0

n

Y

i =1

m

Y

j =1

( �

i

� �

j

) :

In p articular, Res ( f ; g ) = 0 if and only if f and g have a c ommon r o ot.

W e are no w ready to relate resultan ts to discriminan ts and thereb y get a concrete form ula for Disc( f )

in terms of the co e�cien ts of f .

Theorem B.5. L et f ( X ) = a

0

X

n

+ a

1

X

n � 1

+ � � � + a

n � 1

X + a

n

b e a nonc onstant p olynomial of de gr e e

n . L et f

0

( X ) b e the derivative of f ( X ) , i.e., f

0

( X ) = na

0

X

n � 1

+ ( n � 1) a

1

X

n � 2

+ � � � + a

n � 1

. Then

Res ( f ; f

0

) = ( � 1)

n ( n � 1)

2

a

0

Disc( f ) :
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Pro of: Let �

1

; : : : ; �

n

b e the ro ots of f . Then w e ha v e

f ( X ) = a

0

n

Y

i =1

( X � �

i

) ; and therefore f

0

( X ) = a

0

n

X

i =1

n

Y

j =1

j 6= i

( X � �

j

) :

Hence, using Theorem B.4, w e see that Res( f ; f

0

) equals

a

n � 1

0

n

Y

i =1

f

0

( �

i

) = a

n � 1

0

n

Y

i =1

a

0

n

Y

j =1

j 6= i

( �

i

� �

j

) = a

2 n � 1

0

n

Y

i =1

n

Y

j =1

j 6= i

( �

i

� �

j

) :

No w if in the last pro duct, w e collate together the terms of the form ( �

i

� �

j

) and ( �

j

� �

i

) so as to get

the corresp onding term in the expression for Disc( f ), then the n um b er of sign c hanges required w ould

b e

X

1 � i<j � n

1 =

n

X

i =1

n

X

j = i +1

1 =

n

X

i =1

( n � i ) =

n ( n � 1)

2

:

(Alternativ ely , the n um b er of sign-c hanges is the n um b er of 2-elemen t subsets f �

i

; �

j

g

i<j

of the n -

elemen t set f �

1

; : : : ; �

n

g , and so it is

�

n

2

�

=

n ( n � 1)

2

.) Therefore, w e conclude that

Res( f ; f

0

) = a

2 n � 1

0

( � 1)

n ( n � 1)

2

n

Y

i =1

n

Y

j =1

i<j

( �

i

� �

j

)

2

= ( � 1)

n ( n � 1)

2

a

0

Disc( f ) : 2

Remark. The sign factor ( � 1)

n ( n � 1)

2

in the ab o v e result has, curiously , b een missed b y sev eral mathe-

maticians. F or example, this error o ccurred in the �rst edition of Lang's A lgebr a . In the second edition

[13 , p. 211], Lang men tions that Serre has p oin ted out to him this error and also that it o ccurs in v an

der W aerden, Sam uel, and Hilb ert but not in W eb er. Indeed, the error o ccurs in v an der W aerden's

A lgebr a [23 , p. 82], the original F renc h edition of Sam uel's A lgebr aic The ory of Numb ers [17 , p. 49]

although not in its English translation. In the case of Hilb ert, one migh t exp ect that the reference is

to Hilb ert's famous Zahlb ericht (see [8 , pp. 63{363] or the recen t English translation [9]), but w e ha v e

not b een able to sp ot an y error there. This ma y b e b ecause Hilb ert's collected w orks w ere revised and

corrected b y Olga T aussky et al. On the other hand, W eb er's T extb o ok of A lgebr a , written more than a

cen tury ago, is quite careful ab out the sign during the discussion of the discriminan t (cf. [24 , x 50]).

Corollary B.6. L et f ( X ) and �

1

; : : : ; �

n

b e as in (B.5) and (B.6). Assume that f

0

( X ) is of de gr e e

n � 1

3

and let �

1

; : : : ; �

n � 1

b e the r o ots of f

0

( X ) . Then

Disc ( f ) = ( � 1)

n ( n � 1)

2

a

n � 2

0

n

Y

i =1

f

0

( �

i

) = ( � 1)

n ( n � 1)

2

n

n

a

n � 1

0

n � 1

Y

j =1

f ( �

j

) :

Pro of: F ollo ws easily from Theorem B.4 and Theorem B.5 b y noting that ( � 1)

n ( n � 1)

= 1. 2

Example: Consider a cubic p olynomial of the form f ( X ) = X

3

+ pX + q . T o �nd Disc( f ), w e note

that the ro ots of f

0

( X ) = 3 X

2

+ p are � ( � p= 3)

1 = 2

. Therefore, b y the second form ula in the Corollary

ab o v e, Disc( f ) equals

( � 1)

3(2)

2

3

3

�

( � p= 3)

3 = 2

+ p ( � p= 3)

1 = 2

+ q

� �

� ( � p= 3)

