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1. Basic Constructions

Polynomials are among the most basic objects in Algebra. So let us talk about them first.
Given a ring1 A, we denote by A[X1, . . . , Xn] the ring of all polynomials in the variables
X1, . . . , Xn with coefficients in A. Elements of A[X1, . . . , Xn] look like

f =
∑

ai1...inX i1
1 . . .X in

n , ai1...in ∈ A,

where (i1, . . . , in) vary over a finite set of nonnegative integral n–tuples. A typical term
(excluding the coefficient), viz., X i1

1 . . .X in
n , is called a monomial; its (usual) degree is i1 +

· · · + in. Such a monomial is said to be squarefree if ir ≤ 1 for 1 ≤ r ≤ n. If f 6= 0, then the
(total) degree of f is defined by deg f = max{i1 + · · · + in : ai1...in 6= 0}. Usual convention is
that deg 0 = −∞. A homogeneous polynomial of degree d in A[X1, . . . , Xn] is simply a finite
A–linear combination of monomials of degree d. The set of all homogeneous polynomials of
degree d is denoted by A[X1, . . . , Xn]d. Note that any f ∈ A[X1, . . . , Xn] can be uniquely
written as f = f0 + f1 + . . . , where fi ∈ A[X1, . . . , Xn]i and fi = 0 for i > deg f ; we may call
fi’s to be the homogeneous components of f . If f 6= 0 and d = deg f , then clearly fd 6= 0 and
f = f0 + f1 + · · · + fd. An ideal I of A[X1, . . . , Xn] is said to be a homogeneous ideal (resp:
monomial ideal) if it is generated by homogeneous polynomials (resp: monomials). Lastly, we
remark that when we use a notation such as k[X1, . . . , Xn], it will be tacitly assumed that
k denotes a field and X1, . . . , Xn are independent indeterminates over k (and, of course, n
denotes a nonnegative integer).

(1.1) Exercise: Show that the monomials of degree d in k[X1, . . . , Xn] form a k–vector space
basis of k[X1, . . . , Xn]d. Further, show that dimk k[X1, . . . , Xn]d =

(
n+d−1

d

)
.

Forming rings of polynomials over a given ring is one of the three fundamental processes in
Algebra of constructing new rings from given rings. The other two are as follows.

Quotient Ring: That is, the residue class ring A/I obtained by ‘moding out’ an ideal I
from a ring A. This is same as taking a homomorphic image. Passing to A/I from A has the
effect of making I the null element. We have a natural surjective homomorphism q : A → A/I
given by q(x) = x + I for x ∈ A. There is a one-to-one correspondence between the ideals of
A containing I and the ideals of A/I given by J 7→ q(J) = J/I and J ′ 7→ q−1(J ′).

Localisation: That is, the ring of fractions S−1A of a ring A w.r.t. a multiplicatively
closed (m. c.) subset S of A [i.e., a subset S of A such that 1 ∈ S and a, b ∈ S ⇒ ab ∈ S].
Elements of S−1A are, essentially, fractions of the type a

s
, where a ∈ A and s ∈ S; the notion

of equality in S−1A is understood as follows. a
s

= b
t
⇔ u(at − bs) = 0, for some u ∈ S.

Quite often, we consider S−1A when A is a domain and 0 /∈ S; in this case, the notion of
equality (or, if you like, equivalence) is simpler and more natural. Note that if A is a domain
and S = A \ {0}, then S−1A is nothing but the quotient field of A. Important instance of
localisation is when S = A \ p, where p is a prime ideal of A; in this case S−1A is customarily
denoted by Ap. Passing from A to Ap has the effect of making p into a maximal ideal that
consists of all nonunits; indeed, Ap is a local ring [which means, a ring with a unique maximal
ideal] with pAp as its unique maximal ideal. In general, we have a natural homomorphism

1here, and hereafter, by a ring we mean a commutative ring with identity.
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φ : A → S−1A defined by φ(x) = x
1
. This is injective if S consists of nonzerodivisors, and in

this case A may be regarded as a subring of S−1A. Given an ideal I of A, the ideal of S−1A
generated by φ(I) is called the extension of I, and is denoted by IS−1A or by S−1I. For an
ideal J of S−1A, the inverse image φ−1(J) is an ideal of A and is called the contraction of J
to A. By abuse of language, the contraction of J is sometimes denoted by J ∩ A. We have
S−1(J ∩A) = J and S−1I∩A ⊇ I, and the last inclusion can be strict. This implies that there
is a one-to-one correspondence between the ideals J of S−1A and the ideals I of A such that
{a ∈ A : as ∈ I for some s ∈ S} = I. This, in particular, gives a one-to-one correspondence
between the prime ideals of S−1A and the prime ideals P of A such that P ∩ S = ∅.
(1.2) Exercise: Show that localisation commutes with taking homomorphic images. More
precisely, if I is an ideal of a ring A and S is a m. c. subset of A, then show that S−1A/S−1I ≃
S̄−1(A/I), where S̄ denotes the image of S in A/I.

Given ideals I1 and I2 in a ring A, their sum I1 + I2 = {a1 + a2 : a1 ∈ I1, a2 ∈ I2}, their
product I1I2 = {∑ aibi : ai ∈ I1, bi ∈ I2}, and intersection I1 ∩ I2 are all ideals. Analogue of
division is given by the colon ideal (I1 : I2), which is defined to be the ideal {a ∈ A : aI2 ⊆ I1}.
If I2 equals a principal ideal (x), then (I1 : I2) is often denoted simply by (I1 : x). We can also

consider the radical of an ideal I, which is defined by
√

I = {a ∈ A : an ∈ I for some n ≥ 1},
and which is readily seen to be an ideal (by Binomial Theorem!). One says that I is a radical

ideal if
√

I = I. Note that the notions of sum and intersections of ideals extend easily to
arbitrary families of ideals.

