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Introduction

In the first two sections, we will discuss an extension of the notions of associated primes and
primary decomposition to the case of modules. The classical case of ideals I in (noetherian)
rings A corresponds, in this general set-up, to the case of A–modules A/I; remembering
this may be helpful in understanding some of the concepts and results below. Later, in
Section 3, we describe the notion of graded rings and graded modules and prove some basic
results concerning them. Finally, in Section 4 we discuss some special properties of primary
decomposition in the case of graded modules over graded rings.

1. Associated Primes

Taking into consideration the modern viewpoint that the notion of associated primes is
more fundamental than primary decomposition, we shall derive in this section basic results
about associated primes without mentioning primary submodules or primary decomposition.

Throughout this section, we let A denote a ring and M an A–module. By Spec A we shall
denote the set of all prime ideals of A; Spec A is sometimes called the spectrum1 of A.

Definition: A prime ideal p of A is called an associated prime of M if p = (0 : x) for some
x ∈ M . The set of all associated primes of M is denoted by AssA(M), or simply by Ass(M).
Minimal elements of Ass(M) are called the minimal primes of M , and the remaining elements
of Ass(M) are called the embedded primes of M .

Note that if p = (0 : x) ∈ Ass(M), then the map a 7→ ax of A → M defines an embedding
(i.e., an injective A–module homomorphism) A/p ↪→ M . Conversely, if for p ∈ Spec A, we
have an embedding A/p ↪→ M , then clearly p ∈ Ass(M). It may also be noted that if M is
isomorphic to some A–module M ′, then Ass(M) = Ass(M ′).

(1.1) Lemma. Any maximal element of {(0 : y) : y ∈ M, y 6= 0} is a prime ideal. In
particular, if A is noetherian, then Ass(M) 6= ∅ iff M 6= 0.

Proof: Suppose (0 : x) is a maximal element of {(0 : y) : y ∈ M, y 6= 0}. Then (0 : x) 6= A
since x 6= 0. Moreover, if a, b ∈ A are such that ab ∈ (0 : x) and a /∈ (0 : x), then ax 6= 0 and
b ∈ (0 : ax) ⊆ (0 : x). Since (0 : x) is maximal, (0 : ax) = (0 : x). Thus b ∈ (0 : x). Thus
(0 : x) is a prime ideal. The last assertion is evident. �

Definition: An element a ∈ A is said to be a zerodivisor of M if (0 : a)M 6= 0, i.e., if ax = 0
for some x ∈ M with x 6= 0. The set of all zerodivisors of M is denoted by Z(M).

(1.2) Exercise: Check that the above definition of Z(M) is consistent with that in (2.4) of

[Gh]. Show that if A is noetherian, then Z(M) =
⋃

p∈Ass(M)

p.

1For an explanation of this terminology, see the article [Ta] by Taylor.
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(1.3) Lemma. For any submodule N of M , Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪ Ass(M/N).
More generally, if 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M is any chain of submodules of M , then
Ass(M) ⊆ ∪n

i=1Ass(Mi/Mi−1).

Proof: The inclusion Ass(N) ⊆ Ass(M) is obvious. Let x ∈ M be such that (0 : x) ∈ Ass(M).
If (0 : x) /∈ Ass(N), then we claim that (0 : x) = (0 : x̄) ∈ Ass(M/N), where x̄ denotes
the image of x in M/N . To see this, note that (0 : x) ⊆ (0 : x̄) and if a ∈ A is such
that ax̄ = 0 6= ax, then ax ∈ N and a /∈ (0 : x), and since (0 : x) is prime, we have
b ∈ (0 : ax) ⇔ ba ∈ (0 : x) ⇔ b ∈ (0 : x); consequently, (0 : x) = (0 : ax) ∈ Ass(N), which
is a contradiction. Thus Ass(M) ⊆ Ass(N)∪Ass(M/N). The last assertion follows from this
by induction on n. �

The inclusions Ass(N) ⊆ Ass(M) and Ass(M) ⊆ Ass(N)∪Ass(M/N) in the above Lemma
are, in general, proper. This may be seen, for instance, when A is a domain and M = A by
taking N = 0 and N = a nonzero prime ideal of A, respectively.

(1.4) Corollary. Suppose M1, . . . ,Mh are A–modules such that M ' ⊕h
i=1Mi. Then

Ass(M) = ∪h
i=1Ass(Mi).