3 = 2

� p ( � p= 3)

1 = 2

+ q

�

= � 27

h

q

2

� [( � p= 3) + p ]

2

( � p= 3)

i

= � 27

�

q

2

+ (4 p

2

= 9)( p= 3)

�

= � 4 p

3

� 27 q

2

:

3

This is alw a ys the case if the co e�cien ts are complex n um b ers or more generally , if n is not divisible b y the

c haracteristic.
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More generally , if f ( X ) = X

3

+ aX

2

+ bX + c , then using the ab o v e metho d or b y directly computing

the resultan t, it can b e seen that

Disc( f ) = � 4 a

3

c + a

2

b

2

+ 18 abc � 4 b

3

� 27 c

2

:

W e lea v e it to the reader to v erify this form ula.

Exercise: Let f ( X ) and �

1

; : : : ; �

n

b e as in the de�nition of the Discriminan t. Assume that f ( X ) is

monic, i.e., a

0

= 1. Pro v e that Disc( f ) equals the square of the V andermonde determinan t det

�

�

j � 1

i

�

corresp onding to �

1

; : : : ; �

n

. Deduce that Disc( f ) is also giv en b y the determinan t of the n � n matrix

whose ( i; j )

th

en try is the p o w er sum symmetric function p

i + j � 2

. In other w ords, if for k � 0 , p

k

=

�

k

1

+ � � � + �

k

n

, then sho w that

Disc( f ) =

�

�

�

�

�

�

�

�

�

1 �

1

: : : �

n � 1

1

1 �

2

: : : �

n � 1

2

.

.

.

.

.

.

1 �

n

: : : �

n � 1

n

�

�

�

�

�

�

�

�

�

2

=

�

�

�

�

�

�

�

�

�

p

0

p

1

: : : p

n � 1

p

1

p

2

: : : p

n

.

.

.

.

.

.

p

n � 1

p

n

: : : p

2 n � 2

�

�

�

�

�

�

�

�

�

:

B.2 Discriminan t in College Algebra

In the B.Sc. and M.Sc. lev el courses in Algebra, where one mainly studies groups, rings, �elds, etc.,

the notion of discriminan t is encoun tered once again. Here, at least initially , it app ears far remo v ed

from the classical or the high sc ho ol algebra notion of discriminan t. W e will try to narro w this gap

b y �rst recalling the relev an t de�nitions and then describing ho w the t w o seemingly di�eren t notions

of discriminan t are related to one another. In what follo ws, w e will assume mild familiarit y with the

concepts suc h as rings, �elds, v ector spaces, and basic facts concerning them. W e b egin with a brief

discussion of the notion of trace, and some of its prop erties, whic h are needed later. F or pro ofs of these

auxiliary results, one ma y refer to [6 ] or standard texts suc h as [13 ].

Let K b e a �eld and L b e a ring con taining K as a subring. Then L is a v ector space o v er K .

W e will assume that the v ector space dimension of L o v er K is �nite and denote it b y [ L : K ]. A nice

passage from L to K is pro vided b y the tr ac e map

T r

L=K

: L ! K

whic h is de�ned as follo ws. Let n = [ L : K ]. Giv en an y � 2 L , let t

�

denote the linear transformation

of L ! L de�ned b y t

�

( x ) = �x for x 2 L . Then w e de�ne T r

L=K

( � ), to b e the trace of t

�

. In other

w ords, if f u

1

; : : : ; u

n

g is a K -basis of L , and if t

�

( u

j

) =

P

n

i =1

a

ij

u

i

for some a

ij

2 K (1 � j � n ), then

T r

L=K

( � ) =

P

n

i =1

a

ii

. The latter is easily seen to b e indep enden t of the c hoice of a basis. Some basic

prop erties of the trace map T r (w e often drop the subscript L=K when it is clear from the con text) are

as follo ws.

(i) T r

L=K

is a K {linear map, i.e., T r( au + bv ) = a T r( u ) + b T r ( v ) for all a; b 2 K and u; v 2 L . Moreo v er,

the restriction of T r

L=K

to K equals [ L : K ] times the iden tit y map, that is, T r( a ) = na . for a 2 K .

(ii) Supp ose L is a �eld suc h that L = K ( � ) for some � 2 L .

4

Let f ( X ) b e the minimal p olynomial

5

of � o v er K . Assume that f ( X ) has distinct ro ots, sa y �

1

; : : : ; �

n

. Then T r( � ) = �

1

+ � � � + �

n

.

4

By K ( � ) one denotes the smallest sub�eld of L con taining K and � ; it consists of all `rational functions'

p ( � ) =q ( � ), where p ( X ) ; q ( X ) 2 K [ X ] with q ( � ) 6= 0.