(1.3) Exercise: Show that colon commutes with intersections. That is, if {Ii} is a family of
ideals of a ring A, then for any ideal J of A, we have ∩(Ii : J) = (∩Ii : J). Further, if {Ii}
is a finite family, then show that

√
∩Ii = ∩

√
Ii. Give examples to show that these results do

not hold (for finite families) if intersections are replaced by products.

(1.4) Exercise: Let A = k[X1, . . . , Xn] and I be an ideal of A. Show that I is a homogeneous
ideal iff I contains the homogeneous components of f , for each f ∈ I. Also show that I is a
monomial ideal iff I contains all the monomials occurring in f , for each f ∈ I. Further show
that if I is generated by monomials m1, . . . , mr and u is any monomial in A, then u ∈ I iff u
is divisible by mi for some i. Use the fact that A is a UFD to deduce that a monomial ideal
is a radical ideal iff it is generated by squarefree monomials.

Here is a prime fact about ideals whose mention can not be avoided.

(1.5) Prime Avoidance Lemma. Let I, P1, . . . , Pn be ideals in a ring A such that P1, . . . , Pn

are prime and I ⊆ ∪n
j=1Pj . Then I ⊆ Pj for some j.

Proof: Suppose n > 1. If there exist xi ∈ I \ ∪j 6=iPj for 1 ≤ i ≤ n, then we have a
contradiction since x1 +x2x3 . . . xn ∈ I \∪iPi. Thus I ⊆ ∪j 6=iPj, for some i. The case of n = 1
being trivial, the result now follows using induction on n. �

Remark: An easy alteration of the above proof shows that (1.5) holds under the weaker
hypothesis that I is a subset of A closed under addition and multiplication, and P1, . . . , Pn

are ideals of A such that at least n− 2 of them are prime. In the case A contains a field, then
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(1.5) can be proved, using elementary vector space arguments, without assuming any of the
Pi’s to be prime.

2. Noetherian Rings

A ring A is said to be noetherian if every ideal of A is finitely generated. It is easy to see
that this condition is equivalent to either of the two conditions below.

(1) (Ascending Chain Condition or a.c.c.) If I1, I2, . . . are ideals of A such that I1 ⊆ I2 ⊆ . . . ,
then there exists m ≥ 1 such that In = Im for n ≥ m.

(2) (Maximality Condition) Every nonempty set of ideals of A has a maximal element.

The class of noetherian rings has a special property that it is closed w.r.t. each of the three
fundamental processes. Indeed, if A is a noetherian ring, then it is trivial to check that both
A/I and S−1A are noetherian, for any ideal I of A and any m. c. subset S of A; moreover,
the following basic result implies, using induction, that A[X1, . . . , Xn] is also noetherian.

(2.1) Hilbert Basis Theorem. If A is a noetherian ring, then so is A[X].

Proof: Let I be any ideal of A[X]. For 0 6= f ∈ I, let LC(f) denote the leading coefficient
of f , and J = {0} ∪ {LC(f) : f ∈ I, f 6= 0}. Then J is an ideal of A and so we can find
f1, . . . , fr ∈ I \ {0} such that J = (LC(f1), . . . , LC(fr)). Let d = max{deg fi : 1 ≤ i ≤ r}.
For 0 ≤ i < d, let Ji = {0} ∪ {LC(f) : f ∈ I, deg f = i}; then Ji is an ideal of A and so we
can find fi1, . . . , firi

∈ I such that Ji = (LC(fi1), . . . , LC(firi
)). Now if I ′ is the ideal of A[X]

generated by {f1, . . . , fr} ∪ {fij : 0 ≤ i < d, 1 ≤ j ≤ ri}, then I ′ ⊆ I and for any 0 6= f ∈ I,
there is f ′ ∈ I ′ such that deg(f − f ′) < deg f . Thus an inductive argument yields I = I ′. �

A field as well as a PID (e.g., Z, the ring of integers) is clearly noetherian, and construct-
ing from these, using combinations of the three fundamental processes, we obtain a rather
inexhaustible source of examples of noetherian rings. Especially important among these are
finitely generated algebras over a field or, more generally, over a noetherian ring. Let us recall
the relevant definitions.

Definition: Let B be a ring and A be a subring of B. Given any b1, . . . , bn ∈ B, we denote
by A[b1, . . . , bn] the smallest subring of B containing A and the elements b1, . . . , bn. This
subring consists of all polynomial expressions f(b1, . . . , bn) as f varies over A[X1, . . . , Xn]. We
say that B is a finitely generated (f. g.) A–algebra or an A–algebra of finite type if there exist
b1, . . . , bn ∈ B such that B = A[b1, . . . , bn]. Finitely generated k–algebras, where k is a field,
are sometimes called affine rings.

Ideals in noetherian rings admit a decomposition which is somewhat similar, though much
cruder, to the decomposition of positive integers into prime–powers.

Definition: An ideal q in a ring A is said to be primary if q 6= A and for any a, b ∈ A,

ab ∈ q and b /∈ q =⇒ an ∈ q for some n ≥ 1.

