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Chapter 1

Field Extensions

1.1 Basic Facts

Let us begin with a quick review of the basic facts regarding field extensions and Galois groups.
For more details, consult the notes [4] or any of the standard texts such as Lang [7] or Jacobson
[6].

Suppose L/K is a field extension (which means that L is a field and K is a subfield of L). We
call L/K to be finite if as a vector space over K, L is of finite dimension; the degree of L/K, denoted
by [L : K], is defined to be the vector space dimension of L over K. Given α1, . . . , αn ∈ L, we
denote by K(α1, . . . , αn) (resp: K[α1, . . . , αn]) the smallest subfield (resp: subring) of L containing
K and the elements α1, . . . , αn. If there exist finitely many elements α1, . . . , αn ∈ L such that
L = K(α1, . . . , αn), then L/K is said to be finitely generated. An element α ∈ L such that
L = K(α) is called a primitive element, and if such an element exists, then L/K is said to be
a simple extension. If L′/K is another extension, then a homomorphism σ : L → L′ such that
σ(c) = c for all c ∈ K is called a K–homomorphism of L → L′. Note that a K–homomorphism is
always injective and if [L : K] = [L′ : K], then it is surjective. Thus if L = L′, then such maps are
called K–automorphisms of L. The set of all K–automorphisms of L is clearly a group where the
group operation defined by composition of maps. This is called the Galois group of L/K and is
denoted by Gal(L/K) or G(L/K). Given any subgroup H of the group of automorphisms of L, we
can associate a subfield LH of L defined by LH = {α ∈ L : σ(α) = α for all σ ∈ H}; this is called
the fixed field of H.

An element α ∈ L is said to be algebraic over K if it satisfies a nonzero polynomial with
coefficients in K. Suppose α ∈ L is algebraic over K. Then a nonzero polynomial of least possible
degree satisfied by α is clearly irreducible and, moreover, it is unique if we require it to be monic;
this monic irreducible polynomial will be denoted by Irr(α,K), and called the minimal polynomial
of α over K. The extension L/K is said to be algebraic if every α ∈ L is algebraic over K. If L/K is
algebraic, then we call it separable if Irr(α,K) has distinct roots (in some extension of K) for every
α ∈ L, and we call it normal if Irr(α,K) has all its roots in L for every α ∈ L. It may be noted
that if L/K is algebraic, then it is normal iff any K–homomorphism of L into some extension L′

of L maps L onto itself. We call L/K to be a Galois extension if it is finite, separable and normal.
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To check separability, one generally uses the fact that an irreducible polynomial in K[X] has
distinct roots iff (= if and only if) its derivative is a nonzero polynomial. This fact follows, in
turn, from the elementary observation that a root α of a polynomial f(X) ∈ K[X] is a multiple
root iff f ′(α) = 0. The above fact can be used to show that K is perfect (which means either the
characteristic of K is 0 or the characteristic of K is p 6= 0 and K = Kp, i.e., for any x ∈ K, there
exists y ∈ K such that x = yp) iff every algebraic extension of K is separable. On the other hand,
normality can be checked using the fact a finite extension of K is normal iff it is the “splitting field”
of some polynomial in K[X]. Recall that given a nonconstant polynomial f(X) ∈ K[X], we can
find an extension E of K such that f(X) splits into linear factors in E[X], and E is generated over
K by the roots of f(X) in E. Such an extension is unique up to a K–isomorphism, and is called
the splitting field of f(X) over K. If deg f(X) = n, then the degree of the splitting field of f(X)
over K is at most n!. Thus if f(X) is a nonconstant polynomial in K[X] having distinct roots, and
L is its splitting field over K, then L/K is an example of a Galois extension. A K–automorphism
of L permutes the roots of f(X), and this permutation uniquely determines the automorphism.
Thus Gal(L/K) may be thought of as a finite group of permutations. In this case, Gal(L/K) is
also called the Galois group of the polynomial f(X) or of the equation f(X) = 0.

Some basic results regarding field extensions are the following.

1. L/K is finite ⇐⇒ L/K is algebraic and finitely generated.

2. Given any α ∈ L, we have:

α is algebraic over K ⇔ K(α)/K is finite ⇔ K(α) = K[α].

Moreover, if α is algebraic over K and deg Irr(α,K) = n, then {1, α, α2, . . . , αn−1} forms a
K–basis of K(α).

3. If α1, . . . , αn ∈ L are algebraic, then K(α1, . . . , αn) is an algebraic extension of K. Further,
if α1, . . . , αn are separable over K, then it is also a separable extension. In particular, the
elements of L which are algebraic over K form a subfield of L and among these, those which
are separable form a smaller subfield.

4. Finiteness, algebraicity and separability are “transitive” properties. That is, if E is a subfield
of L containing K, then L/K is finite (resp: algebraic, separable) iff both L/E and E/K are
finite (resp: algebraic, separable). Moreover, if L/K is finite, then [L : K] = [L : E][E : K].
In case of normality, all we can say in general is that L/K is normal implies that L/E is
normal1. Thus, a fortiori, the same thing holds for Galois extensions.

5. (Primitive Element Theorem). If L/K is finite and separable, then it is simple, i.e., there
exists α ∈ L such that L = K(α).

In Number Theory, one has to usually deal with algebraic extensions of |Q, the field of rationals,
or of IFp = ZZ/pZZ, the finite field with p elements. Since |Q and IFp are clearly perfect fields, every

1Find examples to show that the other two possible implications are not true.
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such extension is separable and thus saying that it is Galois amounts to saying that it is finite and
normal.

Now we come to the central result in Galois Theory. Suppose L/K is a Galois extension.
Then Gal(L/K) is a finite group of order [L : K] and its fixed field is K. In fact, we have an
inclusion–reversing one–to–one correspondence between the subgroups of the Galois group of L/K
and the intermediate fields between K and L. This correspondence is given as follows. Given an
intermediate field E (i.e., a subfield of L containing K), the corresponding subgroup of Gal(L/K)
is Gal(L/E). And given a subgroup H of Gal(L/K), the corresponding intermediate field is the
fixed field LH of H. Moreover, given a subfield E of L containing K, the “bottom part” E/K
is Galois iff Gal(L/E) is a normal subgroup of Gal(L/K), and if this is the case, then Gal(E/K)
is isomorphic to the factor group Gal(L/K)/Gal(L/E). The above result is usually called the
Fundamental Theorem of Galois Theory.

Adjectives applicable to a group are generally inherited by a Galois extension. Thus a Galois
extension is said to be abelian if its Galois group is abelian, and it is said to be cyclic if its Galois
group is cyclic.

Before ending this section, we make some remarks about the important notion of compositum
(or composite) of fields, which is very useful in Algebraic Number Theory. Let E and F be subfields
of the field L. The compositum (or the composite) of E and F (in L), denoted by EF , is defined to
be the smallest subfield of L containing both E and F . The compositum of an arbitrary family of
subfields of L is defined in a similar fashion; we use an obvious analogue of the above notation in
case of a finite family of subfields. Now suppose K is a subfield of both E and F , i.e., a subfield of
the field E ∩ F . We list below some elementary facts concerning compositum of fields, which the
reader may prove as exercises.

1. If E/K is finitely generated (resp: finite, algebraic, separable, normal, Galois, abelian), then
so is EF/F .

2. If both E/K and F/K are finitely generated (resp: finite, algebraic, separable, normal, Galois,
abelian), then so is EF/K.

3. If E/K is Galois, then the map σ → σ|E defines an isomorphism of Gal(EF/F ) with the
subgroup Gal(E/E ∩ F ) of Gal(E/K). If both E/K and F/K are Galois, then the map
σ → (σ|E , σ|F ) defines an isomorphism of Gal(EF/K) with the subgroup Gal(E/E ∩ F ) ×
Gal(F/E ∩ F ) of Gal(E/K) ×Gal(F/K). In particular, if E ∩ F = K, then we have natural
isomorphisms Gal(EF/F ) ≃ Gal(E/K) and Gal(EF/K) ≃ Gal(E/K) × Gal(F/K).

Observe that in view of the above properties, we can define the maximal abelian extension of
K in L (as the compositum of all abelian extensions of K contained in L).

Exercise 1.1: Suppose L/K is a Galois extension. Let H1 and H2 be subgroups of Gal(L/K), and
E1 and E2 be their fixed fields respectively. Show that the fixed field of H1∩H2 is the compositum
E1E2 whereas the fixed field of the smallest subgroup H of Gal(L/K) containing H1 and H2 (note
that if either H1 or H2 is normal, then H = H1H2) is E1 ∩ E2.
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Exercise 1.2: Let L1, . . . , Lr be Galois extensions of K with Galois groups G1, . . . , Gr respectively.
Suppose for 1 ≤ i < r we have Li+1 ∩ (L1L2 . . . Li) = K. Then show that the Galois group of
L1L2 . . . Lr is isomorphic to G1 ×G2 × . . .×Gr.

Exercise 1.3: Suppose L/K is Galois and Gal(L/K) can be written as a direct product G1× . . .×
Gr. Let Li be the fixed field of the subgroup G1 × . . . Gi−1 × {1} × Gi+1 × . . . × Gr of G. Show
that Li/K is Galois with Gal(Li/K) ≃ Gi, and Li+1 ∩ (L1L2 . . . Li) = K, and L1L2 . . . Lr = L.

1.2 Basic Examples

In this section, we will discuss some examples of Galois extensions, which are quite important in
Number Theory and Algebra.

Example 1: Quadratic Extensions.
An extension of degree 2 is called a quadratic extension. Let L/K be a quadratic extension.

Suppose α ∈ L is any element such that α /∈ K. Then [K(α) : K] must be > 1 and it must divide
[L : K] = 2. Therefore L = K(α) and α satisfies an irreducible quadratic, say X2 + bX + c, with
coefficients in K. The other root, say β, of this quadratic must satisfy α + β = −b, and hence it
is also in L. So L/K is normal. Also if charK 6= 2, then clearly β 6= α and so L/K is separable
as well. Thus a quadratic extension is always a Galois extension except possibly in characteristic
two. Now assume that charK 6= 2. Then Gal(L/K) is a group of order 2, and the nonidentity
element in it is the automorphism of L which maps α to β. Using the (Shreedharacharya’s)
formula for roots of quadratic polynomial, we can replace α by

√
a so that L = K(

√
a), where a

is some element of K and
√
a denotes an element of L whose square is a. With this, we can write

L = {r + s
√
a : r, s ∈ K} and Gal(L/K) = {id, σ}, where id denotes the identity automorphism of

L and σ is the K–automorphism defined by σ(r + s
√
a) = r − s

√
a.

If K = |Q and L is a subfield of IC such that [L : |Q] = 2, then it is called a quadratic field. In
general, a subfield of IC which is of finite degree over |Q is known as an algebraic number field or
simply, a number field. In view of the above discussion, we easily see that if L is a quadratic field,
then there exists a unique squarefree integer m, with m 6= 0, 1, such that L = |Q(

√
m). We say that

L is a real quadratic field or imaginary quadratic field according as m > 0 or m < 0.

Exercise 1.4: Suppose L/K is a biquadratic extension, i.e., L = K(α, β) where α, β are elements
of L which are not in K but whose squares are distinct elements of K. Assume that charK 6= 2.
Show that L/K is a Galois extension and compute its Galois group.

Example 2: Cyclotomic Extensions.
Let k be a field and n be a positive integer. An element ω ∈ k such that ωn = 1 is called

an nth root of unity (in k). Let µn = µn(k) denote the set of all nth roots of unity in k. Then
µn is a finite subgroup of the multiplicative group k∗ of nonzero elements of k, and therefore
it is cyclic. Any generator of µn is called a primitive nth root of unity in k. For example, if
k = IC, then ζ = ζn = e2πi/n is a primitive nth root of unity, and µn(IC) consists of the n elements
1, ζ, ζ2, . . . , ζn−1; among these the elements ζj where (j, n) = 1, are precisely the primitive nth roots
of unity (verify!). The subfield |Q(ζ) of IC generated by ζ over |Q is called the nth cyclotomic field,
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and the extension |Q(ζ)/ |Q is called a cyclotomic extension. Since the polynomial Xn − 1 splits into
distinct linear factors in |Q(ζ)[X] as

Xn − 1 =
n−1
∏

i=0

(X − ζi)

we see that |Q(ζ)/Q is a Galois extension whose degree is at most n. Suppose G = Gal( |Q(ζ)/ |Q)
and σ ∈ G. Then σ(ζ) must also be a root of Xn − 1, and therefore σ(ζ) = ζj for some integer
j = j(σ). It is clear that σ uniquely determines j(σ) modulo n. Hence the map σ → j(σ) is
injective. Moreover, if σ, τ ∈ G, then we have j(στ) = j(σ)j(τ)(mod n). Because G is a group,
we see that j(σ)(mod n) is a unit in ZZ/nZZ, and σ → j(σ) defines an injective homomorphism of
G into (ZZ/nZZ)×, the multiplicative group of units2 in ZZ/nZZ. It follows that G is abelian and its
order is at most ϕ(n), where ϕ is the Euler totient function defined by

ϕ(n) = the number of positive integers ≤ n and relatively prime to n.