Proof: Follows using induction on h by noting that the case of h = 2 is a consequence of the
first assertion in (1.3). �

Example: Let G be a finite abelian group of order n. Suppose n = pe1
1 . . . peh

h , where p1, . . . , ph

are distinct prime numbers and e1, . . . , eh are positive integers. Then G is a Z–module, and
the pi–Sylow subgroups Pi, 1 ≤ i ≤ h, are Z–submodules of G such that G ' P1 ⊕ · · · ⊕ Ph.
Clearly, Ass(Pi) = piZ [indeed, if y is any nonzero element of Pi of order pe

i , then elements
of (0 : y) are multiples of pe

i , and if x = pe−1
i y, then (0 : x) = piZ]. Thus by (1.4), Ass(G) =

{p1Z, . . . , phZ}. More generally, if M is a finitely generated abelian group, then M = Zr ⊕ T
for some r ≥ 0 and some finite abelian group T , and it follows from (1.4) that if r > 0 then
Ass(M) = {l0Z, l1Z, . . . , lsZ}, where l0 = 0 and l1, . . . ls are the prime numbers dividing the
order of T .

Having discussed some properties of associated primes of quotient modules, we now describe
what happens to associated prime upon localisation. Before that, let us recall that if S is m. c.
subset of A, then the map p 7→ S−1p gives a one-to-one correspondence of {p ∈ Spec A : p∩S =
∅} onto Spec S−1A.

(1.5) Lemma. Suppose A is noetherian and S is a m. c. subset of A. Then

AssS−1A(S−1M) = {S−1p : p ∈ Ass(M) and p ∩ S = ∅}
Proof: If p ∈ Ass(M) and S ∩ p = ∅, then we have an embedding A/p ↪→ M , which, in view
of (1.2) of [Gh], induces an embedding S−1A/S−1p ↪→ S−1M . And S−1p ∈ Spec S−1A since
S ∩ p = ∅. Thus S−1p ∈ AssS−1A(S−1M). On the other hand, if p′ ∈ AssS−1A(S−1M), then
p′ = S−1p for some p ∈ Spec A with p ∩ S = ∅, and p′ = (0 : x

1
) for some x ∈ M . Write

p = (a1, . . . , an). Now ai

1
· x

1
= 0 in S−1M for 1 ≤ i ≤ n, and thus there exists t ∈ S such

that taix = 0 for 1 ≤ i ≤ n. This implies that p ⊆ (0 : tx). Further, if a ∈ (0 : tx), then
a
1
∈ (0 : x

1
) = S−1p so that sa ∈ p for some s ∈ S, and hence a ∈ p. Thus p ∈ Ass(M). �
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Note that the above result implies that if p ∈ Ass(M), then pAp ∈ AssAp(Mp). So, in
particular, Mp 6= 0.

Definition: The set {p ∈ Spec A : Mp 6= 0} is called the support of M and is denoted by
Supp (M).

(1.6) Lemma. Supp (M) ⊆ {p ∈ Spec A : p ⊇ Ann(M)}. Moreover, if M is f. g., then these
two sets are equal.

Proof: If p ∈ Spec A and Mp 6= 0, then there is x ∈ M such that x
1
6= 0 in Mp. Now

a ∈ Ann(M) ⇒ ax = 0 ⇒ a /∈ A \ p ⇒ a ∈ p. Thus p ⊇ Ann(M). Next, suppose M is
f. g. and p ∈ Spec A contains Ann(M). Write M = Ax1 + · · · + Axn. If Mp = 0, we can find
a ∈ A \ p such that axi = 0 for 1 ≤ i ≤ n. But then aM = 0, i.e., a ∈ Ann(M), which is a
contradiction. �

(1.7) Theorem. Suppose A is noetherian and M is finitely generated. Then there exists
a chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of submodules of M such that Mi/Mi−1 ' A/pi,
for some pi ∈ Spec A (1 ≤ i ≤ n). Moreover, for any such chain of submodules, we have
Ass(M) ⊆ {p1, . . . , pn} ⊆ Supp (M); furthermore, the minimal elements of these three sets
coincide.