If q is a primary ideal, then, clearly, its radical
√

q is prime; if p =
√

q, then we say that q

is p–primary or that q is a primary ideal belonging to p or that q is primary to p.
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Remark: If q is an ideal such that
√

q is prime, then q needn’t be primary; in fact, even
a power of a prime ideal can fail to be primary [Example: p2, where p is the image in
k[X, Y, Z]/(XY − Z2) of (X,Z)]. However, if

√
q is a maximal ideal m, then q is easily seen

to be m–primary. On the other hand, if q is p–primary, then q needn’t be a power of p, even
when p is maximal [Example: q = (X2, Y ) in k[X, Y ]]. It may be noted, however, that if A is
a noetherian ring and q is a p–primary ideal of A, then q does contain some power of p.

(2.2) Theorem. Let A be a noetherian ring and I be any ideal of A with I 6= A. Then we
have the following.

(i) There exist primary ideals q1, . . . , qh in A such that I = q1 ∩ · · · ∩ qh.
(ii) In (i) above, q1, . . . , qh can be chosen such that qi 6⊇ ∩j 6=iqj for 1 ≤ i ≤ h, and p1, . . . , ph

are distinct, where pi =
√

qi.
(iii) If qi and pi are as in (ii) above, then p1, . . . , ph are unique; in fact, {p1, . . . , ph} is

precisely the set of prime ideals among the ideals (I : x) where x varies over elements
of A. Moreover, if pi is minimal among p1, . . . , ph, i.e. pi 6⊇ pj for j 6= i, then the
corresponding primary ideal qi is also unique.

Proof: Classical proof of (i) is in two steps. First, one considers irreducible ideals, viz., nonunit
ideals that are not finite intersections of strictly larger ideals. The maximality condition
readily implies that every ideal of A is a finite intersection of irreducible ideals. Next, if I is
irreducible and ab ∈ I are such that b /∈ I and no power of a is in I, then we consider the
chain (I : a) ⊆ (I : a2) ⊆ . . . . By a.c.c., (I : an) = (I : an+1) for some n and now it is easy to
verify that I = (I + Aan) ∩ (I + Ab), which is a contradiction. Thus I is primary and (i) is
proved. Proving (ii) is easy since if pi = pj , then qi ∩ qj is primary and it can replace both qi

and qj in the decomposition. To prove (iii), let i ∈ {1, . . . , h}. Find ci ∈ (∩j 6=iqj) \ qi. Then
qi ⊆ (I : ci) ⊆ pi, and so there is k ≥ 1 such that pk

i ⊆ (I : ci) and p
k−1
i 6⊆ (I : ci). Choose

y ∈ p
k−1
i \ (I : ci), and let xi = yci. Then pi ⊆ (I : xi) and

x ∈ (I : xi) \ pi ⇒ xyci ∈ I ⊆ qi and x /∈ pi ⇒ yci ∈ qi ⇒ yci ∈ I ⇒ y ∈ (I : ci).

It follows that pi = (I : xi). Conversely, if (I : x) is a prime p for some x ∈ A, then
p = (∩qi : x) = ∩(qi : x), and thus (qi : x) ⊆ p for some i. In particular, x /∈ qi and

pi =
√

qi ⊆
√

(qi : x) ⊆ p. Also, a ∈ p ⇒ ax ∈ I ⊆ qi ⇒ a ∈ pi. Thus p = pi. Finally, the
uniqueness of the primary component qi corresponding to a minimal prime pi can be proved
by localising at pi. �

Definition: A decomposition I = q1∩· · ·∩qh, as in (i) above is called a primary decomposition
of I. If q1, . . . , qh satisfy the conditions in (ii), then it is called an irredundant (primary)
decomposition of I; the uniquely determined primes p1, . . . , ph are called the associated primes
of I (in A) and the set {p1, . . . , ph} is denoted by Ass(A/I). An associated prime pi is called
a minimal prime of I if pi 6⊇ pj for all j 6= i; otherwise pi is called an embedded prime of I.

Note that primary decompositions are neatly preserved under the fundamental processes
of forming polynomial rings, quotient rings (by smaller ideals), and localisations w.r.t. m. c.
subsets that are disjoint from all associated primes. If S is an arbitrary m. c. subset of A and
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I = q1 ∩ · · · ∩ qh, then S−1I =
⋂

pi∩S=∅

S−1
qi and S−1I ∩ A =

⋂

pi∩S=∅

qi . Note also that the

minimal primes of an ideal I of A are precisely the minimal elements (w.r.t. inclusion) of the
set of prime ideals of A containing I.

Example: Let A = k[X, Y ] and I = (X2, XY ). Then I = (X)∩(X2, Y ) gives an irredundant
primary decomposition of I. The associated primes of I are p1 = (X) and p2 = (X, Y ); clearly,
p1 is a minimal prime and p2 is an embedded prime. Observe that I = (X)∩ (X2, Y + cX) is
also an irredundant primary decomposition of I, for any c ∈ k.

(2.3) Exercise: Let I be a radical ideal and I = q1 ∩ · · · ∩ qh be an irredundant primary
decomposition of I, where qi is pi–primary. Show that I = p1 ∩ · · · ∩ ph. Deduce that I has
no embedded component, and that qi = pi for 1 ≤ i ≤ h.

(2.4) Exercise: Let Z(A) be the set of all zerodivisors of the ring A. Show that Z(A) =
⋃

p∈Ass(A/(0))

p. More generally, if I is any ideal of A, then show that Z(A/I) =
⋃

p∈Ass(A/I)

p,

where Z(A/I) = {x ∈ A : (I : x) 6= I} ∪ {0}.
(2.5) Exercise: Let A be a noetherian ring, n be a nonnegative integer, and p be a prime
ideal of A. Show that pnAp is a primary ideal of Ap and pnAp∩A is a primary ideal of A. The
ideal pnAp ∩ A is denoted by p(n) and is called the n-th symbolic power of p. Prove that pn

has p as its unique minimal prime and the (unique) primary component of pn corresponding
to p is precisely p(n).