5

A monic p olynomial (i.e., a p olynomial whose leading co e�cien t is 1) in K [ X ] satis�ed b y � and of least

p ossible degree is unique and is called the minimal p olynomial of � o v er K . Its degree equals [ K ( � ) : K ]. See

[6 ], [11 ], [13 ] or [26 ] for more on this.
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Remarks. 1. Supp ose L is a �eld. Then K is a sub�eld of L and the �niteness of [ L : K ] = dim

K

L

implies that for eac h � 2 L , the minimal p olynomial of � o v er K exists.

6

The ro ots �

1

; : : : ; �

d

of this

minimal p olynomial are called the c onjugates of � o v er K .

2. Supp ose L is a �eld. If ev ery u 2 L has distinct conjugates o v er K , then w e sa y that L=K is

sep ar able . It can b e sho wn that if K is an y �eld con taining rationals, then L=K is alw a ys separable. If

L=K is separable (and dim

K

L is �nite), then the so called Primitiv e Elemen t Theorem assures us that

there exists some � 2 L suc h that L = K ( � ); suc h an elemen t � is called a primitive element in L .

3. Supp ose L is a �eld suc h that L=K is a separable and u is an y elemen t of L . If w e let d denote the

degree of the minimal p olynomial of u o v er K and u

1

; : : : ; u

d

denote the ro ots of the minimal p olynomial,

then n = de , where e = dim

K ( u )

L , and the n elemen ts u

(1)

; : : : ; u

( n )

obtained b y taking eac h of u

1

; : : : ; u

d

exactly e times, are called the c onjugates of u w.r.t. L=K . W e ha v e T r( u ) = u

(1)

+ � � � + u

( n )

.

Example. Consider L = Q (

p

2 ) = f a + b

p

2 : a; b 2 Q g . This is a �eld and a 2-dimensional v ector space

o v er K = Q with f 1 ;

p

2 g as a basis. Giv en an y u = a + b

p

2 2 L , the matrix of the linear transformation

t

u

w.r.t. the ab o v e basis is easily seen to b e

�

a b

2 b a

�

and therefore T r( u ) = 2 a . Alternately , u satis�es the p olynomial

X

2

� 2 aX + ( a

2

� 2 b

2

) =

�

X � ( a + b

p

2 )

� �

X � ( a � b

p

2 )

�

and this is the minimal p olynomial of u if b 6= 0. Therefore a + b

p

2 ; a � b

p

2 are the conjugates of u

w.r.t. L=K and the last equalit y in the Remark ab o v e is v eri�ed.

W e are no w ready to de�ne the notion of discriminan t in the set-up of the ring L con taining a �eld

K as a subring and suc h that dim

K

L = n is �nite.

De�nition B.7. Giv en an y n elemen ts u

1

; : : : ; u

n

2 L , the discriminant D

L=K

( u

1

; : : : ; u

n

) of u

1

; : : : ; u

n

w.r.t. L=K is de�ned to b e the determinan t of the n � n matrix

�

T r

L=K

( u

i

u

j

)

�

.

Note that D

L=K

( u

1

; : : : ; u

n

) is an elemen t of K .

Lemma B.8. If u

1

; : : : ; u

n

2 L ar e such that D

L=K

( u

1

; : : : ; u

n

) 6= 0 , then f u

1

; : : : ; u

n

g is a K {b asis of

L .

Pro of: It su�ces to sho w that u

1

; : : : ; u

n

are linearly indep enden t o v er K . Supp ose

P

n

i =1

c

i

u

i

= 0 for

some c

1

; : : : ; c

n

2 K . Multiplying the equation b y u

j

and taking the trace, w e �nd that

P

n

i =1

c

i

T r( u

i

u

j

) =

0. By h yp othesis, the matrix

�

T r

L=K

( u

i

u

j

)

�

is nonsingular. Hence it follo ws that c

j

= 0 for j = 1 ; : : : ; n .

2

Lemma B.9. If f u

1

; : : : ; u

n

g and f v

1

; : : : ; v

n

g ar e two K {b ases of L and u

i

=

P

n

j =1

a

ij

v

j

, a

ij

2 K ,

then we have

D

L=K

( u

1

; : : : ; u

n

) = [det ( a

ij

)]

2

D

L=K

( v

1

; : : : ; v

n

) :

In p articular, sinc e ( a

ij

) is nonsingular, we have

D

L=K

( u

1

; : : : ; u

n

) = 0 ( ) D

L=K

( v

1

; : : : ; v

n

) = 0 :

6

Indeed, since n = dim

K

L , the set f 1 ; �; : : : ; �

n

g of n + 1 elemen ts m ust b e linearly dep enden t o v er K , and

th us � satis�es a nonzero p olynomial of degree � n o v er K . This, or an y nonzero p olynomial satis�ed b y � , can

easily b e made monic up on dividing b y its leading co e�cien t.
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Pro of: F or an y i; j 2 f 1 ; : : : ; n g , w e ha v e

u

i

u

j

=

 

n

X

k =1

a

ik

v

k

!

u

j

=

n

X

k =1

a

ik

v

k

 

n

X

l =1

a

j l

v

l

!