Proof: The case of M = 0 is trivial. If M 6= 0, then there exists p1 ∈ Spec A such that A/p1

is isomorphic to a submodule M1 of M . If M1 6= M , we apply the same argument to M/M1

to find p2 ∈ Spec A, and a submodule M2 of M such that M2 ⊇ M1 and A/p2 ' M2/M1.
By (3.1), M has no strictly ascending chain of submodules, and therefore the above process
must terminate. This yields the first assertion. Moreover, Ass(Mi/Mi−1) = Ass(A/pi) = {pi},
and so by (1.3), we see that Ass(M) ⊆ {p1, . . . , pn}. Also, in view of (1.2) of [Gh], we have
(Mi/Mi−1)pi

' Api
/piApi

6= 0. Hence (Mi)pi
6= 0. Thus {p1, . . . , pn} ⊆ Supp (M). Lastly,

if p ∈ Supp (M), then Mp 6= 0 and so AssAp(Mp) 6= ∅. Now (1.5) shows that there exists
q ∈ Ass(M) with q ∩ (A \ p) = ∅, i.e., q ⊆ p. This implies the last assertion. �

(1.8) Corollary. If A is noetherian and M is f. g., then Ass(M) is finite. Furthermore,
the minimal primes of M are precisely the minimal elements among the prime ideals of A
containing Ann(M).

Proof: Follows from (1.7) in view of (1.6). �

Remark: A chain 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of submodules of M is sometimes called
a filtration of M . Using a filtration as in (1.7), it is often possible to reduce questions about
modules to questions about integral domains.

(1.9) Exercise: Show that if A is noetherian, M is f. g., and I is an ideal of A consisting
only of zerodivisors of M , then there exists some x ∈ M such that x 6= 0 and Ix = 0.

(1.10) Exercise: Show that if A is noetherian and M is f. g., then√
Ann(M) =

⋂
p∈Ass(M)

p =
⋂

p∈Supp (M)

p =
⋂

p a minimal
prime of M

p .
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2. Primary Decomposition

We continue to let A denote a ring and M an A–module. As in the case of ideals, the primary
decomposition of modules into primary submodules will be achieved using the auxiliary notion
of irreducible submodules. To compare the notions and results discussed in this section to
those in the classical case, you may substitute A for M .

Definition: Let Q be a submodule of M . We say that Q is primary if Q 6= M and for any
a ∈ A and x ∈ M , we have

ax ∈ Q and x /∈ Q =⇒ anM ⊆ Q for some n ≥ 1.

We say that Q is irreducible if Q 6= M and for any submodules N1 and N2 of M we have

Q = N1 ∩N2 =⇒ Q = N1 or Q = N2.

Clearly, a submodule Q of M is primary iff every zerodivisor of M/Q is nilpotent for M/Q.
[An element a ∈ A is said to be nilpotent for M if anM = 0 for some n ≥ 1. In other words, a is

nilpotent for M iff a ∈
√

Ann(M).] If Q is a primary submodule of M and p =
√

Ann(M/Q),
we say that Q is p–primary.

(2.1) Exercise: Given any submodule Q of M , show that

Z(M/Q) =
√

Ann(M/Q) ⇐⇒ Q is primary =⇒ Ann(M/Q) is a primary ideal of A

Use (1.2), (1.8) and (1.10) to deduce the following characterization.

If A is noetherian and M is f. g., then: Q is primary ⇐⇒ Ass(M/Q) is singleton.

And also the following characterization.

If A is noetherian and M is f. g., then: Q is p–primary ⇐⇒ Ass(M/Q) = {p}.

As we shall see in the sequel, the above characterization of primary submodules [of f. g.
modules over noetherian rings] is extremely useful. For this reason perhaps, it is sometimes
taken as a definition of primary submodules [of arbitrary modules]. At any rate, we may
tacitly use the above characterizations of primary and p–primary submodules in several of the
proofs below.

(2.2) Lemma. Suppose A is noetherian, M is f. g., and Q1, . . . , Qr are p–primary submodules
of M , where r is a positive integer. Then Q1 ∩ · · · ∩Qr is also p–primary.

Proof: Clearly, Q1 ∩ · · · ∩Qr 6= M . Moreover, there is a natural injective homomorphism of
M/Q1 ∩ · · · ∩Qr into M/Q1⊕ · · ·⊕M/Qr. Therefore, in view of (1.1), (1.3) and (1.4), we see
that

∅ 6= Ass(M/Q1 ∩ · · · ∩Qr) ⊆ Ass (⊕r
i=1M/Qi) = ∪r

i=1Ass(M/Qi) = {p}.
Thus it follows from (2.1) that Q1 ∩ · · · ∩Qr is p–primary. �

(2.3) Lemma. If M is noetherian, then every submodule of M is a finite intersection of
irreducible submodules of M .
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Proof: Assume the contrary. Then we can find a maximal element, say Q, among the
submodules of M which aren’t finite intersections of irreducible submodules of M . Now Q
can’t be irreducible. Also Q 6= M (because M is the intersection of the empty family of
irreducible submodules of M). Hence Q = N1 ∩ N2 for some submodules N1 and N2 of M
with N1 6= Q and N2 6= Q. By maximality of Q, both N1 and N2 are finite intersections of
irreducible submodules of M . But then so is Q, which is a contradiction. �

(2.4) Lemma. Suppose A is noetherian, M is f. g., and Q is an irreducible submodule of M .
Then Q is primary.

Proof: Since Q 6= M , Ass(M/Q) 6= ∅. Suppose Ass(M/Q) contains two distinct prime ideals
p1 = (0 : x̄1) and p2 = (0 : x̄2), where x̄1, x̄2 denote the images in M/Q of some elements
x1, x2 of M . Clearly x̄1 and x̄2 are nonzero elements of M/Q. We claim that Ax̄1∩Ax̄2 = {0}
Indeed, if ax̄1 = bx̄2, with a, b ∈ A, is nonzero, then a /∈ (0 : x̄1) and b /∈ (0 : x̄2). Since
(0 : x̄1) is prime, we find that (0 : x̄1) = (0 : ax̄1) (check!). Similarly, (0 : x̄2) = (0 : bx̄2).
This gives p1 = p2, which is a contradiction. Now if y ∈ (Q + Ax1) ∩ (Q + Ax2), then
y = y1 + ax1 = y2 + bx2 for some y1, y2 ∈ Q and a, b ∈ A. But then ax̄1 = bx̄2 in M/Q and
thus y ∈ Q. It follows that Q = (Q + Ax1) ∩ (Q + Ax2). Also since x̄1 6= 0 6= x̄2, we have
(Q + Ax1) 6= Q 6= (Q + Ax2). This contradicts the irreducibility of Q. Thus Ass(M/Q) is
singleton so that Q is primary. �

(2.5) Lemma. Suppose A is noetherian, M is f. g., Q is a p–primary submodule of M . Then
the inverse image of Qp under the natural map M → Mp (given by x 7→ x

1
) is Q.

Proof: Suppose x ∈ M is such that x
1
∈ Qp. Then tx ∈ Q for some t ∈ A \ p. If x /∈ Q, then

x̄, the image of x in M/Q, is nonzero, and thus t ∈ Z(M/Q). Hence from (2.1), we see that
t ∈ p, which is a contradiction. �

(2.6) Remark: Given any p ∈ Spec A and a submodule Q′ of Mp, the inverse image of Q′

under the natural map M → Mp is often denoted by Q′ ∩M . Thus (2.5) can be expressed by
saying that if Q is a p–primary submodule of M , then Qp ∩M = Q. Note that we have been
tacitly using the fact that if Q is any submodule of M and S is any m. c. subset of A, then
S−1Q can be regarded as a submodule of S−1M .

(2.7) Theorem. Suppose A is noetherian, M is f. g., and N is any submodule of M . Then
we have

(i) There exist primary submodules Q1, . . . , Qh of M such that N = Q1 ∩ · · · ∩Qh.
(ii) In (i) above, Q1, . . . , Qh can be chosen such that Qi 6⊇ ∩j 6=iQj for 1 ≤ i ≤ h, and

p1, . . . , ph are distinct, where pi =
√

Ann(M/Qi).
(iii) If Qi and pi are as in (ii) above, then p1, . . . , ph are unique; in fact, {p1, . . . , ph} =

Ass(M/N). Moreover, if pi is minimal among p1, . . . , ph, i.e. pi 6⊇ pj for j 6= i, then
the corresponding primary submodule Qi is also unique; in fact, Qi = Npi

∩M .