(2.6) Exercise: Let ∆ be a simplicial complex with vertex set V = {1, 2, . . . , n}, and let
F1, F2, . . . , Fm be the facets (i.e., maximal faces) of ∆. Let I∆ be the ideal of k[X1, . . . , Xn]
generated by the squarefree monomials Xi1 . . .Xir for which {i1, . . . , ir} /∈ ∆. And for any face
F of ∆, let PF be the ideal of k[X1, . . . , Xn] generated by the variables Xj1, . . . , Xjs

, where
{j1, . . . , js} = V \ F . Prove that each PF is a prime ideal and I∆ = PF1

∩ · · · ∩ PFm
gives the

irredundant primary decomposition of I∆.

Reversing the inclusion signs in the definition of noetherian rings, we can consider rings
satisfying the descending chain condition (d.c.c.); these are called artinian rings. It is easy to
see that d.c.c. is equivalent to the condition that every nonempty set of ideals has a minimal
element. Also it can readily be seen that quotient rings and localisations of artinian rings are
artinian. Unlike a.c.c., the d.c.c. turns out to be a very restrictive condition. Indeed, it can
be shown that a ring is artinian iff it is noetherian and every prime ideal is maximal (cf. [AM,
p.90]). In particular, an artinian local ring has only one prime ideal and an artinian local
domain has to be a field. Note also that an artinian ring has only finitely many prime ideals
because each of them must be an associated prime of the minimal radical ideal. Further, it can
be seen (from Chinese Remainder Theorem!) that every artinian ring is a direct product of
artinian local rings. Basic example of an artinian local ring is A/q, where A is a noetherian ring
and q is primary to a maximal ideal of A. To obtain a more specific example, let f, g ∈ k[X, Y ]
be polynomials with a common zero, say P = (α, β), such that no nonconstant polynomial in
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k[X, Y ] divides both f and g. Take A = k[X, Y ]p, where p = (X −α, Y − β) and q = (f, g)A.
Then q is primary to the maximal ideal of A, and A/q is artinian (verify!).

3. Modules

Let A be a ring. An A–module is simply a vector space except that the scalars come
from the ring A instead of a field. Some examples of A–modules are: ideals I of A, quotient
rings A/I, localisations S−1A, and f. g. A–algebras A[x1, . . . , xn]. The notions of submodules,
quotient modules, direct sums of modules and isomorphism of modules are defined in an
obvious fashion. The concept of localisation (w.r.t. m. c. subsets of A) also carries to A–
modules, and an analogue of (1.2) can be verified easily. Direct sum of (isomorphic) copies of
A is called a free A–module; An = A ⊕ · · · ⊕ A

︸ ︷︷ ︸

n times

is referred to as the free A–module of rank n.

Let M be an A–module. Given submodules {Mi} of M , their sum
∑

Mi = {
∑

xi : xi ∈ Mi and all except finitely many xi’s are 0}
and their intersection ∩Mi are also submodules of M . Products of submodules doesn’t make
sense but the colon operation has an interesting and important counterpart. If M1, M2 are
submodules of M , we define (M1 : M2) to be the ideal {a ∈ A : aM2 ⊆ M1} of A. The
ideal (0 : M) is called the annihilator of M and is denoted by Ann(M); for x ∈ M , we may
write Ann(x) for the ideal (0 : x), i.e., for Ann(Ax). Note that if I is an ideal of A, then
Ann(A/I) = I and if Ann(M) ⊇ I, then M may be regarded as an A/I–module. Let us also
note that for any submodules M1, M2 of M , we always have the isomorphisms (M1+M2)/M2 ≃
M1/(M1 ∩ M2), and, if M2 ⊆ M1 and N is a submodule of M2, (M1/N)/(M2/N) ≃ M1/M2.

We say that M is finitely generated (f. g.) or that M is a finite A–module if there exist
x1, . . . , xn ∈ M such that M = Ax1 + · · ·+ Axn. Note that in this case M is isomorphic to a
quotient of An. We can, analogously, consider the a.c.c. for submodules of M , and in the case
it is satisfied, we call M to be noetherian. Artinian modules are defined similarly. Observe
that M is noetherian iff every submodule of M is finitely generated. In general, if M is f. g.,
then a submodule of M needn’t be f. g., i.e., M needn’t be noetherian. However, the following
basic result assures that ‘most’ f. g. modules are noetherian.

(3.1) Lemma. Finitely generated modules over noetherian rings are noetherian.

Proof (Sketch): First note that given a submodule N of M , we have that M is noetherian
iff both N and M/N are noetherian. Use this and induction to show that if A is noetherian,
then so is An, and, hence, any of its quotient modules. �

Remark: The above lemma as well as the statements in its proof carry over verbatim if the
word noetherian is replaced throughout by artinian.

Another basic fact about modules is the following.

(3.2) Nakayama’s Lemma. Let M be a f. g. A–module and I be an ideal of A such that
IM = M . Then there exists a ∈ I such that (1 − a)M = 0. In particular, if I 6= A and A is
a local ring, then M = 0.
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Proof: Write M = Ax1 + · · · + Axn. Then xi =
∑n

j=1 aijxj , for some aij ∈ I. Let d =

det(δij − aij). Then d = 1 − a, for some a ∈ I, and, by Cramer’s rule, dxj = 0 for all j. �

Here is a nice application of Nakayama’s Lemma and primary decomposition.