We will now show that the order of G, i.e., [ |Q(ζ) : |Q], is exactly equal to ϕ(n), which will imply that
the Galois group of |Q(ζ)/Q is naturally isomorphic to (ZZ/nZZ)×. For this, we need the following
elementary fact which will be proved later.

FACT: If a monic polynomial with integer coefficients factors as f(X)g(X), where f(X) and g(X)
are monic polynomials with rational coefficients, then the coefficients of f(X) and g(X) must be
integers.

To prove the earlier assertion, let Φn(X) denote the minimal polynomial of ζ = ζn over |Q. Then
it must divide Xn − 1 in |Q[X]. Hence by the FACT above, Φn(X) must have integer coefficients
and Xn − 1 = Φn(X)g(X), for some monic polynomial g(X) ∈ ZZ[X]. Now let p be a prime
number which doesn’t divide n, and let α be a root of Φn(X). We claim that αp must also be a
root of Φn(X). To prove the claim, assume the contrary. Then αp is a root of g(X) and hence
α is a root of g(Xp). Thus g(Xp) = Φn(X)h(X) for some h(X) ∈ ZZ[X] (using the FACT once
again!). Now reduce (mod p), i.e., consider the polynomials ḡ(X), h̄(X), etc obtained by reducing
the coefficients of g(X), h(X), etc., (mod p). Then (by Fermat’s little theorem!), we find that
(ḡ(X))p = ḡ(Xp) = Φ̄n(X)h̄(X). This implies that ḡ(X) and Φ̄n(X) have a common root, and
therefore the polynomial Xn− 1̄ in ZZ/pZZ[X] has a multiple root. But the latter is impossible since
the derivative of Xn − 1̄ is n̄Xn−1, which has zero as its only root since n is not divisible by p.
This proves our claim, and, as a consequence, it follows that ζj is a root of Φn(X) for all integers
j such that (j, n) = 1. Hence we find that |G| = [ |Q(ζ) : |Q] = deg Φn(X) is ≥ ϕ(n). This together
with the previous argument proves the equality. We also find that

Irr(ζ, |Q) = Φn(X) =
∏

0≤j≤n−1

(j,n)=1

(X − ζj).

2The structure of this group is well–known from Elementary Number Theory. To begin with, if n = pe1

1 . . . p
eg

g

is the factorization of n as a product of powers of distinct primes, then by Chinese Remainder Theorem, we have
(ZZ/nZZ)× ≃ (ZZ/pe1

1 ZZ)× × . . . × (ZZ/p
eg

g ZZ)×. If p is a prime and e a positive integer, then (ZZ/peZZ)× is cyclic if p
is odd or p = 2 and e ≤ 2. If e > 2, then (ZZ/2eZZ)× is the direct product of ZZ/2ZZ and ZZ/2e−2ZZ. In particular,
(ZZ/nZZ)× is cyclic, i.e., primitive roots (mod n) exist iff n = 2, 4, pe or 2pe where p is an odd prime. See, for example,
[1] or [5] for details.
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The above polynomial is called the nth cyclotomic polynomial. As noted above, it has integer
coefficients and its degree is ϕ(n). Collating the terms suitably in the product representation of
Xn − 1, we readily see that

Xn − 1 =
∏

d|n
Φd(X)

and so, in particular n =
∑

d|n ϕ(d). The above formula, in fact, gives an efficient way to compute
Φn(X) in a recursive manner.

Let m and n be relatively prime positive integers. We know from Elementary Number Theory,
that ϕ is a multiplicative function, and thus ϕ(mn) = ϕ(m)ϕ(n). This implies that [ |Q(ζmn) : |Q] =
[ |Q(ζm) : |Q][ |Q(ζn) : |Q]. Moreover, we clearly have that ζm

mn is a primitive nth root of unity, ζn
mn

is a primitive mth root of unity, and ζmζn is a primitive mnth root of unity. Therefore |Q(ζmn)
must equal the compositum |Q(ζm) |Q(ζn). This together with the previous equality shows that
|Q(ζm) ∩ |Q(ζn) = |Q.

Exercise 1.5: If p is a prime number, then show that

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + . . .+X + 1

and for any e ≥ 1, Φpe(X) = Φp(X
pe−1

). Use this and the Eisenstein Criterion for Φpe(X + 1) to
show directly that Φpe(X) is irreducible in |Q[X].
Exercise 1.6: [This exercise assumes some familiarity with Elementary Number Theory.3] Let p

be an odd prime, and ζ be a primitive pth root of unity. Consider the Gauss sum g =
∑p−1

t=1

(

t
p

)

ζt.

Show that g2 = (−1)(p−1)/2p. Deduce that the quadratic extension |Q(
√
p) is contained in pth or

(2p)th cyclotomic extension. Conclude that any quadratic extension is contained in some cyclotomic
extension.

Example 3: Finite fields
Let F be a finite field. Its characteristic must be a prime number, say p. Thus we may assume

that it contains IFp = ZZ/pZZ as a subfield. The extension F/IFp has to be finite and if its degree
is m, then, evidently, F contains precisely q = pm elements. Now since F ∗ = F \ {0} is a group
of order q − 1, each of the q elements of F satisfies the polynomial Xq −X. Thus F is a splitting
field of Xq − X over IFp. It follows that for any prime power q, there is, up to isomorphism, a
unique field of order q. Explicitly, it is the splitting field of Xq −X over ZZ/pZZ. For this reason,
one uses the notation IFq to denote a field of order q. Now suppose L is a finite extension of F
of degree n. Then L is a finite field and |L| = qn. Also, L is a splitting field over IFp (and hence
over F ) of the polynomial Xqn − X which has distinct roots (since its derivative is −1, which is
never zero). It follows that L/F is a Galois extension. The map σ : L → L defined by σ(α) = αq

is an F–automorphism of L (Verify!). Its powers id, σ, σ2, . . . , σn−1 are distinct because otherwise
σi = id for some i with 0 < i < n and thus every x ∈ L satisfies xqi

= x, which is a contradiction

3All you need to know really is that if p is prime and a is an integer not divisible by p, then the Legendre symbol
(

a
p

)

is, by definition, equal to 1 if a ≡ x2(mod p) for some integer x, and is equal to −1 otherwise. It is multiplicative,

i.e.,
(

ab
p

)

=
(

a
p

) (

b
p

)

, and Euler’s Criterion, viz.,
(

a
p

)

≡ a(p−1)/2(mod p) holds for any odd prime p.
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since |L| = qn > qi. Moreover, σn = id. Since Gal(L/F ) must have order n = [L : F ], it follows
that the Galois group of L/F is the cyclic group of order n generated by σ. The map σ which is a
canonical generator of the Galois group of L/F is called the Frobenius automorphism.

1.3 Cyclic Extensions

In this section, we shall see that if K is a reasonably big field, then cyclic extensions of K have a
very neat structure. This will be done using a famous result of Hilbert, known as Hilbert Theorem
90, which characterizes elements in cyclic extensions of norm 1 or of trace 0. This result of Hilbert
or more precisely, a cohomological version of it, is of prime importance in Class Field Theory.

To begin with, let us recall the notions of norm and trace. Suppose L/K is a finite extension
of degree n. Given any α ∈ L, we define its trace w.r.t. L/K, denoted by TrL/K(α), to be
the trace of the K–linear transformation x 7→ αx of L → L. The determinant of this linear
transformation is called the norm of α w.r.t L/K and is denoted by NL/K(α). Equivalently, if
Φ(X) = Xn +a1X

n−1 + . . .+an is the characteristic polynomial of the above linear transformation
(which is called the field polynomial of α w.r.t. L/K), then Tr(α) = −a1 and N(α) = (−1)nan. As
done here, the subscript L/K is usually dropped if it is clear from the context.

Basic properties of norm and trace are as follows.

1. TrL/K is a K–linear map of L→ K. For a ∈ K, Tr(a) = na.

2. NL/K is a multiplicative map of L→ K (i.e., N(αβ) = N(α)N(β) for α, β ∈ L). For a ∈ K,
N(a) = an.

3. If L/K is a Galois extension, then trace is the sum of the conjugates whereas the norm is the
product of the conjugates. More precisely, for any α ∈ L, we have

TrL/K(α) =
∑

σ∈Gal(L/K)

σ(α) and NL/K(α) =
∏

σ∈Gal(L/K)

σ(α).

4. Norm and trace are transitive. That is, if E is a subfield of L containing K, then for any
α ∈ L, we have

TrL/K(α) = TrE/K(TrL/E(α)) and NL/K(α) = NE/K(NL/E(α)).

In fact, Property 3 above holds in a more general context. Indeed, if L/K is separable and N
is some (fixed) normal extension of K containing L, then every α ∈ L has exactly n = [L : K]
conjugates (w.r.t. L/K) in N [these are, by definition, the elements σ(α) as σ varies over all K–
homomorphisms of L → N ]. In the case L = K(α), these n conjugates are distinct and they are
precisely the roots (in N) of the minimal polynomial Irr(α,K) of α over K. In any case, if L/K is
separable and α(1), α(2), . . . , α(n) denote the conjugates of α w.r.t. L/K, then we have

TrL/K(α) = α(1) + α(2) + . . .+ α(n) and NL/K(α) = α(1)α(2) . . . α(n).
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It may also be noted that in the above set-up, the field polynomial of α w.r.t. L/K is given by
∏n

i=1

(

X − α(i)
)

, and moreover, it equals Irr(α,K)[L:K(α)]. For a more detailed discussion of the

notions of norm and trace and proofs of the above results, the reader may consult [4], [12], or [14].

Remark: It should be noted that the definitions of trace and norm make sense even when L is a
ring containing the field K as a subring such that L is of finite dimension n as a vector space over
K. In this generality, the properties 1 and 2 above continue to hold. We shall have an occasion to
use trace in this general context in some later sections.

Now suppose L/K is a Galois extension. For any α ∈ K and any σ ∈ Gal(L/K), the elements α
and σ(α) clearly have the same norm as well as the same trace. In other words, NL/K(α/σ(α)) = 1
and TrL/K(α − σ(α)) = 0. The result of Hilbert we talked about, which was ninetieth in the
sequence of 169 theorems in his “Zahlbericht”, says that the converse is true if L/K happens to be
a cyclic extension. More precisely, we have the following.

Hilbert Theorem 90. Let L/K be a cyclic extension of degree n and σ be a generator of
Gal(L/K). Then for any β ∈ L, we have:

(i) N(β) = 1 iff β = α/σ(α) for some α ∈ L.

(ii) Tr(β) = 0 iff β = α− σ(α) for some α ∈ L.

To prove this result, we will use the following lemma due to Artin, which is a sleek reformulation
of a classical result of Dedekind.

Lemma. Let σ1, . . . , σn be distinct homomorphisms of a group G into the multiplicative group k∗

of a field k. Then they are linearly independent over k.

Proof: Induct on n. The case of n = 1 is obvious. Suppose n > 1 and a1σ1+. . .+anσn = 0 for some
a1, . . . , an ∈ k. We may assume that ai 6= 0 for all i because otherwise the induction hypothesis
applies. Now since σ1 6= σ2, there is some α ∈ G such that σ1(α) 6= σ2(α). From the above
equation, we see that for any x ∈ G, we have a1σ1(x) + . . .+ anσn(x) = 0. Multiplying throughout
by σ1(α) we get a1σ1(α)σ1(x) + . . .+ anσ1(α)σn(x) = 0 while replacing x by αx and using the fact
that σi are homomorphisms, we get a1σ1(α)σ1(x) + . . . + anσn(α)σn(x) = 0. Subtracting the first
equation from the last, we find that b2σ2(x) + . . .+ bnσn(x) = 0, where bi = ai(σi(α) − σ1(α)) and
b2 6= 0. But this contradicts the induction hypothesis. 2

Remark: In the above result, G could have been any monoid which isn’t necessarily a group.
Homomorphisms of G→ k∗ are usually called the characters of G in k.

Proof of Hilbert Theorem 90. The “if” part is easy and its proof has already been indicated.
Suppose β ∈ L is such that N(β) = 1. Let us put

a0 = 1, a1 = β, a2 = βσ(β), . . . , an−1 = βσ(β) . . . σn−2(β).

Then these are nonzero elements of L such that βσ(ai) = ai+1 for 0 ≤ i < n − 1 and βσ(an−1) =
N(β) = 1 = a0. Consider the homomorphisms id,σ, σ2, . . . , σn−1. These are clearly distinct maps
of L∗ → L∗. Therefore, by the lemma above, there exists some x ∈ L∗ such that a0x + a1σ(x) +
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a2σ
2(x) + . . .+ an−1σ

n−1(x) 6= 0. If we let α denote this nonzero element, then we readily see that
βσ(α) = α. Thus β = α/σ(α).