Proof: Clearly, (i) is a direct consequence of (2.3) and (2.4). Given a decomposition as in
(i), we can use (2.2) to reduce it by grouping together the primary submodules having the
same associated prime so as to ensure that the associated primes become distinct. Then
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we can successively remove the primary submodules contained in the intersections of the
remaining submodules. This yields (ii). Now let Q1, . . . , Qh be as in (ii). Fix some i with
1 ≤ i ≤ h. Let Pi = ∩j 6=iQi. Clearly, N ⊂ Pi and N 6= Pi. Thus we have 0 6= Pi/N =
Pi/Pi ∩ Qi ' Pi + Qi/Qi ↪→ M/Qi, and hence, in view of (1.1) and (1.3), we find that ∅ 6=
Ass(Pi/N) ⊆ Ass(M/Qi) = {pi}. Thus {pi} = Ass(Pi/N) ⊆ Ass(M/N). On the other hand,
since N = Q1 ∩ · · · ∩Qh, M/N is isomorphic to a submodule of ⊕h

j=1M/Qj, and so by (1.4),

Ass(M/N) ⊆ ∪h
j=1Ass(M/Qj) = {p1, . . . , ph}. This proves that Ass(M/N) = {p1, . . . , ph}. In

particular, p1, . . . , ph are unique. Now suppose, without loss of generality, that p1 is minimal
among p1, . . . , ph. Then for j > 1, p1 6⊇ pj, i.e., (A \ p1) ∩ pj 6= ∅, and hence by (1.5), we
find that AssAp1

((M/Qj)p1) = ∅; thus by (1.3), (M/Qj)p1 = 0, i.e., Mp1 = (Qj)p1 . It follows
that Np1 = (Q1)p1 ∩ · · · ∩ (Qh)p1 = (Q1)p1 , and, in view of (2.5) and (2.6), we obtain that
Q1 = (Q1)p1 ∩M = Np1 ∩M . This proves (iii). �

Definition: A decomposition N = Q1 ∩ · · · ∩ Qh, as in (i) above is called a primary de-
composition of N . If Q1, . . . , Qh satisfy the conditions in (ii), then it is called an irredundant
(primary) decomposition of N .

Example: Let G be a finite abelian group of order n. Let the notation be as in the Example
preceding (1.5). For 1 ≤ i ≤ h, let Qi = P1 + · · ·+ Pi−1 + Pi+1 + · · ·+ Ph. Then G/Qi ' Pi,
and thus Qi is piZ–primary. Observe that (0) = Q1 ∩ · · · ∩ Qh is an irredundant primary
decomposition of (0); in fact, this decomposition is unique because each of the associated
primes p1Z, . . . , phZ is clearly minimal. In general, if N is a subgroup, i.e., a Z–submodule,
of G, and Λ = {i : 1 ≤ i ≤ h and N + Qi 6= G}, then N = ∩i∈Λ(N + Qi) is an irredundant
primary decomposition of N , and this too is unique. Verify!

It may be remarked that the examples of primary ideals, primary decomposition of ideals,
etc., discussed in the last chapter, constitute examples in this general set–up as well. Thus the
pathologies which arise in the case of ideals [see, for instance, the Remark and the Example
preceding (2.3) of Ch. 1] continue to exist for f. g. modules over noetherian rings.

3. Graded Rings and Modules

In this section, we shall study some basic facts about graded rings and modules. This
will allow us to discuss, in the next section, some special properties of associated primes and
primary decomposition in the graded situation.

The prototype of a graded ring is the polynomial ring A[X1, . . . , Xn] over a ring A. Before
giving the general definition, we point out that the set of all nonnegative integers is denoted
by N.

Definition: A ring R is said to be N–graded, or simply graded, if it has additive subgroups
Rd, for d ∈ N, such that R = ⊕d∈NRd and RdRe ⊆ Rd+e, for all d, e ∈ N. The family {Rd}d∈N
is called an N–grading of R, and the subgroup Rd is called the dth graded component of R.

Let R = ⊕d∈NRd be a graded ring. Elements of Rd are said to be homogeneous of degree d.
Every a ∈ R can be uniquely written as a =

∑
d∈N ad with ad ∈ Rd such that all except finitely

many ad’s are 0; we call ad’s to be the homogeneous components of a. Given a homogeneous
element b ∈ R, we sometimes write deg(b) to denote its degree. An ideal of R generated by
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homogeneous elements is called a homogeneous ideal. Note that an ideal is homogeneous iff
it contains the homogeneous components of each of its elements. If I is a homogeneous ideal
of R, then R/I has the induced N–grading given by (R/I)d = Rd/(I ∩ Rd). A subring S of
R is said to be graded if S = ⊕d∈N(S ∩ Rd). Note that R0 is a graded subring of R and each
Rd is an R0–module. If R′ = ⊕d∈NR′

d is any graded ring, then a homomorphism φ : R → R′

is called a graded ring homomorphism, or a homomorphism of graded rings, if φ(Rd) ⊆ R′
d for

all d ∈ N; note that in this case the kernel of φ is a homogeneous ideal of R and the image of
φ is a graded subring of R′.