(3.3) Krull’s Intersection Theorem. Suppose A is noetherian and I is any ideal of A.
Then there exists a ∈ I such that (1− a)∩∞

n=0 In = 0. In particular, if I 6= A, and A is a local
ring, then ∩∞

n=0I
n = 0.

Proof: Let J = ∩∞
n=0I

n. Write IJ = q1 ∩ · · · ∩ qr ∩ qr+1 ∩ · · · ∩ qh, where qi are pi–primary
ideals with pi ⊇ I for 1 ≤ i ≤ r and pj 6⊇ I for r < j ≤ h. Fix some yj ∈ I \ pj for r < j ≤ h.
Then x ∈ J ⇒ xyj ∈ IJ ⇒ xyj ∈ qj ⇒ x ∈ qj. Thus J ⊆ qr+1 ∩ · · · ∩ qh. Also, since I ⊆ pi

for 1 ≤ i ≤ r, there exists m ≥ 1 such that Im ⊆ q1 ∩ · · · ∩ qr. Since J ⊆ Im, it follows that
J ⊆ q1 ∩ · · · ∩ qh = IJ . Thus IJ = J . Now apply Nakayama’s Lemma. �

If M satisfies both a.c.c. and d.c.c., then, clearly, any chain of submodules of M is finite;
two such maximal chains can be shown to have the same length (as in Jordan–Hölder Theorem
of Group Theory), which is called the length of M and denoted by ℓ(M). Note that the length
of a module behaves in much the same way as the vector space dimension; for example, if N
is a submodule of M , then ℓ(M) = ℓ(N) + ℓ(M/N). Basic examples of modules satisfying
a.c.c. and d.c.c. are: (i) f.g. modules over artinian rings (in particular, finite dimensional
vector spaces, for which length equals the dimension) (ii) A–modules of the type qnM/qn+1M ,
where A is noetherian, q is primary to a maximal ideal of A, and M is a f. g. A–module (in
particular, the artinian ring A/q).

4. Integral Extensions

The theory of algebraic field extensions has a useful analogue to ring extensions, which is
discussed in this section.

Let B be a ring and A be a subring of B. We may express this by saying that B is a (ring)
extension of A or that B is an overring of A.

Definition: An element x ∈ B is said to be integral over A if it satisfies a monic polynomial
with coefficients in A, i.e., xn +a1x

n−1 + · · ·+an = 0 for some a1, . . . , an ∈ A. If every element
of B is integral over A, then we say that B is an integral extension of A or that B is integral
over A.

Evidently, if x ∈ B satisfies an integral equation such as above, then 1, x, x2, . . . , xn−1

generate A[x] as an A–module. And if B′ is a subring of B containing A[x] such that B′ =
Ax1 + · · · + Axn, then for any b ∈ B′, bxi =

∑
aijxj for some aij ∈ A so that b satisfies the

monic polynomial det(Xδij − aij) ∈ A[X]. Thus we obtain the following criteria.

x ∈ B is integral over A ⇔ A[x] is a finite A–module

⇔ a subring B′ of B containing A[x] is a finite A–module.

In particular, if B is a finite A–module, then B is integral over A. The converse is true if we
further assume (the necessary condition) that B is a f. g. A–algebra. This follows by observing
that the above criteria implies, using induction, that if x1, . . . , xn ∈ B are integral over A,
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then A[x1, . . . , xn] is a finite A–module. This observation also shows that the elements of B
which are integral over A form a subring, say C, of B. If C = A, we say that A is integrally
closed in B. A domain is called integrally closed or normal if it is integrally closed in its
quotient field. Note that if S is a m. c. subset of A, B is integral over A, and J is an ideal of
B, then S−1B (resp: B/J) is integral over S−1A (resp: A/J ∩A); moreover, if A is a normal
domain and 0 /∈ S, then S−1A is also a normal domain.

(4.1) Exercise: Show that a UFD is normal. Also show that if A is a domain, then A is
normal iff A[X] is normal. Further, show that if A is a normal domain, K is its quotient field,
and x is an element of a field extension L of K, then x is integral over A implies that the
minimal polynomial of x over K has its coefficients in A.

Example: Let B = k[X, Y ]/(Y − X2), and let x, y denote the images of X, Y in B so that
B = k[x, y]. Let A = k[y]. Then x is integral over A, and hence B is integral over A. On
the other hand, if B = k[X, Y ]/(XY − 1) = k[x, y], then x is not integral over A = k[y].
It may be instructive to note, indirectly, that B ≃ k[Y, 1/Y ] is not a finite k[Y ]–module.
These examples correspond, roughly, to the fact that the projection of parabola along the
x–axis onto the y–axis is a ‘finite’ map in the sense that the inverse image of every point is at
‘finite distance’, whereas in the case of hyperbola, this isn’t so. Similar examples in “higher
dimensions” can be constructed by considering projections of surfaces onto planes, solids onto
3–space, and so on. Examples of integral (resp: non–integral) extensions of Z are given by
subrings B of number fields (viz., subfields of C of finite degree over Q) such that B ⊆ OK

(resp: B 6⊆ OK), where OK denotes the ring of integers in K. Indeed, OK is nothing but the
integral closure of Z in K.

A precise definition of dimension for arbitrary rings can be given as follows.

Definition: dim A = max{ht p : p a prime ideal of A}, where for any prime ideal p of A,

ht p = max{n : ∃ distinct primes p0, p1, . . . , pn of A such that p0 ⊂ p1 ⊂ · · · ⊂ pn = p}.

We often call ht p to be the height of p, and dim A to be the Krull dimension of A.