=

n

X

k =1

n

X

l =1

a

ik

a

j l

v

k

v

l

:

T aking trace of b oth sides, and letting A denote the matrix ( a

ij

), w e see that

( T r ( u

i

u

j

)) = A

t

(T r( v

i

v

j

)) A

and so the result follo ws. 2

Remark: W e shall sa y that the discriminan t of L=K is zero (or nonzero) and write D

L=K

= 0 (or

D

L=K

6= 0) if for some K {basis f u

1

; : : : ; u

n

g of L , the quan tit y D

L=K

( u

1

; : : : ; u

n

) is zero (or nonzero).

The last lemma justi�es this terminology .

W e are no w ready to describ e the link b et w een the t w o notions of discriminan t considered in this

and the previous section.

Theorem B.10. Supp ose L is a �eld and L=K is a sep ar able. Then the discriminant of L=K is nonzer o.

In fact, if � is a primitive element (so that L = K ( � ) and f 1 ; �; �

2

; : : : ; �

n � 1

g is a K {b asis of L ) and

f ( X ) is its minimal p olynomial, then we have

D

L=K

(1 ; �; �

2

; : : : ; �

n � 1

) =

Y

i>j

( �

i

� �

j

)

2

= Disc( f )

wher e �

1

; �

2

; : : : ; �

n

denote the c onjugates of � .

Pro of: Since L=K is separable, the trace of an y elemen t of L equals the sum of its conjugates w.r.t.

L=K . Th us if f u

1

; : : : ; u

n

g is a K {basis of L and u

i

(1)

; u

i

(2)

; : : : ; u

i

( n )

denote the conjugates of u

i

w.r.t.

L=K , then w e ha v e T r( u

i

u

j

) =

P

n

k =1

u

( k )

i

u

( k )

j

. In other w ords, the matrix (T r ( u

i

u

j

)) equals the pro duct

of the matrix

�

u

( j )

i

�

with its transp ose. Therefore

D

L=K

( u

1

; : : : ; u

n

) =

�

�

�

�

�

�

�

�

�

�

u

(1)

1

u

(2)

1

: : : u

( n )

1

u

(1)

2

u

(2)

2

: : : u

( n )

2

.

.

.

.

.

.

.

.

.

.

.

.

u

(1)

n

u

(2)

n

: : : u

( n )

n

�

�

�

�

�

�

�

�

�

�

2

:

In case u

1

; u

2

; : : : ; u

n

are 1 ; �; : : : ; �

( n � 1)

resp ectiv ely , then the determinan t ab o v e is a V andermonde

determinan t and the RHS b ecomes

�

�

�

�

�

�

�

�

�

1 1 : : : 1

�

1

�

2

: : : �

n

.

.

.

.

.

.

.

.

.

.

.

.

�

1

n � 1

�

2

n � 1

: : : �

n

n � 1

�

�

�

�

�

�

�

�

�

2

=

Y

i>j

( �

i

� �

j

)

2

=

Y

i<j

( �

i

� �

j

)

2

:

Therefore, w e obtain the desired form ulae. Our �rst assertion follo ws from the fact that if L = K ( � ) is

separable o v er K , then the conjugates �

(1)

; �

(2)

; : : : ; �

( n )

of � w.r.t. L=K are distinct. 2

Remark: The con v erse of the ab o v e Theorem, viz., if D

L=K

6= 0 then L=K is separable, is also true.

F or a pro of, see [26].

76



B.3 Discriminan t in Arithmetic

In Arithmetic, whic h w e start learning ev en b efore en tering high sc ho ol, w e mainly deal with n um b ers

and their divisibilit y prop erties. A basic result is the

F undamen tal Theorem of Arithmetic Every nonzer o inte ger c an b e factor e d as � 1 times a �nite

pr o duct of prime numb ers. Mor e over, this de c omp osition is unique up to r e arr angement of terms.

In higher arithmetic, w e are in terested in kno wing if suc h a result holds in domains more general

than Z , the ring of in tegers. An example of suc h a domain is

Z [ i ] = f a + bi : a; b 2 Z g

This is a subring of C , and is called the ring of Gaussian inte gers . Here i is the usual complex n um b er

whose square is � 1. The notion of divisibilit y is easily de�ned in Z [ i ] or for that matter, in an y ring.

Giv en a ring

7

A and elemen ts a; b 2 A , w e sa y that b divides a , and write b j a , if a = bc for some

c 2 A .

The analogue of a prime n um b er is the so called irreducible elemen t.

An elemen t p in a ring A is said to b e irr e ducible if p 6= 0, p is not a unit

8

, and whenev er p = bc for

some b; c 2 A , either b is a unit or c is a unit.