Examples: 1. Let A be a ring and I be a homogeneous ideal of A[X1, . . . , Xn]. Then
R = A[X1, . . . , Xn]/I is a graded ring, with its dth graded component being given by Rd =
A[X1, . . . , Xn]d/Id, where Id = I ∩A[X1, . . . , Xn]d. Note that in this case R as well as Rd are
f. g. A–algebras, and in particular, A–modules. Graded rings of this type are usually called
graded A–algebras.

2. Let A be a ring and I be any ideal of A such that I 6= A. Then grI(A)
def
= ⊕d∈NId/Id+1

is a graded ring. It is called the associated graded ring of A w.r.t. I.

(3.1) Exercise: Let R = ⊕d∈NRd be a graded ring, and I, J be homogeneous ideals of R.

Then show that I + J, IJ, I ∩ J, (I : J) and
√

I are homogeneous ideals.

(3.2) Exercise: Let R = ⊕d∈NRd be a graded ring, and I be a homogeneous ideal of R. Show
that I is prime iff I is prime in the graded sense, that is, I 6= R and

a, b homogeneous elements of R and ab ∈ I ⇒ a ∈ I or b ∈ I.

Given an ideal I of a graded ring R = ⊕d∈NRd, we shall denote by I∗ the largest homoge-
neous ideal contained in I. Note that I∗ is precisely the ideal generated by the homogeneous
elements in I.

(3.3) Lemma. If R = ⊕d∈NRd is a graded ring and p is a prime ideal of R, then p∗ is a prime
ideal of R.

Proof: Follows from (3.2). �

(3.4) Lemma. Let R = ⊕d∈NRd be a graded ring. Then 1 ∈ R0.

Proof: Write 1 =
∑

d∈N ad with ad ∈ Rd. Then for any b ∈ Re, b =
∑

d∈N bad. Equating
the degree e components, we find b = ba0. This implies that ca0 = 1 for all c ∈ R. Hence
1 = a0 ∈ R0. �

Given a graded ring R = ⊕d∈NRd, we define R+ = ⊕d>0Rd. Note that R+ is a homogeneous
ideal of R and R/R+ ' R0. Thus if R0 is a field, then R+ is a homogeneous maximal ideal of
R; moreover, R+ is also maximal among all homogeneous ideals of R other than R, and so it
is the maximal homogeneous ideal of R.

(3.5) Lemma. Let R = ⊕d∈NRd be a graded ring and x1, . . . , xn be any homogeneous
elements of positive degree in R. Then R+ = (x1, . . . , xn) iff R = R0[x1, . . . , xn]. In particular,
R is noetherian iff R0 is noetherian and R is a f. g. R0–algebra.
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Proof: Suppose R+ = (x1, . . . , xn). We show by induction on d that each x ∈ Rd is in
R0[x1, . . . , xn]. The case of d = 0 is clear. Suppose d > 0. Write x = a1x1 + · · ·+ anxn, where
a1, . . . , an ∈ R. Since x is homogeneous, we may assume, without loss of generality, that each
ai is homogeneous. Then for 1 ≤ i ≤ n, we must have deg(ai) = d − deg(xi) < d, and so,
by induction hypothesis, ai ∈ R0[x1, . . . , xn]. It follows that R = R0[x1, . . . , xn]. Conversely,
if R = R0[x1, . . . , xn], then it is evident that R+ = (x1, . . . , xn). The second assertion in
the Lemma follows from the first one by noting that f. g. algebras over noetherian rings are
noetherian. �

(3.6) Exercise: Let R = ⊕d∈NRd be a graded ring. Show that R is noetherian iff it satisfies
a.c.c. on homogeneous ideals.

(3.7) Exercise: Let A be a ring and I = (a1, . . . , ar). If ā1, . . . , ār denote the images of
a1, . . . , ar mod I2, then show that grI(A) = (A/I)[ā1, . . . , ār] ' (A/I)[X1, . . . , Xr]/J , for
some homogeneous ideal J of (A/I)[X1, . . . , Xr]. Deduce that if (A/I) is noetherian and I is
f. g., then grI(A) is noetherian.