Remark: Observe that a field, and more generally an artinian ring has dimension 0. A PID
which is not a field, in particular Z as well as k[X], is clearly of dimension 1. It is proved later
in this section that dim k[X1, . . . , Xn] = n. If A is noetherian and x ∈ A is a nonzero nonunit,
then by a famous result of Krull, called the Principal Ideal Theorem or the Hauptidealsatz,
every minimal prime belonging to (x) has height ≤ 1 [and the equality holds, by (2.4), if x is
a nonzerodivisor]. More generally, every minimal prime of an ideal generated by m elements
has height ≤ m. It follows that the height of any ideal in a noetherian ring is finite and a
noetherian local ring is of finite dimension. For a classical proof of Krull’s Principal Ideal
Theorem, see [N1] or [ZS] and for a more modern approach, using the so called Dimension
Theorem, see [AM], [M2] or Chapter 3 of the ICCTA Lecture Notes.

(4.2) Exercise: Suppose A is noetherian and I is any ideal of A. Show that dim A/I =
max{dim A/p : p ∈ Ass(A/I)} = max{dim A/p : p is a minimal prime of I}. Use the above
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remark to deduce that dim R∆ = d + 1, where ∆, I∆ are as in (2.5), R∆ is the face ring of ∆,
i.e., R∆ = k[X1, . . . , Xn]/I∆, and d is the (topological) dimension of ∆.

Basic results about integral extensions are as follows. In the seven results given below, B
denotes an integral extension of A and p denotes a prime ideal of A.

(4.3) Theorem. A is a field iff B is a field. Also, if q is a prime ideal of B such that q∩A = p,
then p is maximal iff q is maximal. Moreover, if q′ is any prime ideal of B such that q ⊂ q′

and q′ ∩ A = p, then q = q′.

(4.4) Lying Over Theorem. There exists a prime ideal q of B such that q ∩ A = p. In
particular, pB ∩ A = p.

(4.5) Corollary. dim B ≤ dim A. In particular, if B is a domain and dim A ≤ 1, then
dim A = dim B.

(4.6) Going Up Theorem. If q is a prime ideal of B such that q ∩ A = p, and p′ is a
prime ideal of A such that p ⊆ p′, then there exists a prime ideal q′ of B such that q ⊆ q′ and
q′ ∩ A = p.

(4.7) Corollary. dim A = dim B.

(4.8) Going Down Theorem. Assume that A and B are domains and A is normal. If q is
a prime ideal of B such that q ∩ A = p, and p′ is a prime ideal of A such that p′ ⊆ p, then
there exists a prime ideal q′ of B such that q′ ⊆ q and q′ ∩ A = p′.

(4.9) Corollary. Assume that A and B are domains and A is normal. Then for any prime
ideal q of B such that q ∩ A = p, we have ht p = ht q.

Proofs (Sketch). Easy manipulations with integral equations of relevant elements proves
the first assertion of (4.3); the second and third assertions follow from the first one by passing
to quotient rings and localisations respectively. To prove (4.4), first localise at p and, then,
note that if pB0 = B0, where B0 = (A \ p)−1B, then pB′ = B′ for some f. g. A–algebra
B′; now B′ is a finite A–module and Nakayama’s Lemma applies. (4.6) follows by applying
(4.4) to appropriate quotient rings. To prove (4.8), consider the multiplicatively closed subset
S = (A \ p′)(B \ q) = {ab : a ∈ A \ p′, b ∈ B \ q} of B and note that it suffices to prove
p′B∩S = ∅ [because, then there exists a prime ideal q′ of B such that p′B ⊆ q′ and q′∩S = ∅,
and this will have the desired properties]. To this end, let x ∈ p′B ∩ S. Let K and L denote
the quotient fields of A and B respectively. Let L̄ be a normal extension of K containing L
and B̄ be the integral closure of A in L̄. Since p′ ⊆ A and x ∈ p′B, all the conjugates of x
w.r.t L/K are in p′B̄, and hence the coefficients of the minimal polynomial, say f(X), of x
over K are in p′B̄ ∩ A = p′ (since A is normal!). Write f(X) = Xd + c1X

d−1 + · · · + cd, and
x = ab, where c1, . . . , cd ∈ p′, a ∈ A\p′ and b ∈ B \q. Clearly, Xd +(c1/a)Xd−1 + · · ·+(cd/a

d)
is the minimal polynomial of b over K. But A is normal and b is integral over A implies that
ci = c′ia

i for some c′i ∈ A (1 ≤ i ≤ d). Since ci ∈ p′ and a 6∈ p′, we have c′i ∈ p′ for 1 ≤ i ≤ d.
Hence bd ∈ p′B ⊆ pB ⊆ q, and so b ∈ q, which is a contradiction. �

For a more leisurely proof of the results above, see [AM, pp. 61–64] or [ZS, pp. 257–264].
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(4.10) Exercise. Prove the three corollaries above using the results preceding them.

Remark: It may be noted that (4.7) is an analogue of the simple fact that if L/K is an alge-
braic extension of fields containing a common subfield k, then tr.deg.kL = tr.deg.kK. Recall
that if K is a ring containing a field k, then elements θ1, . . . , θd of K are said to be algebraically
independent over k if they do not satisfy any algebraic relation over k, i.e., f(θ1, . . . , θd) 6= 0
for any 0 6= f ∈ k[X1, . . . , Xd]. A subset of K is algebraically independent if every finite
collection of elements in it are algebraically independent. If K is a field then any two maximal
algebraically independent subsets have the same cardinality, called the transcendence degree of
K/k and denoted by tr.deg.kK; such subsets are then called transcendence bases of K/k; note
that an algebraically independent subset S is a transcendence basis of K/k iff K is algebraic
over k(S), the smallest subfield of K containing k and S. If B is a domain containing k and
K is its quotient field, then one sets tr.deg.kB = tr.deg.kK. Finally, note that k[X1, . . . , Xn]
and its quotient field k(X1, . . . , Xn) are clearly of transcendence degree n over k. A good
reference for this material is Chapter 2 of [ZS].