F or example, 5 is irreducible in Z but not in Z [ i ] since it decomp oses as 5 = (2 + i )(2 � i ). F urther,

the factors 2 + i and 2 � i can b e sho wn to b e irreducible elemen ts whic h are distinct; in fact, they do not

ev en di�er b y a unit. On the other hand, 3 remains prime in Z [ i ]. Indeed, if u = a + bi and v = c + di

are elemen ts of Z [ i ] suc h that 3 = uv , then b y taking mo dulus (as complex n um b ers) and squaring, w e

ha v e 9 = ( a

2

+ b

2

)( c

2

+ d

2

). But the square of an in teger is alw a ys � 0 or 1 (mo d 4), and so the sum

of t w o squares is nev er � 3 (mo d 4). Hence a

2

+ b

2

= 1 or c

2

+ d

2

= 1. This implies that either u or v

is in f 1 ; � 1 ; i; � i g , i.e., either u is a unit or v is a unit. The prime 2 of Z is sp ecial. It splits in Z [ i ] as

2 = (1 + i )(1 � i ) and the factors 1 � i are irreducible, but they aren't really distinct b ecause they di�er

simply b y a unit [indeed, 1 + i = i (1 � i ) and so 2 = i (1 � i )

2

]. In general, a prime n um b er p , when

extended to Z [ i ]

8

<

:

splits as a pro duct of t w o distinct irreducibles if p � 1(mo d 4)

remains irreducible if p � 3(mo d 4)

equals unit times the square of an irreducible if p = 2 :

Inciden tally , for p � 1(mo d 4), the t w o irreducible factors in Z [ i ] m ust b e (complex) conjugates of

eac h other (pro v e!), and th us the result ab out the decomp osition of suc h primes in Z [ i ] is equiv alen t to

F ermat's Tw o Squares Theorem (viz., primes � 1(mo d 4) are sums of t w o squares).

The ring Z [ i ] is an example of the ring of algebraic in tegers (in a n um b er �eld). The latter are

de�ned as follo ws. A sub�eld K of C , whic h is �nite dimensional as a v ector space o v er Q is called an

algebr aic numb er �eld or simply a numb er �eld . W e call dim

Q

K the de gr e e of K = Q and denote it b y

[ K : Q ]. If K is a n um b er �eld, then ev ery elemen t of K satis�es a nonzero p olynomial with in teger

co e�cien ts (c hec k!). Those elemen ts of K whic h satisfy a monic p olynomial with in teger co e�cien ts are

called ( algebr aic ) inte gers in K . The set of all algebraic in tegers in K form a subring of K , called the

ring of in tegers of K and denoted b y O

K

.

Exercises. Let K b e a n um b er �eld of degree n and O

K

b e its ring of in tegers.

1. Sho w that giv en an y u 2 K , there exists d 2 Z suc h that d 6= 0 and du 2 O

K

. Deduce that the

quotien t �eld of O

K

is K and moreo v er, there exist a Q -basis f u

1

; : : : ; u

n

g of K suc h that u

i

2 O

K

for

all i = 1 ; : : : ; n .

7

By a ring w e shall alw a ys mean a comm utativ e ring with iden tit y .

8

Units in a ring A are de�ned to b e the elemen ts whic h divide 1. F or example, 1, � 1 are the only units in Z .

77



2. Sho w that O

K

\ Q = Z . In other w ords, if a rational n um b er satis�es a monic p olynomial with

in teger co e�cien ts, then it m ust b e an in teger.

If f u

1

; : : : ; u

n

g is a Q -basis of K suc h that f u

1

; : : : ; u

n

g � O

K

, then from Exercise 2 ab o v e, w e see

that D

K= Q

( u

1

; : : : ; u

n

) is an in teger. Moreo v er, b y Theorem B.10, it is a nonzero in teger.

Lemma B.11. L et f u

1

; : : : ; u

n

g � O

K

b e a Q -b asis of K with the pr op erty that j D

K= Q

( u

1

; : : : ; u

n

) j is

minimal. Then O

K

= Z u

1

+ � � � + Z u

n

, i.e., u 2 O

K

if and only if u = c

1

u

1

+ � � � + c

n

u

n

for some

c

1

; : : : ; c

n

2 Z .

Pro of: It is clear that Z u

1

+ � � � + Z u

n

� O

K

. If u 2 O

K

, then w e can write u = r

1

u

1

+ � � � + r

n

u

n

for

some r

1

; : : : ; r

n

2 Q . If r

k

62 Z for some k (1 � k � n ), then r

k

= m

k

+ � , where m

k

2 Z and � is a

rational n um b er with 0 < � < 1. De�ne v

1

; : : : ; v

n

b y v

j

= u

j

if j 6= k and v

k

= u � m

k

u

k

. Then it is

clear that f v

1

; : : : ; v

n

g � O

K

and f v

1

; : : : ; v

n

g is a Q -basis of K . Moreo v er the matrix ( a

ij

) of rationals

for whic h v

i

=

P

n

j =1

a

ij

u

j

for i = 1 ; : : : ; n , is the iden tit y matrix except for the k {th ro w, whic h is giv en

b y ( r

1

; : : : ; r

k � 1

; �; r

k +1

; : : : ; r

n

). Th us in view of Lemma B.9, w e see that

D

K= Q

( v

1

; : : : ; v

n

) = [det ( a

ij

)]