(3.8) Graded Noether Normalisation Lemma. Let k be an infinite field and R =
k[x1, . . . , xn] be a graded k–algebra such that R0 = k and deg(xi) = m for 1 ≤ i ≤ n.
Then there exist homogeneous elements θ1, . . . , θd of degree m in R such that θ1, . . . , θd are
algebraically independent over k and R is integral over the graded subring k[θ1, . . . , θd]. In
particular, R is a finite k[θ1, . . . , θd]–module.

Proof: If k is an infinite field, then in (4.13) of [Gh], the elements θ1, . . . , θd can be chosen to
be k–linear combinations of x1, . . . , xn. The result follows. �

Now let us turn to modules.

Definition: Let R = ⊕d∈NRd be a graded ring, and M be an R–module. Then M is said
to be N–graded or simply, graded, if it contains additive subgroups Md, for d ∈ N, such that
M = ⊕d∈NMd, and RdMe ⊆ Md+e, for all d, e ∈ N. Such a family {Md}d∈N is called an
N–grading of M , and Md the dth graded component of M .

Let R = ⊕d∈NRd be a graded ring and M = ⊕d∈NMd be a graded R–module. By a graded
submodule of M we mean a submodule N of M such that N = ⊕d∈N(N ∩Md). Note that if N
is a graded submodule of M , then M/N is a graded R–module with the induced grading given
by (M/N)d = Md/(N∩Md). If M ′ = ⊕d∈NM ′

d is any graded R–module, then by graded module
homomorphism, or a homomorphism of graded modules, we mean a R–module homomorphism
φ : M → M ′ such that φ(Md) ⊆ M ′

d, for all d ∈ N. For any such φ, the kernel of φ and the
image of φ are graded submodules of M and M ′ respectively.

Examples: 1. Let R = A[X1, . . . , Xn] and I be a homogeneous ideal of R. Then M = R/I
is a graded R–module. In this example, the graded components Md are finite A–modules.

2. Let A be a ring and I be an ideal of A. If M is any A–module, then grI(M) =
⊕d∈NIdM/Id+1M is a graded grI(A)–module. It is called the associated graded module of M
w.r.t. I.
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(3.9) Exercise: Let the notation be as in (3.7). Let M be an A–module. Suppose M =
Ax1 + · · · + Axm, and x̄1, . . . , x̄m denote the images of x1, . . . , xm in M/IM , then show that
grI(M) = grI(A)x̄1 + · · · + grI(A)x̄m. Deduce that if A is noetherian and M is f. g., then
grI(M) is a noetherian grI(A)–module.

(3.10) Graded Nakayama’s Lemma. Let R = ⊕d∈NRd be a graded ring and M = ⊕d∈NMd

be a graded R–module. If R+M = M , then M = 0.

Proof: If M 6= 0, we can find a nonzero element x of least degree in M . Now the assumption
x ∈ R+M leads to a contradiction. �

(3.11) Artin-Rees Lemma. Let A be a noetherian ring, I an ideal of A and M a f.g.
A-module. Suppose M = M0 ⊇ M1 ⊇ M2 ⊇ · · · is a chain of submodules of M such that
IMn ⊆ Mn+1 for all n ≥ 0 with equality for n ≥ r (for some r). Then for any submodule M ′

of M , there exists s ≥ 0 such that IM ′
n = M ′

n+1 for all n ≥ s, where M ′
i denotes M ′ ∩Mi.

Proof: Let t be an indeterminate over A and let R be the subring of A[t] defined by R =
⊕n≥0I

ntn = A ⊕ It ⊕ I2t2 ⊕ · · · . If I = (a1, . . . , am), then R = A[a1t, . . . , amt] and so R is a
f.g. graded A-algebra [called the Rees algebra of I]. Thus by (3.5), R is noetherian. Moreover,
L = ⊕n≥0Mnt

n is naturally a graded R-module. Now clearly IM ′
n ⊆ M ′ ∩ IMn ⊆ M ′

n+1,
and hence L′ = ⊕n≥0M

′
nt

n is an R-submodule of L. By (3.1) of [Gh], each Mn is a f.g.