We shall now proceed to prove a basic result in Dimension Theory, known as Noether’s
Normalisation Lemma. The proof is based on the following lemma. The key idea here may
be explained by revisiting the example of hyperbola for which the projection onto the y–axis
is not ‘finite’; however, if we tilt the axes a bit, e.g., via the coordinate change X ′ = X,
Y ′ = Y − cX for some c 6= 0, then the projection becomes a ‘finite’ map .

(4.11) Lemma. Let k be a field and f ∈ B = k[X1, . . . , Xn] be a nonconstant polynomial.
Then there exist X ′

2, . . . , X
′
n ∈ B such that f, X ′

2, . . . , X
′
n are algebraically independent and

f = cXm
1 + g1X

m−1
1 + · · · + gm for some c ∈ k, c 6= 0 and g1, . . . , gm ∈ k[X ′

2, . . . , X
′
n].

Moreover, X ′
2, . . . , X

′
n can be chosen such that X ′

i = Xi − Xmi

1 for some mi ≥ 1 (2 ≤ i ≤ n).
In case k is infinite, we can choose X ′

2, . . . , X
′
n to be of the form X ′

i = Xi − ciX1 for suitable
ci ∈ k (2 ≤ i ≤ n). In particular, B is integral over A = k[f, X ′

2, . . . , X
′
n]. Also, fB ∩A = fA

and B/fB is integral over A/fA.

Proof: Let e be an integer greater than any of the exponents of X1, . . . , Xn appearing in f ,
and let mi = ei−1 for 2 ≤ i ≤ n. In the ‘new variables’ X1 and X ′

i = Xi − Xmi

1 (2 ≤ i ≤
n), a monomial X i1

1 X i2
2 · · ·X in

n appearing in f becomes X i1
1 (X ′

2 + Xm2

1 )i2 · · · (X ′
n + Xmn

1 )in ,
and this is clearly monic in X1 of degree i1 + i2e + · · · + ine

n−1. By our choice of e, these
degrees are distinct for different values of (i1, . . . , in), and if m is the maximum of these
degrees, then f clearly has the desired form. In case k is infinite, we let m = deg f and write
f = f0 + f1 + · · · + fm, where fi ∈ k[X1, . . . , Xn]i. Since fm 6= 0, we can find c2, . . . , cn ∈
k such that fm(1, c2, . . . , cn) 6= 0. Now with X ′

i = Xi − ciX1, for 2 ≤ i ≤ m, we have
f = fm(1, c2, . . . , cn)X

m
1 + g1X

m−1
1 + · · · + gm for some g1, . . . , gm ∈ k[X ′

2, . . . , X
′
n]. Finally,

since B = k[X1, X
′
2, . . . , X

′
n], it follows that B is integral over A = k[f, X ′

2, . . . , X
′
n]. In

particular, tr.deg.kA = n, and hence f, X ′
2, . . . , X

′
n are algebraically independent over k, and

A is isomorphic to a polynomial ring in n variables over k. This implies that A is a normal
domain and thus if fh ∈ A for some h ∈ B, then h ∈ A, being in the quotient field of A and
integral over A. Thus fB ∩ A = fA and consequently, B/fB is integral over A/fA. �
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(4.12) Corollary. dim k[X1, . . . , Xn] = n. In particular, ht (X1, . . . , Xi) = i, for 1 ≤ i ≤ n.

Proof: Let B = k[X1, . . . , Xn]. Since (X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, . . . , Xn) is a chain of
prime ideals of B of length n, we have dim B ≥ n. We prove dim B ≤ n by induction on n.
The case of n = 0 is obvious. For the inductive step, let P0 ⊂ P1 ⊂ · · · ⊂ Pr be a chain of
prime ideals of B of length r > 0. Choose 0 6= f ∈ P1. By (4.11), we obtain X ′

2, . . . , X
′
n ∈ B

such that B is integral over A = k[f, X ′
2, . . . , X

′
n]. Hence by (4.3), A ∩ P1 ⊂ · · · ⊂ A ∩ Pr is

a chain of prime ideals of A of length r − 1, containing fA. Passing to A/fA and using the
induction hypothesis, we see that r − 1 ≤ n − 1. Hence r ≤ n. �

(4.13) Noether’s Normalisation Lemma. Let B = k[x1, . . . , xn] be a f. g. algebra over a
field k and J1 ⊆ · · · ⊆ Jm be a chain of nonunit ideals of B. Then there exist θ1, . . . , θd ∈ B
and nonnegative integers r1 ≤ · · · ≤ rm such that (i) θ1, . . . , θd are algebraically independent
over k, (ii) B is integral over A = k[θ1, . . . , θd]; in particular, B is a finite A–module, and (iii)
Ji ∩ A = (θ1, . . . , θri

)A for 1 ≤ i ≤ m. Moreover, if k is infinite, then θ1, . . . , θd can be chosen
to be k–linear combinations of x1, . . . , xn.