2

D

K= Q

( u

1

; : : : ; u

n

) = �

2

D

K= Q

( u

1

; : : : ; u

n

) :

Since � < 1, the minimalit y of j D

K= Q

( u

1

; : : : ; u

n

) j is con tradicted. This pro v es the lemma. 2

De�nition B.12. A Q -basis u

1

; : : : ; u

n

of a n um b er �eld K suc h that O

K

= Z u

1

+ � � � + Z u

n

is called an

inte gr al b asis of K .

The ab o v e Lemma sho ws that ev ery n um b er �eld has an in tegral basis. Also, it is clear that if

f u

1

; : : : ; u

n

g and f v

1

; : : : ; v

n

g are an y t w o in tegral bases of K , then v

i

=

P

n

j =1

a

ij

u

j

for j = 1 ; : : : ; n , for

some n � n matrix ( a

ij

) with in tegral en tries. Moreo v er the in v erse of ( a

ij

) is also a matrix with in tegral

en tries. Therefore, det ( a

ij

) = � 1. Hence from Lemma B.9, it follo ws that an y t w o in tegral bases of K

ha v e the same discriminan t; it is called the (absolute) discriminant of K and is denoted b y d

K

.

The follo wing example illustrates the computation of discriminan t and determination of in tegral

bases.

Example: Let K b e a quadratic �eld [that is, a sub�eld of C suc h that [ K : Q ] = 2] and O b e its ring

of in tegers. If � is an y elemen t of K whic h is not in Q , then 1 < [ Q ( � ) : Q ] � [ K : Q ] = 2, and hence

K = Q ( � ) . Moreo v er, � satis�es a quadratic p olynomial with in teger co e�cien ts, and th us � = a + b

p

�

for some a; b 2 Q and � 2 Z . Since � 62 Q , w e m ust ha v e b 6= 0 and � not a square. It follo ws that

K = Q

�

p

�

�

. Remo ving the extraneous square factors from �, if an y , w e can write K = Q (

p

m ),

where m is a squarefree in teger. W e no w attempt to giv e a more concrete description of O . First, note

that Z [

p

m ] = f r + s

p

m : r ; s 2 Z g � O . Let x = a + b

p

m 2 O for some a; b 2 Q . Then the other

conjugate a � b

p

m of x m ust also b e in O . Therefore the sum of these t w o, i.e., T r( x ) = 2 a and the

pro duct a

2

� mb

2

are b oth in O

K

\ Q = Z . Since m is squarefree and a

2

� mb

2

2 Z , w e see that a 2 Z

if and only if b 2 Z . Th us if a =2 Z , then w e can �nd an o dd in teger a

1

suc h that 2 a = a

1

, and relativ ely

prime in tegers b

1

and c

1

with c

1

> 1 suc h that b =

b

1

c

1

. No w

�

a

1

= 2 a 2 Z and a

2

� mb

2

2 Z

�

)

�

4 j c

2

1

a

2

1

and c

2

1

j 4 mb

2

1

�

) c

1

= 2 :

Hence b

1

is o dd and a

2

1

� mb

2

1

� 0(mo d 4). Also a

1

is o dd, and therefore, m � 1(mo d 4). It follo ws that

if m 6� 1(mo d 4), then a; b 2 Z , and so in this case,

O = Z [

p

m ] = f a + b

p

m : a; b 2 Z g and f 1 ;

p

m g is an in tegral basis.

In the case m � 1(mo d 4), the preceding observ ations imply that

O �

�

a

1

+ b

1

p

m

2

: a

1

; b

1

2 Z with a

1

� b

1

(mo d 2)

�
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and, moreo v er,

1+

p

m

2

2 O since it is a ro ot of X

2

� X �

m � 1

4

; therefore

O = Z [

1 +

p

m

2

] = f

a + b

p

m

2

: a; b 2 Z with a � b (mo d 2) g

and consequen tly ,

f 1 ;

1 +

p

m

2

g is an in tegral basis.

W e can no w compute the discriminan t of K as follo ws.

d

K

=

8

>

>

<

>

>

:

det

�

2 0

0 2 m

�

= 4 m if m � 2 ; 3(mo d 4)

det

�

2 1

1 (1 + m ) = 2

�

= m if m � 1(mo d 4) :

It ma y b e remark ed that the in teger d = d

K

determines the quadratic �eld K completely , and the set

f 1 ;

d +

p

d

2

g is alw a ys an in tegral basis of K . (V erify!)