To prove the additive version of Hilbert Theorem 90, let us again consider only the nontrivial
part. Thus let β ∈ L be such that Tr(β) = 0. This time, let us put

b0 = 0, b1 = β, b2 = β + σ(β), . . . , bn−1 = β + σ(β) + . . .+ σn−2(β).

Then we have β + σ(bi) = bi+1 for 0 ≤ i < n − 1 and β + σ(bn−1) = Tr(β) = 0 = b0. Using the
Lemma above, we can find some x ∈ L∗ such that Tr(x) = x + σ(x) + . . . + σn−1(x) 6= 0. Now
if we take α = 1

Tr(x)

[

b1σ(x) + b2σ
2(x) + . . . + bn−1σ

n−1(x)
]

, then we see that β + σ(α) = α. This
completes the proof. 2

Exercise 1.7: Let d be a squarefree positive integer. Show that a pair (x, y) of integers is a solution

of the Pell’s equation X2 − dY 2 = 1 iff x+ y
√
d = a+b

√
d

a−b
√

d
for some integers a and b.

Now let K be a field and n be a positive integer. Assume that the characteristic of K is
either zero or relatively prime to n. Also assume that K contains all the nth root of unity. Thus
µn = µn(K) is a cyclic group of order n.

Consider the polynomial Xn − a in K[X], where a is some nonzero element of K. Suppose α
is a root of this polynomial, then all other roots are of the form ωα, where ω ∈ µn. Thus K(α)
contains all the roots of Xn − a. Moreover, these roots are distinct since 0 is the only root of the
derivative nXn−1 of Xn − a. Therefore K(α)/K is a Galois extension. Let G denote the Galois
group of K(α)/K. Any σ ∈ G must map α to ωα for a uniquely determined ω = ωσ ∈ µn. The
map σ → ωσ = σ(α)/α is clearly seen to be an injective homomorphism of G→ µn. Therefore G is
a cyclic group of order d, where d is a divisor of n. If σ is a generator of G, then σ(α) = ωα, where
ω ∈ µn must be a primitive dth root of unity in K. Consequently, σ(αd) = (ωα)d = αd, and thus
αd ∈ K. It follows that the minimal polynomial of α over K is Xd − αd. In particular, if Xn − a
is irreducible, then its Galois group is the cyclic group of order n.

To summarise the above discussion, we may say that if Xn − 1 can be solved in K, then any
equation of the form Xn − a, has a cyclic Galois group. We show below that the converse is also
true.

Theorem. Let K be as above and let L/K be a cyclic extension of degree n. Then there exists
α ∈ K such that L = K(α) and Irr(α,K) = Xn − a for some a ∈ K.

Proof: Let ζ be a primitive nth root of unity in K. Then N(ζ−1) = (ζ−1)n = 1. Hence by Hilbert
Theorem 90, there exists α ∈ L such that ζ−1 = α/σ(α), or equivalently, ζ = σ(α)/α, where σ
denotes a generator of Gal(L/K). It follows that σi(α) = ζiα, and thus ζiα are conjugates of α for
0 ≤ i ≤ n − 1, which are clearly distinct. Therefore, [K(α) : K] ≥ n = [L : K] ≥ [K(α) : K]. It
follows that L = K(α), and Irr(α,K) =

∏n−1
i=0 (X − ζiα) = (Xn −αn). This proves the theorem. 2

Remark: In case n = p = charK, we have an analogous result with Xp replaced by Xp−X. Thus
the Galois group of Xp −X − a is cyclic and this is the prototype of a cyclic extension of degree p.
This result is known as Artin–Schreier Theorem. Its proof uses the the additive version of Hilbert
Theorem 90. For cyclic extensions of degree pm over a field of characteristic p, one has similar but
more complicated result using the notion of Witt vectors. See [7] for details.
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1.4 Abelian Extensions

Let us suppose n is a positive integer and K is a field whose characteristic is zero or relatively
prime to n. Assume that it contains all the nth roots of unity. We have seen that an equation
of the form Xn − a has cyclic Galois group. Now suppose we consider several such equations,
say Xn − a1, X

n − a2, . . ., X
n − ar, and ask for the Galois group of their product. That means,

given a1, a2, . . . , ar ∈ K, we can consider the field L obtained by adjoining to K the nth roots of
a1, a2, . . . , ar; it is clearly a Galois extension of K (is it clear to you?), and we ask how does the
Galois group Gal(L/K) look like? Let us note that L not only contains the nth roots of a1, . . . , ar

but also of any powers of them or of finite products of such powers and of course of the nth power
of each element of K. Indeed L consists of the nth roots of any element of the subgroup, say ∆, of
the multiplicative group K∗ which is generated by K∗n and the elements a1, . . . , ar. Thus we may
write L = K(∆1/n). To come back to the question about the Galois group of L/K, we see right
away from the example of biquadratic extensions (Exercise 1.1) that it can’t be a cyclic group. But
it seems natural to expect it to be a direct product of cyclic groups. This is indeed the case. And
to see that is quite easy. As in the previous section, we have a natural homomorphism of the Galois
group into the r–fold direct product µn × µn × . . . × µn, which is injective. Thus at any rate, the
said Galois group is abelian. Now we know that any finite abelian group is the direct product of
cyclic groups. So it seems reasonable that any finite abelian group is the Galois group of equations
of the type above. This we shall now prove.

A Galois extension L/K is said to be of exponent n if σn = 1, for all σ ∈ Gal(L/K). By a
Kummer extension of K we mean a field extension L of K of the form L = K(∆1/n), where ∆ is a
subgroup of K∗ containing the group K∗n of nth powers such that ∆/K∗n is finitely generated (or
equivalently, finite!). As outlined above, a Kummer extension is an abelian extension of exponent
n. Conversely, we have the following.

Theorem. If L/K is an abelian extension of exponent n, then L = K(∆1/n), where ∆ = L∗n∩K∗.

Proof: Let ∆ = L∗n ∩K∗. Clearly, K(∆1/n) ⊆ L. Let G = Gal(L/K). Since G is a finite abelian
group, we can write G = G1 ×G2 × . . .×Gr, where G1, . . . , Gr are cyclic groups. Moreover, since
σn = 1 for all σ ∈ G, the order of Gi must divide n, for each i. Let Li be the fixed field of
G1 × . . .×Gi−1×{1}×Gi+1× . . .×Gr. Then from Exercise 1.3, we know that Li/K is Galois with
Galois group Gi. Now using the result about cyclic extensions proved in the last section, we see
that Li = K(αi), where αi is a nonzero element of Li such that αn

i ∈ K. Clearly Li ⊆ K(∆1/n).
Since L is the compositum of L1, . . . , Lr, it follows that L ⊆ K(∆1/n). 2

Thus we see that abelian extensions of K of exponent n are precisely the Kummer extensions
obtained by adjoining nth roots of elements of a subgroup ∆ of K∗ such that K∗n ⊆ ∆ and ∆/K∗n

is finite. As we shall see in a moment, this correspondence between subgroups ∆ of the type above
and Kummer extensions K(∆1/n)/K of exponent n is actually one-to-one and inclusion preserving.
Moreover, the degree of the Kummer extension K(∆1/n)/K is precisely the index of K∗n in ∆. To
state this in a “natural” fashion we need the notion of dual group, which is briefly reviewed below.

Let G be an abelian group of exponent n. By a dual group of G we mean the group G∗ =
Hom(G,Cn) of all group homomorphisms of G into a cyclic group Cn of order n. In these notes,
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G will usually be the Galois group of an abelian extension of K of exponent n and we take Cn to
be the group µn = µn(K) of nth roots of unity in K. The construction of dual groups preserves
direct products and has the property that if G is a finite abelian group, then G∗ is isomorphic to
G [this is usually proved by reducing to the case of cyclic groups via the Structure Theorem for
finite abelian groups; try!]. For more on dual groups, see Chapter 1, §11 of [7].

Theorem. With K and n as above and µn denoting the group of nth roots of unity in K, we have
the following.

(i) Given any subgroup ∆ of K∗ such that K∗n ⊆ ∆ and ∆/K∗n is finite, we have a canonical
isomorphism of the dual group G∗ = Hom(G,µn) of G = Gal(K(∆1/n)/K) with the factor
group ∆/K∗n. It is given by a 7→ χa, where for a ∈ ∆, χa(σ) = σ(α)/α, where α is an
element of K(∆1/n) such that αn = a. In particular, we have [K(∆1/n) : K] = |∆/K∗n|.

(ii) The map ∆ 7→ K(∆1/n) sets up an inclusion preserving bijection from the set of subgroups ∆
of K∗ such that K∗n ⊆ ∆ and ∆/K∗n is finite onto the set of Kummer extensions K(∆1/n)/K
of exponent n.

Proof: Let ∆ be as in (i), L = K(∆1/n) and G = Gal(L/K). In view of the previous result, we see
that ∆ = L∗n ∩K∗. To prove (i), first let us note that the map a 7→ χa is well-defined. Fix a ∈ ∆
and σ ∈ G. Now if α is such that αn = a, then we must have σ(α) = ζα for some ζ ∈ µn and thus
σ(α)/α is in µn; moreover, ζ = σ(α)/α is independent of the choice of α. Also if a ≡ b(mod K∗n),
then we clearly have χa(σ) = χb(σ). Thus this map is defined on the factor group ∆/K∗n. Next,
with α as above, we have

χa = 1 ⇐⇒ σ(α) = α for all σ ∈ G ⇐⇒ α ∈ K∗ ⇐⇒ a ∈ K∗n.

This shows that the map a 7→ χa of ∆/K∗n → G∗ is injective. To prove its surjectivity, let χ be
any element of G∗. As before, we can write G = G1G2 . . . Gr ≃ G1 × . . . × Gr, where G1, . . . , Gr

are cyclic subgroups of G and the order of each of them divides n. If Li is the fixed field of
G1 . . . Gi−1Gi+1 . . . Gr, then we know that Li/K is a cyclic extension with Galois group Gi. Let σi

be the generator of Gi. If the order of Gi is di, then, χ(σi) is a primitive di
th root of unity in K,

and so its norm (w.r.t. Li/K) is 1. Therefore, by Hilbert Theorem 90, there exists αi ∈ Li such
that χ(σi) = σi(αi)/αi. It is clear that αn

i ∈ K∗. Let α = α1α2 . . . αr and a = αn. Then α ∈ L
and a ∈ K∗ ∩ L∗n = ∆. We claim that χ = χa. To see this, let σ be any element of G. Then we
can uniquely write σ = σj1

1 σ
j2
2 . . . σjr

r for some nonnegative integers j1, j2, . . . , jr. We clearly have

χ(σ) = χ(σj1
1 )χ(σj2

2 ) . . . χ(σjr
r ) =

σj1
1 (α1)

α1
· σ

j2
2 (α2)

α2
· · · σ

jr
r (αr)

αr
=
σ(α)

α

where the last equality uses the fact that Li is the fixed field of G1 . . . Gi−1Gi+1 . . . Gr. Thus we
have proved the surjectivity and the isomorphism between G∗ and ∆/K∗n is established.

To prove (ii), let us first note that by previous theorem, the map ∆ 7→ K(∆1/n) is surjective.
The remaining assertions will follow if we show that for any subgroups ∆1 and ∆2 of K∗ containing
K∗n and such that the index of K∗n in ∆i is finite, we have:

∆1 ⊆ ∆2 ⇐⇒ K(∆
1/n
1 ) ⊆ K(∆

1/n
2 ).
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The implication “⇒” is of course obvious. Suppose we have K(∆
1/n
1 ) ⊆ K(∆

1/n
2 ). Let b ∈ ∆1.

Consider the group ∆3 generated by ∆2 and b. SinceK(b1/n) ⊆ K(∆
1/n
2 ), it follows thatK(∆

1/n
2 ) =

K(∆
1/n
3 ). By (i) above, |∆2/K

∗n| = |∆3/K
∗n|. Also since ∆2 ⊆ ∆3, this implies that ∆2 = ∆3.

Thus b ∈ ∆2. So we have proved that ∆1 ⊆ ∆2. This completes the proof. 2

Remark: The results in this section are collectively referred to as Kummer Theory (of abelian
extensions). Analogues of the above result also hold in the case of infinite extensions where we drop
the assumption that ∆/K∗n is finite. For the case of infinite extensions, see [9]. In case of abelian
extensions of exponent p of a field of characteristic p, we have results similar to Artin–Schreier
Theorem. As before, see [7] for this.

1.5 Discriminant

Let K be field and L be a ring which contains K as a subfield and which has finite dimension n as a
vector space over K. [In most of the applications, L will be a field extension of K of degree n.] Let
us note that, as remarked earlier, the notions of trace and norm of elements of L w.r.t K make sense
in this general set-up. Given any n elements α1, . . . , αn ∈ L, the discriminant DL/K(α1, . . . , αn)

of α1, . . . , αn w.r.t. L/K is defined to be the determinant of the n × n matrix
(

TrL/K(αiαj)
)

[

1 ≤ i, j ≤ n]. Note that DL/K(α1, . . . , αn) is an element of K.