Proof: It suffices to prove the result when B is the polynomial ring k[X1, . . . , Xn] (because
in general, B ≃ B′/J ′

0 where B′ = k[X1, . . . , Xn] and J ′
0 is an ideal of B′; now if J ′

1, . . . , J
′
m

are the ideals of B′, containing J ′
0, corresponding to J ′

1, . . . , Jm respectively, then applying the
result to B′ and the chain J ′

0 ⊆ J ′
1 ⊆ · · ·J ′

m, we obtain θ′1, . . . , θ
′
n and r′0, r

′
1, . . . , r

′
m, and it is

easily seen that the images θ1, . . . , θd of θ′r′
0
+1, . . . , θ

′
n in B and the integers r1, . . . , rm defined

by ri = r′i − r′0 have the desired properties). Thus we now assume that B = k[X1, . . . , Xn].
Induct on m. The case of m = 0 is obvious.

Consider the case when m = 1. Here, we induct on n. The case of n = 0 being trivial,
assume that n ≥ 1. We may also assume that J1 6= 0. Let 0 6= f ∈ J1. Then we can find
X ′

2, . . . , X
′
n as in (4.11). By induction hypothesis, there exist θ2, . . . , θn ∈ A′ = k[X ′

2, . . . , X
′
n]

such that θ2, . . . , θn are algebraically independent over k, A′ is integral over k[θ2, . . . , θn], and
J1∩k[θ2, . . . , θn] = (θ2, . . . , θr), for some r ≥ 1. Hence A = A′[f ] is integral over k[f, θ2, . . . , θn],
and therefore so is B. Consequently, tr.deg.kk[f, θ2, . . . , θn] = tr.deg.kB = n, and so if we let
θ1 = f , then θ1, . . . , θn are algebraically independent over k. Moreover, since f ∈ J1. and
J1 ∩ k[θ1, . . . , θn] = (θ1) + J1 ∩ k[θ2, . . . , θn] = (θ1, . . . , θr).

If m > 1 and the result is assumed for m − 1, then for the chain J1 ⊆ · · · ⊆ Jm−1, there
exist θ′1, . . . , θ

′
n ∈ B and nonnegative integers r′1, . . . , r

′
m−1 satisfying conditions such as (i),

(ii) and (iii). Let r = r′m−1. Using the previous case (of m = 1), we can find θ′′r+1, . . . , θ
′′
n in

B′′ = k[θ′r+1, . . . , θ
′
n], and an integer s ≥ r such that θ′′r+1, . . . , θ

′′
n are algebraically independent

over k, B′′ is integral over A′′ = k[θ′r+1, . . . , θ
′
n], and Jm ∩ A′′ = (θ′′r+1, . . . , θ

′′
s ). Define θi = θ′i

if 1 ≤ i ≤ r and θi = θ′′i if r + 1 ≤ i ≤ n; also ri = r′i if 1 ≤ i ≤ m− 1 and rm = s. Now B′′ is
integral over A′′ implies that B′′[θ′1, . . . , θ

′
r] is integral over A′′[θ′1, . . . , θ

′
r]. Also, B is integral

over k[θ′1, . . . , θ
′
n] = B′′[θ′1, . . . , θ

′
r], and hence over A′′[θ′1, . . . , θ

′
r] = k[θ1, . . . , θn]. Consequently,

tr.deg.kk[θ1, . . . , θn] = tr.deg.kB = n, and hence θ1, . . . , θn are algebraically independent over
k. Checking that Ji ∩ k[θ1, . . . , θn] = (θ1, . . . , θri

) is an easy exercise. �

(4.14) Corollary. If B is domain and a f. g. k–algebra, then dim B = tr.deg.kB. Conse-
quently, dim B[X1, . . . , Xn] = dim B + n.
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Proof: Apply (4.13) for the singleton chain (0), and use (4.7) and (4.12). �

(4.15) Corollary. If B is a domain and a f. g. algebra over a field k, and P is a prime ideal
of B, then dim B = ht P + dim B/P .

Proof: Apply (4.13) for the singleton chain P, and use (4.7) and (4.9). �

Remark: If B is not a domain, then result of (4.15) is not necessarily true. For example, let
B = k[X, Y, Z]/(XY, XZ) = k[x, y, z] and P = (y, z). Then dim B = 2, whereas ht P = 0 and
dim B/P = 1.

(4.16) Hilbert’s Nullstellensatz. Let k be a field. Then we have:

(i) If K is a field and a f. g. k–algebra, then K is algebraic over k.
(ii) If k is algebraically closed, and m is a maximal ideal of k[X1, . . . , Xn], then there exist

α1, . . . , αn ∈ k such that m = (X1 − α1, . . . , Xn − αn).
(iii) If k is algebraically closed, and I is a nonunit ideal of k[X1, . . . , Xn], then there exists

(α1, . . . , αn) ∈ kn such that f(α1, . . . , αn) = 0, for each f ∈ I.

Proof: By (4.13), K is integral over a polynomial ring k[θ1, . . . , θd], and, by (4.3), the latter is
a field. Hence d = 0 and thus K is algebraic over k. To prove (ii), let K = k[X1, . . . , Xn]/m.
Then by (i) and the assumption on k, we find that K ≃ k. Let α1, . . . , αn be the unique
elements of k corresponding to the images of X1, . . . , Xn in K. Now (X1 −α1, . . . , Xn −αn) ⊆
m, and the former is clearly a maximal ideal of k[X1, . . . , Xn]. This proves (ii). Finally, if I
is as in (iii), then I ⊆ m, for some maximal ideal m of k[X1, . . . , Xn]. Now apply (ii). �

Exercise 4.17: Suppose k is an algebraically closed field and f, g ∈ k[X, Y ]. Determine
a primary decomposition of (f, g)k[X, Y ]. Show that if f and g are not divisible by any
nonconstant polynomial in k[X, Y ], then they have only finitely many common zeros in k2.
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