In general, the unique factorization prop ert y is not true in the ring of in tegers of a n um b er �eld; in

other w ords, the F undamen tal Theorem of Arithmetic ma y not hold there. F or example, if K = Q (

p

� 5 ),

then from the example ab o v e, w e ha v e O

K

= Z [

p

� 5 ], and for the n um b er 6, w e ha v e t w o di�eren t

factorizations:

6 = 3 � 2 = (1 +

p

� 5 )(1 �

p

� 5 ) :

It is not di�cult to see that the factors 2 ; 3 ; 1 +

p

� 5 and 1 �

p

� 5 are irreducible and gen uinely distinct

(i.e., no t w o di�er b y a unit) in O

K

= Z [

p

� 5 ]. Around 1844, the German mathematician E. Kummer

w as studying arithmetic in the ring Z [ � ] of cyclotomic in tegers

9

while trying to pro v e F ermat's Last

Theorem

10

. Kummer realized that the unique factorization ma y not alw a ys hold in rings of cyclotomic

in tegers. Instead of giving up the problem, he con tin ued to delv e deep er and made a remark able disco v ery!

He sho w ed that the unique factorization prop ert y can b e salv aged if w e replace n um b ers b y what he

called ideal n um b ers. Another German mathematician R. Dedekind simpli�ed and extended Kummer's

w ork b y using ideals in place of ideal n um b ers.

11

Dedekind's results w ere �rst published in 1871.

12

In

e�ect, Dedekind sho w ed that if K is a n um b er �eld, then ev ery nonzero ideal of O

K

factors as a �nite

pro duct of prime ideals, and this factorization is unique up to rearrangemen t of terms. In tegral domains

with this prop ert y are no w kno wn as De dekind domains .

A t an y rate, if K is a n um b er �eld and p is a prime n um b er, then, thanks to the ab o v emen tioned

result of Kummer-Dedekind-Kronec k er, the extended ideal p O

K

can b e factored uniquely as

p O

K

= P

e

1

1

P

e

2

2

� � � P

e

h

h

9

If � = �

n

is a primitiv e n {th ro ot of unit y (e.g., � = e

2 � i=n

= cos (2 � =n ) + i sin (2 � =n )), then Q ( � ) is a n um b er

�eld, called a cyclotomic �eld and its ring of in tegers is Z [ � ] = f a

0

+ a

1

� + � � � + a

n � 1

�

n � 1

: a

0

; a

1

; : : : ; a

n

2 Z g ,

whic h is called the ring of cyclotomic in tegers.

10

F ermat's Last Theorem (FL T) is the famous assertion of P . F ermat that the equation x

n

+ y

n

= z

n

has no

solution in nonzero in tegers, if n � 3. It is natural to consider the ring of cyclotomic in tegers here b ecause the

existence of a solution ( x; y ; z ) yields a factorization x

n

= ( y � z )( y � � z ) : : : ( y � �

n � 1

z ) in Z [ � ] and to pro ceed

further, it w ould b e useful to kno w if the unique factorization prop ert y is v alid in Z [ � ]. In a sense, Kummer

didn't succeed in pro ving FL T (though he settled it for sev eral v alues of n ) b ecause of the failure of unique

factorization in Z [ � ]. Recen tly , in 1994 FL T has b een pro v ed b y A. Wiles partly in collab oration with R. T a ylor.

11

In fact, the concept of an ideal of a ring w as th us b orn in the w ork of Kummer and Dedekind. Note that these

historical origins justify the nomenclature \ideal", whic h ma y otherwise seem obscure. Indeed, b y considering

ideals, the ideal situation (of unique factorization) is restored!

12

Inciden tally , another approac h to w ards understanding and extending Kummer's w ork w as dev elop ed b y his

studen t L. Kronec k er, whose w ork w as apparen tly completed in 1859 but w as not published un til 1882.
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where P

1

; : : : ; P

h

are distinct prime ideals of O

K

and e

1

; : : : ; e

h

are p ositiv e in tegers. The prime p is

said to b e r ami�e d in K if e

i

> 1 for some i .

Example: If K = Q ( i ), then 2 is the only rami�ed prime.

In general, to understand the phenomenon of rami�cation, the discriminan t is an indisp ensable to ol.

This ma y b e clear from the follo wing basic result.

Theorem B.13 (Dedekind's Discriminan t Theorem). L et K b e a numb er �eld and d

K

b e its dis-

criminant. Then for any prime numb er p , we have

p is r ami�e d in K ( ) p j d

K

:

Example: If K = Q (

p

m ), where m is a squarefree in teger, then w e ha v e calculated the discriminan t

d

K

of K . Th us, for an y prime n um b er p , w e ha v e:

p is rami�ed in K ( )

�

p j m if m � 1(mo d 4)

p j m or p = 2 if m 6� 1(mo d 4) :

In the case of the cyclotomic �eld K = Q ( �

n

), where n is an y in teger > 2 and �

n

is a primitiv e n {the

ro ot of unit y , the discriminan t turns out

13

to b e

d

K

= ( � 1)

' ( n ) = 2

n

' ( n )

Q

p j n

p

' ( n ) = ( p � 1)

where the pro duct in the denominator is o v er all prime n um b ers dividing n , and ' ( n ) denotes the n um b er

of p ositiv e in tegers � n and relativ ely prime to n . Therefore,

p is rami�ed in Q ( �

n

) ( ) p j n:

Remarks. 1. F or a pro of of Dedekind's discriminan t Theorem, see [7] or the b o oks of Lang [14 ] or Serre

[19 ].