Lemma. If α1, . . . , αn ∈ L are such that DL/K(α1, . . . , αn) 6= 0, then {α1, . . . , αn} is a K–basis of
L.

Proof: It suffices to show that α1, . . . , αn are linearly independent over K. Suppose
∑n

i=1 ciαi = 0
for some c1, . . . , cn ∈ K. Multiplying the equation by αj and taking the trace, we find that
∑n

i=1 ciTr(αiαj) = 0. By hypothesis, the matrix
(

TrL/K(αiαj)
)

is nonsingular. Hence it follows

that cj = 0 for j = 1, . . . , n. 2

Lemma. If {α1, . . . , αn} and {β1, . . . , βn} are two K–bases of L and αi =
∑n

j=1 aijβj , aij ∈ K,
then we have

DL/K(α1, . . . , αn) = [det(aij)]
2DL/K(β1, . . . , βn).

In particular, since (aij) is nonsingular, DL/K(α1, . . . , αn) = 0 iff DL/K(β1, . . . , βn) = 0.

Proof: For any i, j ∈ {1, . . . , n}, we have

αiαj =

(

n
∑

k=1

aikβk

)

αj =
n
∑

k=1

aikβk

(

n
∑

l=1

ajlβl

)

=
n
∑

k=1

n
∑

l=1

aikajlβkβl.

Taking trace of both sides, and letting A denote the matrix (aij), we see that

(Tr(αiαj)) = At (Tr(βiβj))A

and so the result follows. 2
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Remarks: 1. We shall say that the discriminant of L/K is zero (or nonzero) and write DL/K = 0
(or DL/K 6= 0) if for some K–basis {α1, . . . , αn} of L, DL/K(α1, . . . , αn) is zero (or nonzero). The
last lemma justifies this terminology.

2. Observe that TrL/K(xy) is clearly a symmetric K–bilinear form [which means that the map
(x, y) 7→ TrL/K(xy) of L× L→ K is a symmetric K–bilinear map]. The condition that DL/K 6= 0
is equivalent to saying that this form is non-degenerate. From Linear Algebra, one knows that if
the non-degeneracy condition is satisfied, then for any K–basis {α1, . . . , αn} of L, we can find a
“dual basis” {β1, . . . , βn} of L over K such that TrL/K(αiβj) = δij , where δij is the usual Kronecker
delta which is 1 if i = j and 0 otherwise.

We now prove an important result which is very useful in explicit computations of the discrim-
inant. Here, and henceforth in this section, we shall require L to be a field.

Theorem. If L/K is a finite separable field extension, then its discriminant is nonzero. In fact, if
α is a primitive element (so that L = K(α) and {1, α, α2, . . . , αn−1} is a K–basis of L) and f(X)
is its minimal polynomial, then we have

DL/K(1, α, α2, . . . , αn−1) =
∏

i>j

(

α(i) − α(j)
)2

= (−1)n(n−1)/2 NL/K(f ′(α))

where α(1), α(2), . . . , α(n) denote the conjugates of α w.r.t. L/K and f ′(α) denotes the derivative
of f(X) evaluated at α.

Proof: Since L/K is separable, the trace of any element of L equals the sum of its conjugates
w.r.t. L/K (in some fixed normal extension N of K containing L). Thus if {u1, . . . , un} is a
K–basis of L and ui

(1), ui
(2), . . . , ui

(n) denote the conjugates of ui w.r.t. L/K, then we have

Tr(uiuj) =
∑n

k=1 u
(k)
i u

(k)
j . In other words, the matrix (Tr(uiuj)) equals the product of the matrix

(

u
(j)
i

)

with its transpose. Therefore

DL/K(u1, . . . , un) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u
(1)
1 u

(2)
1 . . . u

(n)
1

u
(1)
2 u

(2)
2 . . . u

(n)
2

...
...

. . .
...

u
(1)
n u

(2)
n . . . u

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

In case u1, u2, . . . , un are 1, α, . . . , α(n−1) respectively, then the determinant above is a Vandermonde
determinant and the RHS becomes
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

α(1) α(2) . . . α(n)

...
...

. . .
...

(

αn−1
)(1) (

αn−1
)(2)

. . .
(

αn−1
)(n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∏

i>j

(

α(i) − α(j)
)2

= (−1)n(n−1)/2
∏

i6=j

(

α(i) − α(j)
)

.

Moreover, we clearly have

f(X) =
n
∏

i=1

(

X − α(i)
)

, f ′(X) =
n
∑

i=1

∏

j 6=i

(

X − α(j)
)

, and NL/K(f ′(α)) =
n
∏

i=1

f ′
(

α(i)
)

.
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Therefore, we obtain the desired formulae. Our first assertion follows from the fact that if L = K(α)
is separable over K, then the conjugates α(1), α(2), . . . , α(n) of α w.r.t L/K are distinct. 2

Corollary. If L/K is a finite separable extension, then the symmetric bilinear form TrL/K(xy) is
nondegenerate. 2

Remark: The converse of the above Theorem, viz., if DL/K 6= 0 then L/K is separable, is also
true. For a proof, see [14].

Remark: Classically, the discriminant of a polynomial, say g(X) = a0X
m + a1X

m−1 + . . . + am,
is defined to be the “resultant” Res(g(X), g′(X)) of the polynomial and its derivative. In turn,
the resultant Res(φ,ψ) of two polynomials, say φ(X) = b0X

r + b1X
r−1 + . . . + br and ψ(X) =

c0X
s + c1X

s−1 + . . . + cs is defined to be the determinant of the (r + s) × (r + s) matrix whose
(i, j)–th entry, for 1 ≤ j ≤ r+ s, is bj−i if 1 ≤ i ≤ r and is cj+r−i if r+1 ≤ i ≤ r+ s. Here, we have
used the convention that bi = 0 if either i < 0 or i > r and cj = 0 if either j < 0 or j > s. The
resultant of two polynomials in one variable X is actually the result of elimination of X between
them. One shows that if φ(X) = b0

∏r
i=1(X − αi) and ψ(X) = c0

∏s
j=1(X − βj), then

Res(φ,ψ) = bs0
∏

i

ψ(αi) = (−1)rscr0
∏

j

φ(βj) = bs0c
r
0

∏

i

∏

j

(αi − βj).

It follows that Res(φ,ψ) = 0 iff either b0 = 0 = c0 or φ and ψ have a common root. In particular,
for a polynomial g(X) as above, assuming a0 6= 0, we have that g(X) has a multiple root iff
its (classical) discriminant DiscXg(X) is zero. Now the above formulae readily imply that in the
situation of the previous Theorem, we have DiscXf(X) = (−1)n(n−1)/2DK(α)/K(1, α, . . . , αn−1),
and thus we see that the classical and the modern notions of discriminant are essentially the same.
For more on resultant et al, see [12].

Now let us review a few basic facts concerning integral extensions in order to prove an important
consequence of the above Corollary.

Let B be a ring4 and A be a subring of B. An element x ∈ B is said to be integral over A if it
satisfies a monic polynomial with coefficients in A. If every element of B is integral over A, then
we say that B is an integral extension of A or that B is integral over A. It can be shown that the
elements of B which are integral over A form a subring, say C, of B. If C = A, we say that A is
integrally closed in B. A domain is called integrally closed or normal if it is integrally closed in its
quotient field. Basic example of an integrally closed ring is ZZ, the ring of integers. (Verify!) If K
is a number field, then the elements of K which are integral over ZZ form an integrally closed ring,
which is denoted by OK and called the ring of integers of K.

Proposition. Let A be a domain with K as its quotient field. Then we have the following.

(i) If an element α (in some extension of K) is algebraic over K, then there exists c ∈ A such
that c 6= 0 and cα is integral over A. Consequently, if {α1, . . . , αn} is a K–basis of L, then
there exists d ∈ A such that d 6= 0 and {dα1, . . . , dαn} is a K–basis of L whose elements are
integral over A.

4here, and hereafter, by a ring we mean a commutative ring with identity.
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(ii) IfA is integrally closed, and f(X), g(X) are monic polynomials inK[X] such that f(X)g(X) ∈
A[X], then both f(X) and g(X) are in A[X].

(iii) If A is integrally closed, L/K is a finite separable extension and α ∈ L is integral over A,
then the coefficients of the minimal polynomial of α over K as well as the field polynomial
of α w.r.t. L/K are in A. In particular, TrL/K(α) ∈ A and NL/K(α) ∈ A, and moreover,
if {α1, . . . , an} is a K–basis of L consisting of elements which are integral over A, then
DL/K(α1, . . . , αn) ∈ A.

Proof: (i) If α satisfies the monic polynomial Xn + a1X
n−1 + . . . + an ∈ K[X], then we can find

a common denominator c ∈ A such that c 6= 0 and ai = ci
c for some ci ∈ A. Multiplying the above

polynomial by cn, we get a monic polynomial in A[X] satisfied by cα.
(ii) The roots of f(X) as well as g(X) (in some extension of K) are integral over A because they
satisfy the monic polynomial f(X)g(X) ∈ A[X]. Now the coefficients of f(X) as well as g(X)
are the elementary symmetric functions of their roots (up to a sign), and therefore these are also
integral over A. But the coefficients are elements of K. It follows that both f(X) and g(X) are in
A[X].
(iii) If α is integral over A, then clearly so is every conjugate of α w.r.t. L/K. Now an argument
similar to that in (ii) above shows that the coefficients of Irr(α,K) as well as the field polynomial
of α w.r.t. L/K are in A. 2

It may be observed that a proof of the FACT in §1.2 follows from (ii) above. We are now ready
to prove the following important result.

Finiteness Theorem: Let A be an integrally closed domain with quotient field K. Assume that
L/K is a finite separable extension of degree n. Let B be the integral closure of A in L. Then B
is contained in a free A–module generated by n elements. In particular, if A is also assumed to be
noetherian, then B is a finite A–module and a noetherian ring.

Proof: In view of (i) in the Proposition above, we can find a K–basis {α1, . . . , αn} of L, which is
contained in B. Let {β1, . . . , βn} be a dual basis, w.r.t. the nondegenerate bilinear form TrL/K(xy),
corresponding to {α1, . . . , αn}. Let x ∈ B. Then x =

∑

j bjβj for some bj ∈ K. Now Tr(αix) =
∑

j bjTr(αiβj) = bi. Moreover, since αix is integral over A, it follows from the Proposition above
that bi ∈ A. Thus B is contained in the A–module generated by β1, . . . , βn. This module is free
since β1, . . . , βn are linearly independent over K. 2

We will derive a useful consequence of this when A is a PID using the following lemma.

Lemma: Let A be a PID and M be a finite A–module generated by n elements. Then every
submodule N of M is generated by n elements.

Proof: We prove by induction on n. If n = 1, then M = Ax, and letting α to be a generator
of the ideal {a ∈ A : ax ∈ N} of A, and y = αx, we see that N = Ay. Assume that n > 1
and that the assertion holds for smaller values of n. Suppose M = Ax1 + . . . + Axn. We let
M1 = Ax2 + . . . Axn and note that, by induction hypothesis, we can find y2, . . . , yn ∈ N such that
N ∩M1 = Ay2 + . . .+Ayn. We have

N/(N ∩M1) ≃ (N +M1)/M1 ⊆M/M1.
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Now M/M1 is clearly isomorphic to a submodule of Ax1, and hence so is M/(N ∩M1). By the
case n = 1, it follows that there exists y1 ∈ N such that ȳ1 = y1 + (N ∩M1) generates N/(N ∩M1)
as an A–module. Consequently, N = Ay1 +Ay2 + . . .+Ayn, as desired. 2

Corollary: Let A,K,L, n,B be as in the Finiteness Theorem. Assume that A is a PID. Then B
is a free A–module of rank n, i.e., there exist n linearly independent elements y1, . . . , yn ∈ B such
that B = Ay1 + . . .+Ayn. 2

The above Corollary applied in the particular case of A = ZZ, shows that the ring of integers
of a number field always has a ZZ–basis. Such a basis is called an integral basis of that number
field. If {α1, . . . , αn} is an integral basis of a number field K, then by (iii) in the Proposition above,
we see that DL/K(α1, . . . , αn) is an integer. Further, if {u1, . . . , un} is any |Q–basis of K which is
contained in OK , then ui =

∑

j aijαj for some n× n nonsingular matrix (aij) with entries in ZZ. If
d = det(aij), then d ∈ ZZ and we have DL/K(u1, . . . , un) = d2DL/K(α1, . . . , αn). If {u1, . . . , un} is
also an integral basis, then clearly d = ±1. It follows that any two integral bases have the same
discriminant, and among all bases of K contained in OK , the discriminant of an integral basis has
the least absolute value.

Remark: The last observation can be used to give an alternate proof of the existence of an integral
basis. Namely, by picking a |Q–basis of K contained in OK whose discriminant has the least possible
absolute value, and showing that this has to be an integral basis. Try this! Or see [5] for a proof
along these lines.