2. The notions of discriminan t and resultan t are no doubt classical and date bac k more than a cen tury .

Ho w ev er, extensions and generalizations (to `higher dimensions') of these notions are of m uc h curren t

in terest. F or an in tro duction, see the exp ository article [22 ] b y Sturmfels and the references therein.

A t a more adv anced lev el, there is a b o ok [5 ] b y Gelfand, Kaprano v and Zelevinsky , and the recen tly

published review [3 ] b y Catanese ma y b e a go o d starting p oin t for this.

3. It ma y b e remark ed that the phenomenon of rami�cation or rather the absence of rami�cation, is

closely related to certain basic notions in T op ology . Brie
y sp eaking, unrami�ed �eld extensions (i.e.,

extensions for whic h no prime `b elo w' is rami�ed `ab o v e') corresp ond to (top ological or un branc hed)

co v erings. Th us, sa ying that a �eld has no unrami�ed extensions, is analogous to the condition that the

corresp onding top ological space is simply connected. Unfortunately , in the compartmen talized courses at

College and Univ ersit y lev el, suc h analogies are rarely highligh ted. Th us w e migh t tak e this opp ortunit y

to men tion the follo wing brief and rough dictionary of some basic concepts from Algebra and T op ology .

Algebraic Field Extensions  ! Branc hed Co v erings;

Galois extensions  ! Regular Co v erings;

Galois Groups  ! Groups of Dec k transformations.

F or more on Co v erings Spaces in particular, and T op ology , in general, w e recommend the classic text of

Seifert and Threlfall [18 ] or the more recen t b o ok of Massey [15 ]. The �rst app endix in [16 ] also giv es a

nice and quic k summary of the basics of co v ering spaces.

13

F or a pro of of the discriminan t form ula for cyclotomic �elds, one ma y refer to [25 ].
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4. It is a non trivial result of Mink o wski that for an y n um b er �eld K other than Q , w e ha v e j d

K

j > 1.

This means that there exists at least one prime n um b er p whic h is rami�ed in K . Th us, w e migh t sa y

that Q is simply connected! Analogous result holds when Q is replaced b y the �eld C ( X ) of rational

functions in one v ariable with complex co e�cien ts. This time, the top ological analogue is the more

familiar result that the Riemann sphere or the extended complex plane is simply connected.

5. The study of rami�cation (and hence of discriminan ts) is of basic imp ortance in some adv anced

dev elopmen ts in Algebraic Num b er Theory , whic h go under the name of Class Field Theory . This is a

fascinating topic, and to learn more ab out it, see [2] or [14 ]. It ma y also b e w orth while and in teresting to

see Hilb ert's Zahlb ericht , whic h w as mean t as a rep ort to the German Mathematical So ciet y on the status

of Algebraic Num b er Theory in 1895. This rep ort con tained sev eral original con tributions b y Hilb ert

and p erhaps started the sub ject of Class Field Theory . The Zahlb ericht is no w a v ailable in English [9 ].

6. The relation with rami�cation is p erhaps the most imp ortan t application of discriminan t in

Num b er Theory . Ho w ev er, the classical discriminan t � = b

2

� 4 ac of a quadratic also comes up in the

follo wing imp ortan t and classical question.

Giv en an in teger � , what are the p ossible binary quadratic forms ax

2

+ bxy + cy

2

with in teger

co e�cien ts a; b; c , for whic h � = b

2

� 4 ac ? Can w e classify them?

This w as studied b y Legendre and Gauss, and the notions of class n um b er and genera w ere dev elop ed

b y Gauss for classifying binary quadratic forms with a giv en discriminan t. F or an exp osition of the basics

of this theory , one ma y consult the texts of Bak er [1] or Flath [4]. F or a b eautiful in tro duction to some

mo dern dev elopmen ts motiv ated b y this problem, w e refer to Serre's Singap ore lecture [20 ].

7. The discriminan t also mak es an unexp ected app earance in questions related to the generalization

of the so called W aring's problem. F or example, it is sho wn in [12 ] that if K is a n um b er �eld and n; k

are in tegers with n � k � 2, then ev ery n � n matrix o v er O

K

is a sum of k -th p o w ers of matrices o v er

O

K

if and only if the discriminan t d

K

of K is coprime to k . Moreo v er, when this condition is met, sev en

p o w ers alw a ys su�ce.

Ac kno wledgmen ts
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