The previous discussion shows that the discriminant of an integral basis of a number field K
depends only on the field K. It is called the (absolute) discriminant of K and is denoted by dK . In
general, if A is an integrally closed domain with quotient field K, L/K is finite separable of degree
n, and B is the integral closure of A in L, then instead of a single number such as dK , one has to
consider the ideal of A generated by the elements DL/K(α1, . . . , αn) as {α1, . . . , αn} vary over all
K–bases of L which are contained in B; this ideal is called the discriminant ideal of B/A or of L/K,
and is denoted DB/A. In case A happens to be a PID (which is often the case in number theoretic
applications), we can replace this ideal by a generator of it, which then plays a role analogous to
dK . Let us also note that we can consider the discriminant ideal for the extension C/k where k
is a PID (in particular, k may be a field) and C is a ring which contains k as a subring and C is
of free module of finite rank n over k. In this case DC/k is defined to be the ideal of k generated
by the elements DC/k(u1, . . . , ur) as {u1, . . . , ur} vary over all k–bases of C. It may be noted that
these two definitions of discriminant ideal are consistent.

We now discuss two examples to illustrate the computation of discriminant and determination
of integral bases.

Example 1: Quadratic Fields.
Let K be a quadratic field and O be its ring of integers. As noted before, we have K = |Q(

√
m),

where m is a squarefree integer. We now attempt to give a more concrete description of O. First,
note that ZZ[

√
m] = {r + s

√
m : r, s ∈ ZZ} ⊆ O. Let x = a + b

√
m ∈ O for some a, b ∈ |Q. Then

Tr(x) = 2a and N(x) = a2 −mb2 (verify!) and both of them must be in ZZ. Since m is squarefree
and a2 −mb2 ∈ ZZ, we see that a ∈ ZZ if and only if b ∈ ZZ. Thus if a /∈ ZZ, then we can find an odd
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integer a1 such that 2a = a1, and relatively prime integers b1 and c1 with c1 > 1 such that b = b1
c1

.
Now

(

a1 = 2a ∈ ZZ and a2 −mb2 ∈ ZZ
)

⇒
(

4|c21a2
1 and c21|4mb21

)

⇒ c1 = 2.

Hence b1 is odd and a2
1 −mb21 ≡ 0(mod 4). Also a1 is odd, and therefore, m ≡ 1(mod 4). It follows

that if m 6≡ 1(mod 4), then a, b ∈ ZZ, and so in this case, O = {a + b
√
m : a, b ∈ ZZ} and {1,√m}

is an integral basis. In the case m ≡ 1(mod 4), the preceding observations imply that

O ⊆
{

a1 + b1
√
m

2
: a1, b1 are integers having the same parity, i.e., a1 ≡ b1(mod 2)

}

and, moreover, 1+
√

m
2 ∈ O since it is a root of X2−X−m−1

4 ; therefore O = ZZ[1+
√

m
2 ] and {1, 1+

√
m

2 }
is an integral basis. We can now compute the discriminant of K as follows.

dK =























det

(

2 0
0 2m

)

= 4m if m ≡ 2, 3(mod 4)

det

(

2 1
1 (1 +m)/2

)

= m if m ≡ 1(mod 4).

It may be remarked that the integer d = dK determines the quadratic field K completely, and the

set {1, d+
√

d
2 } is always an integral basis of K. (Verify!)

Example 2: Cyclotomic Fields.
Let p be an odd prime and ζ = ζp be a primitive pth root of unity. Consider the cyclotomic

field K = |Q(ζ). We know that K/ |Q is a Galois extension and its Galois group is isomorphic to
(ZZ/pZZ)×, which is cyclic of order p− 1. The minimal polynomial of ζ over |Q is given by

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + . . .+X + 1 =

p−1
∏

i=1

(

X − ζi
)

.

We now try to determine OK , the ring of integers of K, and dK , the discriminant of K. Let us
first note that since ζ ∈ OK , the ring ZZ[ζ], which is generated as a ZZ–module by 1, ζ, ζ2, . . . , ζp−1,
is clearly contained in OK . Moreover, we have

DK/ |Q(1, ζ, . . . , ζp−1) = (−1)(p−1)(p−2)/2NK/ |Q(Φ′
p(ζ)) = (−1)(p−1)/2NK/ |Q

(

pζp−1

(ζ − 1)

)

.

Since Φp(X) = Xp−1 +Xp−2 + . . . +X + 1 is the minimal polynomial of ζ over |Q, we clearly see
that NK/ |Q(ζ) = (−1)p−1 · 1 = 1. And since the minimal polynomial of ζ − 1 is

Φp(X + 1) =
(X + 1)p − 1

X
=

p
∑

i=1

(

p

i

)

Xi−1 = Xp−1 + pXp−2 + . . .+

(

p

2

)

X + p,
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we see that N(ζ − 1) = (−1)p−1p = p. Thus N(Φ′
p(ζ)) = pp−1·1

p = pp−2. On the other hand,
N(ζ − 1) is the product of its conjugates, and so we obtain the identity

p = (ζ − 1)(ζ2 − 1) . . . (ζp−1 − 1),

which implies that the ideal (ζ − 1)OK ∩ ZZ contains pZZ. But (ζ − 1) is not a unit in OK (lest
every conjugate (ζi − 1) would be a unit and hence p would be a unit in ZZ). So it follows
that (ζ − 1)OK ∩ ZZ = pZZ. Now suppose x ∈ OK . Then x = c0 + c1ζ + . . . + cp−1ζ

p−1 for
some ci ∈ |Q. We shall now show that ci are, in fact, in ZZ. To this effect, consider (ζ − 1)x =
c0(ζ−1)+ c1(ζ

2− ζ)+ . . .+ cp−1(ζ
p− ζp−1). We have Tr(ζ−1) = −p and Tr(ζi+1− ζi) = 1−1 = 0

for 1 ≤ i < p. Therefore c0p = −Tr((ζ − 1)x) ∈ (ζ − 1)OK ∩ ZZ = pZZ, and so c0 ∈ ZZ. Next,
ζ−1(x−c0) = ζp−1c0 is an element of OK which equals c1 +c2ζ+ . . .+cp−1ζ

p−2. Using the previous
argument, we find that c1 ∈ ZZ. Continuing in this way, we see that ci ∈ ZZ for 0 ≤ i ≤ p − 1. It
follows that OK = ZZ[ζ] and {1, ζ, ζ2, . . . , ζp−1} is an integral basis of OK . As a consequence, we
obtain that

dK = DK/ |Q(1, ζ, ζ2, . . . , ζp−1) = (−1)(p−1)/2pp−2.

Exercise 1.8: Let n = pe where p is a prime and e is a positive integer. Show that the ring
of integers of |Q(ζn) is ZZ[ζn] and the discriminant of |Q(ζn) is equal to (−1)ϕ(p)/2ppe−1(pe−e−1).
Deduce that, in particular, the only prime dividing this discriminant is p and that the sign of this
discriminant is negative only if n = 4 or p ≡ 3(mod 4).

Remark: If n is any integer > 1 and ζ = ζn is a primitive nth root of unity, then it can be shown
that the ring of integers of |Q(ζn) is ZZ[ζn] and the discriminant of |Q(ζn) equals

(−1)ϕ(n)/2 nϕ(n)

∏

p|n pϕ(n)/(p−1)
.

The proof is somewhat difficult. Interested reader may see [13].

Exercise 1.9: If K is either a quadratic field or a cyclotomic field, then show that dK ≡
0 or 1(mod 4).
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Chapter 2

Ramification Theory

In the investigation of Fermat’s Last Theorem and Higher Reciprocity Laws, mathematicians in the
19th century were led to ask if the unique factorization property enjoyed by the integers also holds
in the ring of integers in an algebraic number field. In 1844, E. Kummer showed that this does not
hold, in general. About three years later, he showed that the unique factorization in such rings, or
at least in rings of cyclotomic integers, is possible if numbers are replaced by the so called “ideal
numbers”. Kummer’s work was simplified and furthered by R. Dedekind, whose results were first
published in 1871. 1 The concept of an ideal in a ring was thus born. In effect, Dedekind showed
that the ring of integers of an algebraic number field has the following property:

Every nonzero ideal in this ring factors uniquely as a product of prime ideals.
Integral domains with this property are now known as Dedekind domains (or also Dedekind rings).
Following the ideas of Emmy Noether, it can be proved that a domain A is a Dedekind domain if
and only if it satisfies any of the following equivalent conditions.

(1) A is integrally closed, noetherian, and every nonzero prime ideal of A is maximal.
(2) Every nonzero ideal of A can be factored as a product of prime ideals.
(3) Fractionary ideals of A (i.e., finitely generated A–modules contained in the quotient

field of A), excluding the zero ideal, form a group under multiplication.
Now in the ring of integers of a number field, a prime p of ZZ may not remain a prime. For

instance in the ring of integers of |Q(
√
−1), 2 and 5 are no longer primes but 3 is. However, by the

above result of Kummer–Dedekind, the ideal generated by p in this ring can be uniquely factored
as a product of prime ideals. This phenomenon may be loosely described as ramification. In this
chapter, we shall study some fundamental results concerning this phenomenon.

1Another approach towards understanding and extending the ideas of Kummer was developed by L. Kronecker,
whose work was apparently completed in 1859 but was not published until 1882. For more historical details, see the
article “The Genesis of Ideal Theory” by H. Edwards, published in Archives for History of Exact Sciences, Vol. 23
(1980), and the articles by P. Ribenboim and H. Edwards in “Number Theory Related to Fermat’s Last Theorem”,
Birkhäuser, 1982.
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2.1 Extensions of Primes

Formally, our stating point is the following result.

Extension Theorem. Let A be a Dedekind domain, K its quotient field, L a finite separable
extension of K, and B the integral closure of A in L. Then B is a Dedekind domain.

It may be noted that this theorem follows quickly using the Finiteness Theorem proved in §1.5
and some elementary properties of integral extensions (cf. [14]). Also note that, since ZZ is obviously
a Dedekind domain, this result proves that the ring of integers of a number field is a Dedekind
domain.

In the remainder of this section, we shall assume that A,K,L,B are as in the Extension Theorem
above. We will also let n denote the degree of L/K.

Definition. Let ℘ be a prime ideal of A. A prime ideal P of B is said to lie over ℘ if P ∩A = ℘.

Since B is a Dedekind domain, for any nonzero prime ideal ℘ of A, the extension ℘B of ℘ to B
is a nonzero ideal of B and hence it can be uniquely written as

℘B =
g
∏

i=1

P ei
i

where P1, P2, . . . , Pg are distinct nonzero prime ideals of B and ei are positive integers.

Exercise 2.1: With ℘ and Pi as above, show that a prime ideal P of B lies over ℘ iff P = Pi for
some i. Also show that ℘B ∩ A = ℘ = P ei

i ∩ A. Deduce that B/℘B as well as B/P ei
i B can be

regarded as vector spaces over the field A/℘. Further show that B/Pi is a field extension of A/℘
whose degree is at most n.

Definition. With ℘, Pi, etc. as above, the positive integer ei is called the ramification index of Pi

over ℘ and is denoted by e(Pi/℘); the field degree [B/Pi : A/℘] is called the residue degree (or the
residue class degree) of Pi over ℘ and is denoted by f(Pi/℘). If ei > 1 for some i, then we say that
℘ is ramified in B (or in L). Otherwise, it is said to be unramified. 2 The extension L/K is said
to be unramified if every nonzero prime ideal of A is unramified in L.

Exercise 2.2: Let A,K,L,B and ℘ be as above. Suppose L′ is a finite separable extension of L
and B′ is the integral closures of B in L′. Show that B′ is the integral closure of A in L′. Further,
if P a prime of B lying over ℘ and P ′ a prime of B′ lying over P , then show that P ′ lies over ℘
and the following transitivity relations hold:

e(P ′/℘) = e(P ′/P )e(P/℘) and f(P ′/℘) = f(P ′/P )f(P/℘).

Before proving the main result of this section, let us recall some preliminary results about
Dedekind domains which we shall use in the sequel. If some of these seem unfamiliar, then they
are likely to be trivial, and the reader is encouraged to prove them as exercises.

2To be accurate, we should define ℘ to be ramified if ei > 1 for some i or B/Pi is inseparable over A/℘ for some
i. However, in number theoretic applications, A/℘ will usually be a finite field and so the question of separability of
residue field extensions doesn’t arise.
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1. If S is any multiplicatively closed subset of the Dedekind domain A such that 0 /∈ S, then the
localisation S−1A of A at S is a Dedekind domain. Moreover, the integral closure of S−1A
in L is S−1B.

2. A Dedekind domain having only finitely many prime ideals is a PID.

3. A local Dedekind domain is a PID having a unique nonzero prime ideal.

Theorem. Let A,K,L,B be as above and n = [L : K]. Suppose ℘ is a nonzero prime ideal of A
and we have

℘B =
g
∏

i=1

P ei
i

where P1, P2, . . . , Pg are distinct prime ideals of B and e1, . . . , eg are positive integers. Then, upon
letting fi = [B/Pi : A/℘], we have

g
∑

i=1

eifi = n.

Proof: Let S = A\℘ and A′ = S−1A be the localisation of A at ℘. Then B′ = S−1B is the integral
closure of A′ in L, and ℘B′ = P ′

1
e1 . . . P ′

g
eg , where P ′

i = PiB
′. Moreover, the primes P ′

1, . . . , P
′
g

are distinct, A′/℘A′ ≃ A/℘ and B′/P ′
i ≃ B/Pi. Thus we see that in order to prove the equality

∑

eifi = n, we can replace A,B,℘, Pi by A′, B′, ℘′, P ′
i respectively.

In view of the observations above, we shall assume without loss of generality that A is a local
Dedekind domain with ℘ as its unique nonzero prime ideal. Then, by the Corollary to the Finiteness
Theorem (cf. §1.5), B is a free A–module of rank n = [L : K]. Write B = Ay1 + . . .+Ayn, where
y1, . . . , yn are some elements of B. Now for the vector space B/℘B over A/℘, we clearly have

B/℘B =
n
∑

i=1

(A/℘) ȳi

where ȳi denotes the residue class of yi mod ℘B. Moreover,

∑

āiȳi = 0 ⇒
∑

aiyi ∈ ℘B ⇒ ai ∈ ℘

where ai ∈ A and āi denotes its residue class mod ℘, and the last implication follows since
{y1, . . . , yn} is a free A–basis of B. It follows that ȳ1, . . . , ȳn are linearly independent over A/℘,
and hence

dimA/℘B/℘B = n.

Now we count the same dimension by a different method. To this effect, note that ℘B = P e1
1 P e2

2 . . . P
eg
g

and, since P1, P2, . . . , Pg are distinct maximal ideals, P ei
i and P

ej

j are comaximal3 for all i 6= j.

3Two ideals I and J in a ring R are said to be comaximal if I + J = R.
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Hence, by Chinese Remainder Theorem4, we get an isomorphism (of rings as well as of (A/℘)–vector
spaces)

B/℘B ≃
g
⊕

i=1

B/P ei
i .

Now let us find the dimension of the A/℘–vector space B/P e where P = Pi and e = ei for some i.
First, we note that for any j ≥ 1, ℘P j ⊆ P j+1, and hence P j/P j+1 can be considered as a vector
space over A/℘. We claim that we have an isomorphism

B/P e ≃ B/P ⊕ P/P 2 ⊕ . . .⊕ P e−1/P e.

To see this, use induction on e and the fact that for e > 1, we clearly have

B/P e−1 ≃ B/P e

P e−1/P e
.

Next, we note that B is a Dedekind domain having only finitely many prime ideals (in fact, (0)
and P1, . . . , Pg are the only primes of B), and so B must be a PID. Let t be a generator of P , and
consider the map

B/P → P j/P j+1

induced by the multiplication map x 7→ tjx of B → P j . This map is an A/℘–homomorphism, and
it is clearly bijective. So

dimA/℘(P j/P j+1) = dimA/℘(B/P ) = f(P/℘)

and consequently, from the above direct sum representations, we get

dimA/℘(B/℘B) =
g
∑

i=1

dimA/℘(B/P ei
i ) =

g
∑

i=1

eifi,

which yields the desired identity. This completes the proof. 2

Examples:

1. Consider the quadratic field K = |Q(i), where i denotes a square root of −1. We know that
OK is the ring ZZ[i] of Gaussian integers. If p is a prime ≡ 1(mod 4), then we know (by a classical
result of Fermat) that p can be written as a sum of two squares. Thus there exist a, b ∈ ZZ such
that p = a2 + b2 = (a + bi)(a − bi). It can be seen that (a + bi) and (a − bi) are distinct prime
ideals in OK . Thus for the prime ideal pZZ, we have g = 2, e1 = e2 = 1 and (since

∑

eifi = 2)
f1 = f2 = 1. On the other hand, it is not difficult to see that a prime ≡ 3(mod 4) generates a
prime ideal in ZZ[i] and so for such a prime, we have g = 1 = e1 and f1 = 2. The case of p = 2 is
special. We have 2 = (1 + i)(1 − i). But (1 + i) and (1 − i) differ only by a unit (namely, −i) and

4Recall that (a version of) the Chinese Remainder Theorem states that if I1, . . . , In are pairwise comaximal ideals
in a ring R (i.e., Ii + Ij = R for all i 6= j), then the map x(mod I1I2 · · · In) 7→ (x(mod I1), . . . , x(mod In)) defines
an isomorphism of R/I1I2 . . . In onto the direct sum R/I1 ⊕R/I2 ⊕ . . .⊕R/In. Equivalently, for any x1, . . . , xn ∈ R,
there exists x ∈ R such that x ≡ xj(mod Ij) for 1 ≤ j ≤ n.
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thus they generate the same prime ideal. So 2 is a ramified prime and for it, we have g = 1 = f1

and e1 = 2.
2. During the discussion in §1.5 of the example of pth cyclotomic field K = |Q(ζp), we have

proved the identity
p = (ζ − 1)(ζ2 − 1) . . . (ζp−1 − 1),

and also the fact that (ζ−1)OK ∩ZZ = pZZ. We note that for any integer i not divisible by p, we can
find an integer j such that ij ≡ 1(mod p), and thus (ζ i − 1)/(ζ − 1) = 1+ ζ+ . . .+ ζ i−1 ∈ ZZ[ζ] and
its inverse (ζ−1)/(ζi−1) = (ζij−1)/(ζi−1) is also in ZZ[ζ]. Therefore, the fraction (ζ i−1)/(ζ−1)
is a unit in ZZ[ζ]. Consequently, (ζi −1) and (ζ−1) generate the same ideal, say P . Now the above
identity together with the previous Theorem shows that pZZ[ζ] = P p−1 and P is a prime ideal.
Thus we find that in this case g = 1 = f1 and e1 = p− 1 = [K : |Q].

The last example illustrates the following definition.

Definition. A nonzero prime ideal ℘ of A is said to be totally ramified in L (or in B) if ℘B = Pn

for some prime ideal P of B.

2.2 Kummer’s Theorem

In this section we prove a theorem, due to Kummer, which shows how the decomposition of extended
prime ideals can be “read off” from the factorization of a polynomial, for a certain class of rings.
It may be observed that the hypothesis of this theorem is satisfied in the case of quadratic and
cyclotomic extensions.

We shall use the following notation. Given a domain A and a maximal ideal ℘ in A, we let Ā,
denote the residue field A/℘; for any polynomial p(X) ∈ A[X], by p̄(X) we denote its reduction
mod ℘, i.e., the polynomial in Ā[X] whose coefficients are the ℘–residues of the corresponding
coefficients of p(X).

Theorem. Let A be a Dedekind domain, K its quotient field, L a finite separable extension of K,
and B the integral closure of A in L. Let ℘ be a nonzero prime ideal of A. Assume that B = A[α]
for some α ∈ B. Let f(X) = Irr(α,K). Suppose

f̄(X) =
g
∏

i=1

p̄i(X)ei

is the factorization of f̄(X) into powers of distinct monic irreducible polynomials in Ā[X]. Let
pi(X) be the monic polynomial in A[X] whose reduction mod ℘ is p̄i(X). Then the primes in B
lying over ℘ are precisely given by P1, . . . , Pg where Pi = ℘B + pi(α)B. Moreover,

℘B =
g
∏

i=1

P ei
i

is the factorization of ℘B into powers of distinct primes in B, the ramification index of Pi over ℘ is
the above exponent ei, and the residue degree fi of Pi over ℘ is the degree of the irreducible factor
p̄i(X).
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Proof: Fix some i with 1 ≤ i ≤ g. Let ᾱi be a root of p̄i(X). Consider the maps

A[X] → Ā[X] → Ā[X]/(p̄i(X)) ≃ Ā[ᾱi]

where the first map sends a polynomial in A[X] to its reduction mod ℘, and the second one is the
natural quotient map. The composite of these maps is a homomorphism from A[X] onto Ā[ᾱi],
and its kernel is clearly given by ℘A[X] + pi(X)A[X]. This kernel contains f(X), and thus we get
the induced map of A[X]/(f(X)) onto Ā[ᾱi]. Since B = A[α] ≃ A[X]/(f(X)), we get a map ϕi of
B onto Ā[ᾱi]. Note that kerϕi is equal to ℘B + pi(α)B. Since p̄i(X) is irreducible in Ā[X], kerϕi

is a prime ideal in B which contains ℘. It is therefore a maximal ideal in B lying over ℘. Also Ā
is a field and

[B/kerϕi : A/℘] = dimĀ Ā[ᾱi] = deg p̄i(X).

Now suppose P is any maximal ideal of B lying over ℘. Since

f(X) − p1(X)e1 . . . pg(X)eg ∈ ℘A[X]

and f(α) = 0, we see that
p1(α)e1 . . . pg(α)eg ∈ ℘B ⊆ P

and hence pi(α) ∈ P for some i, and then it follows that P must be equal to ℘B + pi(α)B. This
shows that the primes lying in B over ℘ are precisely P1, . . . , Pg where Pi = ℘B+pi(α)B, and that
the residue degree fi = f(Pi/℘) equals deg p̄i(X). To prove the remaining assertion, let e′i denote
the ramification index of Pi over ℘, so that

℘B = P
e′1
1 . . . P

e′g
g .

Since Pi = ℘B + pi(α)B, we have
P ei

i ⊆ ℘B + pi(α)eiB

and hence, in view of the above observation that p1(α)e1 . . . pg(α)eg ∈ ℘B, we have

P e1
1 . . . P eg

g ⊆ ℘B + p1(α)e1 . . . pg(α)egB ⊆ ℘B = P
e′1
1 . . . P

e′g
g .

Consequently ei ≥ e′i for all i. But we know that

g
∑

i=1

eifi = deg f(X) = [L : K] =
g
∑

i=1

e′ifi.

Therefore ei = e′i for all i. This completes the proof. 2

2.3 Dedekind’s Discriminant Theorem

Suppose we have a number field K whose ring of integers OK is of the form ZZ[α]. Let f(X) be
the minimal polynomial of α over |Q and p be a rational prime5. Let f̄(X) ∈ ZZ/pZZ[X] denote the

5It is a common practice in Number Theory to call the usual primes as rational primes (and the usual integers as
rational integers) so as to distinguish from primes (and integers) in the rings of integers of algebraic number fields.
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reduction of f(X) mod pZZ. Then, by Kummer’s Theorem, p ramifies in K iff f̄(X) has a multiple
root. Now in view of the Remark preceding Hilbert Theorem 90 in §1.3, the polynomial f̄(X) has
a multiple root iff its (classical) discriminant is zero (as an element of ZZ/pZZ). The last condition
means that DiscXf(X) = ±dK is divisible by p. Thus we find that in this situation we have:

p ramifies in K iff p divides dK .

In fact, this turns out to be true even in a more general situation. This section is devoted to a
proof of this fundamental result, which is due to Dedekind.

Theorem. Let A be a Dedekind domain and K be its quotient field. Let L be a finite separable
extension of K of degree n, and B be the integral closure of A in L. Let ℘ be a nonzero prime
ideal of A. Assume that the field A/℘ is perfect (which means that every algebraic extension of
this field is separable)6. Then we have:

℘ ramifies in L⇐⇒ ℘ ⊇ DB/A.

In particular, if the above assumption on the residue field is satisfied by every nonzero prime ideal
of A, then there are only a finitely many prime ideals in A which ramify in L.

Proof: If we consider the localisations A′ = S−1A and B′ = S−1B where S = A \ ℘, then it is
readily seen that DB′/A′ = DB/AA

′ and ℘ ramifies in L iff ℘′ = ℘A′ ramifies in L. Thus to prove
the first assertion, we can and will assume without loss of generality that A is a local Dedekind
domain and ℘ is its unique maximal ideal.

Let ℘B = P e1
1 P e2

2 · · ·P eg
g , where P1, P2, . . . , Pg are distinct prime ideals of B and e1, e2, . . . , eg

are their ramification indices. As noted in the proof of the Theorem in §2.1, we have ℘B ∩ A =
℘ = P ei

i ∩A, and we have an isomorphism of A/℘–vector spaces

B/℘B ≃
g
⊕

i=1

B/P ei
i .

Let us set Ā = A/℘ and B̄ = B/℘B. For x ∈ B, let x̄ denote the image of x in B̄. Note that we
clearly have

TrB̄/Ā(x̄) = TrL/K(x) for all x ∈ B.

Now if {α1, . . . , αn} is any K–basis of L contained in B such that {ᾱ1, . . . , ᾱn} is an Ā–basis of B̄,
then using the above identity for traces, we see that

DB̄/Ā(ᾱ1, . . . , ᾱn) = DL/K(α1, . . . , αn). (1)

Next, we show that if B̄ ≃ B̄1 ⊕ . . . ⊕ B̄g, where the isomorphism is of Ā–vector spaces, then we
have

DB̄/Ā =
g
∏

i=1

DB̄i/Ā. (2)

6This assumption would always be satisfied in number theoretic applications since A/℘ would usually be a finite
field.
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To see the above identity, it suffices to consider the case when g = 2 since the general case would
follow by induction on g. For convenience of notation, let us denote the element of B corresponding
to (u, 0) ∈ B̄1 ⊕ B̄2 by u itself and, similarly, the element of B corresponding to (0, v) ∈ B̄1 ⊕ B̄2

by v itself. It is clear that we can choose Ā–bases {u1, . . . , ur} and {v1, . . . , vs} of B̄1 and B̄2

respectively such that {u1, . . . , ur, v1, . . . , vs} is an Ā–basis of B̄. In view of the above convention,
we see that uivj = 0. Thus TrB̄/Ā(uivj) = 0, and so

DB̄/Ā(u1, . . . , ur, v1, . . . , vs) =

∣

∣

∣

∣

∣

∣

∣

Tr(uiui′) | 0
. . . . . . | . . . . . .

0 | Tr(vjvj′)

∣

∣

∣

∣

∣

∣

∣

= DB̄1/Ā(u1, . . . , ur)DB̄2/Ā(v1, . . . , vs).

Since Ā is a field and the non-vanishing of any of the above discriminants is independent of the
choice of the corresponding Ā–bases, the desired equality of discriminant ideals follows. Thus we
have proved (2).

Now suppose ℘ is a ramified prime. Then ei > 1 for some i and thus the ring B/P ei
i contains

a nonzero nilpotent element (which may be taken to be any element of P ei−1
i \ P ei

i ), and hence
so does B̄. Let β ∈ B be such that β̄ ∈ B̄ is a nonzero nilpotent element. Extend {β̄} to an
Ā–basis {β̄1, . . . , β̄n} of B̄ with β1 = β. Since β̄1 is nilpotent, so is β̄1β̄j for 1 ≤ j ≤ n. Hence
Tr(β̄1β̄j) = 0 for 1 ≤ j ≤ n [because if u ∈ B̄ is nilpotent, then 0 is clearly the only eigenvalue
of the linear transformation x 7→ ux of B̄ → B̄ and Tr(u) equals the sum of all eigenvalues of
this linear transformation]. Consequently, DB̄/Ā(β̄1, . . . , β̄n) = 0, and so DB̄/Ā is the zero ideal.
Thus if {α1, . . . , αn} is an A–basis of B (which exists by Finiteness Theorem), then {ᾱ1, . . . , ᾱn}
is an Ā–basis of B̄ and in view of (1), we see that DL/K(α1, . . . , αn) ∈ ℘B. It follows that
DB/A ⊆ ℘B ∩A = ℘.

To prove the converse, assume that ℘ ⊇ DB/A. Suppose, if possible, ℘ is unramified. Then
ei = 1 for all i and thus B̄ is isomorphic (as an Ā–vector space) to the direct sum of the fields
B̄i = B/Pi. Since Ā is perfect, the extension B̄i/Ā is separable, and therefore DB̄i/Ā 6= 0, for
1 ≤ i ≤ g. Thus by (2), we have DB̄/Ā 6= 0. But, in view of (1), this contradicts the assumption
that DB/A ⊆ ℘. It follows that ℘ must be a ramified prime.

The final assertion concerning the number of ramified prime is an immediate consequence of the
characterization proved above and the fact that DB/A is a nonzero ideal of the Dedekind domain
A. 2

Corollary. Let K be a number field. A rational prime p ramifies in K iff p divides dK . In
particular, only finitely many primes of ZZ ramify in K. 2

Remark: A related result in connection with the above Corollary is that if K is any number field
other than |Q, then |dK | > 1. Consequently, there exists at least one rational prime which ramifies
in K. The proof of this result, due to Minkowski, is rather involved. See [8] for details.

2.4 Ramification in Galois Extensions

In the case of Galois extensions, the fundamental identity
∑

eifi = n, which was proved in §2.1,
takes a particularly simple form. This short section is devoted to a proof of this simpler identity.
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The key idea in the proof is the “norm argument” in the Lemma below.

Lemma. Let A be an integrally closed domain, K its quotient field, L a Galois extension of K,
B the integral closure of A, and ℘ a prime ideal of A. Then the primes of B lying over ℘ are
conjugates of each other, i.e., for any prime ideals P,Q of B such that P ∩A = ℘ = Q∩A, we have
Q = σ(P ) for some σ ∈ Gal(L/K). In particular, the number of prime ideals of B lying over ℘ is
finite, and , in fact, ≤ [L : K].

Proof: We use a similar reduction as in the proof of the Theorem in §2.1. Thus we note that if
S = A \℘, then the integral closure of A′ = S−1A in L is B′ = S−1B, and PB′ and QB′ are prime
ideals of B′ lying over ℘A′. Moreover if QB′ = σ(PB′), for some σ ∈ Gal(L/K), then we clearly
have

Q = QB′ ∩B = σ(PB′) ∩B = σ(PB′) ∩ σ(B) = σ(PB′ ∩B) = σ(P ).

So we assume without loss of generality that ℘ is a maximal ideal of A. Now since B/A is integral, Q
and P are maximal ideals of B. Suppose Q 6= σ(P ) for any σ ∈ Gal(L/K). By Chinese Remainder
Theorem, we can find some x ∈ B such that

x ≡ 0(modQ) and x ≡ 1(modσ(P )) ∀σ ∈ Gal(L/K).

Consider the norm
NL/K(x) =

∏

σ∈Gal(L/K)

σ(x).

By the Proposition in §1.5, this lies in A and hence in Q ∩ A = ℘. Now P is a prime ideal of B
containing ℘, and thus it follows that σ(x) ∈ P for some σ ∈ Gal(L/K). But this contradicts the
choice of x. 2

Corollary: Let A be an integrally closed domain, K its quotient field, L a finite separable extension
of K, B the integral closure of A in L, and ℘ a prime ideal in A. Then there exists only a finite
number of prime ideals in B lying over ℘.

Proof: Let L′ be a least Galois extension of K containing L and B′ be the integral closure of A in
L′. Suppose P and Q are distinct prime ideals in B lying over ℘. Since B′ is integral over B, there
exist prime ideals P ′ and Q′ in B′ lying over P and Q respectively. Clearly P ′ and Q′ are distinct
and they both lie over ℘. Hence, by the above Lemma, we get the desired result. 2

Theorem. Let A be a Dedekind domain, K its quotient field, L a Galois extension of K, B the
integral closure of A, and ℘ a nonzero prime ideal of A. Then for the primes of B lying over ℘, the
ramification indices are the same and the residue degrees are the same. In other words, we have

℘B = (P1P2 . . . Pg)
e

where P1, . . . , Pg are distinct prime ideals of B, and f(P1/℘) = . . . = f(Pg/℘) (= f say). Moreover,
if we let n = [L : K], then we have

efg = n.

Proof: Let ℘B = P e1
1 . . . P

eg
g , where P1, . . . , Pg are distinct prime ideals of B, and let fi = f(Pi/℘)

for 1 ≤ i ≤ g. For any σ ∈ Gal(L/K), we clearly have σ(℘) = ℘ and σ(B) = B, and hence
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σ(℘B) = ℘B. By the above Lemma, for any i with 1 ≤ i ≤ g, there exists σ ∈ Gal(L/K) such that
σ(Pi) = P1, and consequently, B/Pi ≃ σ(B)/σ(Pi) = B/P1. Thus ei = e1 and fi = f1. Since we
have already shown that

∑g
i=1 eifi = n, the theorem follows. 2

Remark: With the notation and assumptions as in the above Theorem, we see that the ramification
index e(P/℘) of a prime P of B lying over ℘ is independent of the choice of P . Thus it is sometimes
denoted by e℘. Likewise, in the case of Galois extensions, the notation f℘ and g℘ is sometimes
used.

2.5 Decomposition and Inertia Groups

The identity efg = n, proved in the last section, is a starting point of a beautiful theory of
ramification of primes developed by Hilbert. Some basic aspects of this theory will be discussed in
this section. In order to avoid repetition, we state below the notations and assumptions that will
be used throughout this section.

Notation and Assumption: Let A be a Dedekind domain and K be its quotient field. Let L
be a Galois extension of K and B be the integral closure of A in L. Let G denote the Galois group
of L/K. Let ℘ be a nonzero prime ideal of A. Let Ā = A/℘. Assume that Ā is a perfect field.7

Let e = e℘, f = f℘. and g = g℘.

Observe that |G| = [L : K] = efg. Also note that if P is any prime of B lying over ℘, then the
set primes of B lying over ℘ is precisely {σ(P ) : σ ∈ Gal(L/K)}. Thus the Galois group G acts
naturally on this set of g primes and the action is transitive.

Definition. Given any prime ideal P of B lying over ℘, the decomposition group of P w.r.t. L/K is
defined to be the subgroup of G consisting of automorphisms σ such that σ(P ) = P . It is denoted
by DP (L/K) or simply by DP or D if the reference to L/K and/or P is clear from the context.
The fixed field of DP (L/K) is called the decomposition field of P w.r.t. L/K, and is denoted by
KD.

Note that DP (L/K) is the stabilizer of P for the natural action of G on the set of primes of B
lying over ℘. Hence |DP (L/K)| = |G|/g = ef . Thus [L : KD] = ef and [KD : K] = g. Also note
that if Q is any prime ideal of B lying over ℘, then Q = σ(P ) for some σ ∈ G, and we have

τ ∈ DQ(L/K) ⇔ τ(σ(P )) = σ(P ) ⇔ σ−1τσ ∈ DP (L/K)

and so DQ = σDPσ
−1. Thus if DP is a normal subgroup of G (which, for example, is the case if

L/K is abelian), then it depends only on ℘ and it may be denoted by D℘.

Lemma. Let P be a prime ideal of B lying over ℘, and D = DP (L/K) be its decomposition group.
Let AD = B ∩KD be the integral closure of A in KD and let PD = P ∩ AD. Then P is the only
prime of B lying over PD, and we have

PDB = P e and f(P/PD) = f.

7In number theoretic applications, Ā will usually be a finite field and thus this assumption is valid.
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If D is a normal subgroup of G, then KD/K is a Galois extension and ℘AD is a product of g
distinct and conjugate primes of KD with residue degree 1.

Proof: Since L/KD is Galois, the set of primes of B lying over PD is given by {σ(P ) : σ ∈
Gal(L/KD)} = {P}. Further, if e′ = e(P/PD) and f ′ = f(P/PD), then we know from Exercise 2.2
that e′|e and f ′|f . On the other hand, e′f ′ = [L : KD] = ef . Hence e′ = e and f ′ = f . This proves
our first assertion, and also it shows that e(PD/℘) = 1 and f(PD/℘) = 1. If D is normal, then
clearly KD/K is Galois and e(P ′/℘) = 1 = f(P ′/℘), for any prime P ′ of AD lying over ℘. Since
[KD : K] = g, we obtain the desired result. 2

For the remainder of this section, let us fix a prime P of B lying over ℘ and let D = DP (L/K).
Let B̄ = B/P . Then B̄ is a field extension of Ā of degree f . By our assumption, B̄/Ā is separable.
Now if σ ∈ D, then σ clearly induces an Ā–automorphism σ̄ of B̄. We thus obtain a homomorphism

ǫ : D → Gal(B̄/Ā) defined by ǫ(σ) = σ̄.

The kernel of ǫ is called the inertia group of P w.r.t. L/K and is denoted by TP (L/K) or simply
by TP or T . Clearly, T is a normal subgroup of D. Note that the inertia group can be alternately
defined as follows.

TP (L/K) = {σ ∈ G : σ(x) = x(mod P ) for all x ∈ B}.

The fixed field of T is called the inertia field of P w.r.t. L/K and is denoted by KT . Observe
that K ⊂ KD ⊂ KT ⊂ L, and KT /KD is a Galois extension with Galois group D/T . A better
description of this group and its order is given by the following lemma.

Lemma. The residue extension B̄/Ā is normal, and the homomorphism ǫ : D → Gal(B̄/Ā) defines
an isomorphism of D/T onto Gal(B̄/Ā).

Proof. Let ᾱ ∈ B be any element, and α ∈ B be its representative. Let f(X) be the minimal
polynomial of α over K. Since α ∈ B, f(X) ∈ A[X]. Moreover, since L/K is normal, L and hence
B contains all the roots of f(X). Now f(α) = 0 and thus Irr(ᾱ, Ā) divides f̄(X), the reduction of
f(X) mod ℘. It follows that B̄ contains all the roots of Irr(ᾱ, Ā). Thus B̄/Ā is normal.

Next, we can find θ̄ ∈ B̄ such that B̄ = Ā(θ̄) because B̄/Ā is a finite separable extension. Let
θ ∈ B be a representative of B. By Chinese Remainder Theorem, we can find some β ∈ B such
that for any σ ∈ G we have

β ≡ θ(mod σ(P )) for σ ∈ D and β ≡ 0(mod σ(P )) for σ /∈ D.

Clearly β̄ = θ̄ and thus B̄ = Ā(β̄). Let γ ∈ Gal(B̄/Ā) be any element. As in the previous paragraph,
we see that γ(β̄) is the image of some conjugate of β. Thus γ(β̄) = σ(β) for some σ ∈ G. If σ /∈ D,
then by the choice of β we have σ(β) ∈ P , i.e., γ(β) = σ(β) = 0̄, which is impossible. It follows
that γ = σ̄ = ǫ(σ). This proves the Theorem. 2

Corollary. We have |T | = e = [L : KT ] and [KT : KD] = f . Further, if AT = B ∩ KT is the
integral closure of A in KT and PT = P ∩AT , then we have

PDAT = PT with f(PT /PD) = f and PTB = P e with f(P/PT ) = 1.
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In particular, we see that ℘ is unramified in KT .

Proof: Since |D| = ef and [B̄ : Ā] = f , it follows from the previous lemma that |T | = e = [L :
KT ] and [KT : KD] = f . Now if we consider the extension L/KT and the prime P lying over
PT (i.e., replace K,A,℘ by KT , AT , PT respectively), then we have DP (L/KT ) = TP (L/KT ) =
Gal(L/KT ) = T and the above results show that e(P/PT ) = e and e(P/PT )f(P/PT ) = e. The
desired result follows from this using the transitivity of ramification indices and residue degrees. 2

Exercise 2.3: Let E be a subfield of L containing K and AE = B ∩ E be the integral closure
of A in E. Let PE = P ∩ AE. Show that DP (L/E) = DP (L/K) ∩ Gal(L/E) and TP (L/E) =
TP (L/K) ∩ Gal(L/E).

Exercise 2.4: Let H be the subgroup of G generated by the subgroups TP (L/K) as P varies over
all nonzero prime ideals of B. Let E be the fixed field of H. Show that E/K is an unramified
extension.

Exercise 2.5∗: For n ≥ 0, define Gn = {σ ∈ G : σ(x) ≡ x(mod Pn+1)}. Show that Gn are
subgroups of G with G0 = T . Prove that Gn = {1} for all sufficiently large n. Also show that
G0/G1 is isomorphic to a subgroup of the multiplicative group of nonzero elements of B̄ = B/P ,
and therefore it is cyclic. Further show that for n ≥ 1, Gn/Gn+1 is isomorphic to a subgroup of
the additive group B̄. Deduce that the inertia group T is a solvable group.

Remark: Let K℘ be the completion of K w.r.t. the valuation of K corresponding to ℘ (whose
valuation ring is A℘), and LP be the completion of L w.r.t. the valuation of L corresponding to P .
Then we know that LP can be regarded as a field extension ofK℘. SinceK℘ is complete, there is only
one prime of LP lying over the prime (or the corresponding valuation) of K℘. And since the residue
fields of these primes in the completions coincide with the residue fields Ā and B̄ respectively, it
follows that the residue degrees are the same. Hence using the Theorem proved in the last section, we
see that the ramification index corresponding to LP/K℘ is precisely e, and we have ef = [LP : K℘].
Moreover, every element of the decomposition group D = DP (L/K) extends by continuity to
an K℘–automorphism of LP , and since |D| = ef , it follows that Gal(LP /K℘) ≃ DP (L/K). In
particular, if P is unramified, then T = {1} and thus D is isomorphic to Gal(B̄/Ā). Furthermore,
if Ā is finite (which is the case if K is a number field), then Gal(B̄/Ā) is cyclic, and thus whenever
P is unramified, we have Gal(LP /K℘) ≃ Gal(B̄/Ā) ≃ Gal(L̄P /K̄℘), where L̄P and K̄℘ denote the
residue fields of (the valuation rings of) LP and K℘ respectively, so that the local Galois group
Gal(LP /K℘) is cyclic. For more on these matters, see [11]

2.6 Quadratic and Cyclotomic Extensions

In this section we shall consider the examples of quadratic and cyclotomic fields and try to determine
explicitly the splitting of rational primes when extended to these number fields.

Example 1: Quadratic Fields
LetK be a quadratic field. As noted earlier, we haveK = |Q(

√
m), for some uniquely determined
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squarefree integer m (with m 6= 0, 1). Let O be the ring of integers of K. We have also seen that

O =

{

ZZ[
√
m] if m ≡ 2, 3(mod 4)

ZZ[1+
√

m
2 ] if m ≡ 1(mod 4).

In particular, we see that the hypothesis of Kummer’s Theorem (cf. §2.2) is satisfied.
Now let p be a rational prime. We are interested in the decomposition of the extended ideal pO.

The formula
∑g

i=1 eifi = n shows that g as well as ei, fi can only be 1 or 2, and that the situation
has to be one of the following.

(i) g = 2, e1 = f1 = e2 = f2 = 1 so that pO = P1P2 for some distinct primes P1, P2 of O
with O/Pi ≃ ZZ/pZZ. In this case, we say that p is a decomposed (or split) prime, or that p
decomposes (or splits) in O.

(ii) g = 1, e1 = 2, f1 = 1 so that pO = P 2 for some prime P of O with O/P ≃ ZZ/pZZ. In this
case p is a ramified prime.

(iii) g = 1, e1 = 1, f1 = 2 so that pO = P for some prime P of O with [O/P : ZZ/pZZ] = 2. In
this case, we say that p is an inertial prime.

Now let’s figure out which one is which. First we consider

Case 1: m 6≡ 1(mod 4), i.e., m ≡ 2, 3(mod 4).
In this case, O = ZZ[

√
m] and f(X) = X2 − m is the minimal polynomial of

√
m over |Q.

By Kummer’s Theorem, the factorization of pO is determined by the factorization of f̄(X), the
reduction of f(X) modulo p. If p|m or p = 2, then f̄(X) = X2 or (X − 1)2, and hence (p)O = P 2,
with P = (p,

√
m) or P = (p, 1 −√

m), and p is ramified. If p 6 |m and p 6= 2, then f̄(X) is either
irreducible in (ZZ/pZZ)[X] or has two distinct roots in ZZ/pZZ (why?). The latter is the case if and
only if m is a square mod p, i.e., m ≡ x2(mod p) for some integer x. So we know which primes are
decomposed and which are inertial. The result can be conveniently expressed using the Legendre
symbol, which is defined thus.8

(

m

p

)

=











1 if p 6 |m and m is a square mod p
−1 if p 6 |m and m is not a square mod p
0 if p|m.

What we have shown so far is that if m ≡ 2, 3(mod 4), then

the rational prime p is



















decomposed if p 6= 2 and
(

m
p

)

= 1

ramified if p = 2 or
(

m
p

)

= 0

inertial if p 6= 2 and
(

m
p

)

= −1.

8It may be noted that the Legendre symbol can be effectively computed using its basic properties, viz.,
(

ab
p

)

=
(

a
p

) (

b
p

)

,
(

a
p

)

=
(

b
p

)

if a ≡ b(mod p), and the Gauss’ Law of Quadratic Reciprocity which states that for any odd

prime p, we have
(

−1
p

)

= (−1)
p−1

2 ,
(

2
p

)

= (−1)
p
2
−1

8 , and last but not the least,
(

p
q

) (

q
p

)

= (−1)
p−1

2

q−1

2 , where q is

any odd prime.
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Now let’s consider

Case 2: m ≡ 1(mod 4).

In this case, O = ZZ
[

1+
√

m
2

]

and f(X) = X2 −X − m−1
4 is the minimal polynomial of 1+

√
m

2

over |Q. If p = 2, then f̄(X) has a root mod p iff m−1
4 ≡ 0(mod 2), i.e., m ≡ 1(mod 8) [because

x2 − x = x(x − 1) ≡ 0(mod 2) for any x ∈ ZZ], and in this case, each of the two distinct elements
in ZZ/2ZZ is a root of f̄(X), which implies that 2 is a decomposed prime. If p = 2 and m 6≡ 1(mod
8), then f̄(X) has to be irreducible in (ZZ/2ZZ)[X], and so 2 is an inertial prime. Now assume that

p 6= 2. Then the “roots” 1±√
m

2 of X2 −X − m−1
4 will exist in ZZ/pZZ if and only if

√
m exists in

ZZ/pZZ, or equivalently, m is a square mod p. Moreover, f̄(X) has multiple roots in ZZ/pZZ iff p|m.
(Verify!) Thus, by Kummer’s Theorem, we find that p is ramified iff p|m, and if p 6= 2 and p 6 |m,
then p is decomposed or inertial according as m is or is not a square mod p. So if m ≡ 1(mod 4),
then

p is



















decomposed if p = 2 and m ≡ 1(mod 8) or if p 6= 2 and
(

m
p

)

= 1

ramified if p|m, i.e.,
(

m
p

)

= 0

inertial if p = 2 and m 6≡ 1(mod 8) or if p 6= 2 and
(

m
p

)

= −1.

Recall that the discriminant of the quadratic field K = |Q(
√
m) is given by

dK =

{

4m if m ≡ 2, 3(mod 4)
m if m ≡ 1(mod 4).

Now the above observations concerning ramified primes in K can be expressed in a unified manner
as follows.

p is a ramified prime in K ⇔ p|dK .

This verifies the theorem of Dedekind, which was proved in §2.3.
Exercise 2.6 (Fermat’s Two Square Theorem): Show that the ring of integers of the quadratic field
|Q(i), where i2 = −1, is the ring ZZ[i]. 9 Show that the decomposed primes are precisely the primes
of the form 4k + 1. Use this and the fact that ZZ[i] is a PID to show that any prime of the form
4k+ 1 can be written as a sum of two squares. Further, use the fact that primes of the form 4k+ 3
are inertial in ZZ[i] to show that any positive integer n, with n = pe1

1 . . . peh
h where p1, . . . , ph are

distinct primes and e1, . . . , eh are positive integers, can be written as a sum of two squares if and
only if ei is even whenever pi ≡ 3(mod 4).

Example 2: Cyclotomic Fields
Let p be an odd prime number and ζ be a primitive p–th root of unity. Let O be the ring of

integers of the cyclotomic field K = |Q(ζ). We have noted earlier that the prime p is totally ramified
in K. In fact, we have (p)O = P p−1 where P is the prime ideal of O generated by (ζ − 1). We

also know that dK = (−1)
p−1
2 pp−2. Hence p is the only ramified prime. (This fact can also be seen

from Kummer’s Theorem which is applicable since O = ZZ[ζ]). Let q be a rational prime different

9Elements of ZZ[i] are often called the Gaussian integers. These were first studied by C. F. Gauss in his work on
biquadratic reciprocity.
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from p. Then qO is a product of g distinct prime ideals of O. Let Q be a prime ideal of O lying
over qZZ, and let f = [O/Q : IFq] = (p − 1)/g, where IFq = ZZ/qZZ. Then f (and hence g) can be
determined as follows. If ζ̄ denotes the image of ζ in the field Ō = O/Q, then we have Ō = IFq(ζ̄)
and ζ̄p = 1. Thus ζ̄ is a nonzero element of Ō∗, which is a multiplicative group of order qf − 1. So
it follows that p divides qf − 1, i.e., qf ≡ 1(mod p). Moreover, if for some l < f , ql ≡ 1(mod p),
then ζ̄ would be in a field of ql elements and hence this field have to contain Ō = IFq(ζ̄), which is a
contradiction. Therefore f is the least positive integer such that qf ≡ 1(mod p). In this way f and
hence g is explicitly determined. The prime ideals lying above qZZ can be determined by considering
the factorization of Xp − 1 in ZZ/qZZ[X] by using Kummer’s Theorem. For example, if p = 7 and
q = 5, then we find that f = 6 and g = 1; moreover, Q = (5, 1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = (5)
is the only prime ideal of O lying over 5ZZ.

Exercise 2.7: Let p, ζ and K be as above. Let H be the unique subgroup of index 2 in the cyclic
group Gal( |Q(ζ)/ |Q). The fixed field of H, say E, is a quadratic field. Show that E = |Q(

√
p∗) where

p∗ = (−1)
p−1
2 p. Let q be an odd prime different from p, f be as above, and let g = p−1

f . Show that

q decomposes in E iff
(

p∗

q

)

= 1. Next, if q decomposes in E, then show that g is even and
(

q
p

)

= 1.

[You may use the elementary fact that
(

a
p

)

≡ a
p−1
2 (mod p).] Conversely, if g is even, then show that

the decomposition field of q contains E, and so q decomposes in E. Further, if g is odd, then use

the minimality of f to show that
(

q
p

)

= −1. Deduce from all this that
(

p
q

)(

q
p

)

= (−1)
(p−1)

2
(q−1)

2 .
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