A-module, and hence so is M̃n = M0 ⊕ M1t ⊕ · · · ⊕ Mnt
n. Consequently, the R-module

L̃n = M0 ⊕M1t ⊕ · · · ⊕Mnt
n ⊕ IMnt

n+1 ⊕ I2Mnt
n+2 ⊕ · · · , generated by M̃n, is f.g. Since

IMn = Mn+1 for n ≥ r, it follows that L = L̃n for n ≥ r, and so L is a noetherian R-module.
Hence the chain L̃′

0 ⊆ L̃′
1 ⊆ L̃′

2 ⊆ · · · of R-submodules of L terminates, i.e., there exists s ≥ 0
such that L̃′

n = L̃′
s for n ≥ s. It follows that IM ′

n = M ′
n+1 for n ≥ s. �

Remark: By taking M ′
n = InM in (3.11), we get M ′ ∩ InM = In (M ′ ∩ In−sM) for n ≥ s.

This, or the particular case when M = A and M ′ = J , an ideal of A, is often the version
of Artin-Rees Lemma used in practise. For example, putting M ′ = ∩n≥0I

nM and using
Nakayama’s Lemma, we get a proof of Krull’s Intersection Theorem [viz., (3.3) of Ch. 1].
Artin-Rees Lemma is most useful in the theory of completions. For more on completions,
which may be regarded as the fourth fundamental process, one may refer to [AM, Ch. 10].

Sometimes, it is useful to consider gradings which are more general than N–grading.

Definition: Let R be a ring and s be a positive integer. By a Zs–grading on R we mean a
family {Rα}α∈Zs of additive subgroups of R such that R = ⊕α∈ZsRα and RαRβ ⊆ Rα+β, for all
α, β ∈ Zs. Elements of Rα are said to be homogeneous of degree α. A ring with a Zs–grading
is called a Zs–graded ring.

The definitions of graded subring, homogeneous ideal, graded ring homomorphism, in the
context of Zs–graded rings, are exactly similar to those in the case of N–graded rings. If
R = ⊕α∈ZsRα is a Zs–graded rings, and M is an R-module, then M is said to be Zs–graded if
it contains additive subgroups Mα, for α ∈ Zs, such that M = ⊕α∈ZsMα and RαMβ ⊆ Mα+β,
for all α, β ∈ Zs. Corresponding notions of homogeneous element, graded submodule, and
graded module isomorphism, etc. are defined in a similar fashion.
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If {Rα}α∈Zs is a Zs–grading on a ring R such that Rα = 0 for all α = (α1, . . . , αs) ∈ Zs

with αi < 0 for some i, then it is called an Ns–grading; note that in this case R = ⊕α∈NsRα.
Similarly, one has the notion of Ns–gradings for modules.

Examples: 1. Let A be a ring and R = A[X1, . . . , Xn]. Then R has a Zn–grading {Rα}α∈Zs

given by Rα = A Xα, where for α = (α1, . . . , αn) ∈ Zn, Xα denotes the monomial Xα1
1 · · ·Xαn

n

if α ∈ Ns and Xα = 0 if α 6∈ Ns. Note that if A = k, a field, then the homogeneous ideals of
R, w.r.t. the above grading, are precisely the monomial ideals of k[X1, . . . , Xn].

2. Let A be a ring and R = A[X1, . . . , Xn]. Let d1, . . . , dn be any integers. For d ∈ Z,
let Rd be the A–submodule of R generated by the monomials Xα1

1 · · ·Xαn
n for which d1α1 +

· · · + dnαn = d. Then {Rd}d∈Z defines a Z–grading on R which is an N–grading iff di =
deg(Xi) ≥ 0 for 1 ≤ i ≤ n. The corresponding homogeneous polynomials and homogeneous
ideals are sometimes called weighted homogeneous polynomials and weighted homogeneous
ideals respectively.

The notion of Z–gradings permits us to define the following simple but useful operation on
graded rings. If R = ⊕d∈NRd is a graded ring and m is any integer, then we define R(m) to
be the graded R–module obtained from R by shifting, or by twisting, the grading by m, i.e.,
R(m)d = Rm+d for d ∈ Z and R(m) = ⊕d∈ZR(m)d. Further, if M = ⊕d∈NMd is a graded
R–module, then we define M(m) = ⊕d∈ZM(m)d, where M(m)d = Mm+d. Note that M(m) is
a graded R–module.

Remark: Most of the results proved earlier in this section extend to Zs–graded rings and
Zs–graded modules over them. The notion of grading can also be extended by replacing Zs

by a monoid; most results extend to this case as well provided the monoid is assumed to be
torsionfree. See [B] or [N] for more on this.

4. Primary Decomposition in Graded Modules

Throughout this section, R = ⊕d∈NRd denotes a graded ring and M = ⊕d∈NMd a graded
R–module. Given a submodule N of M , by N∗ we denote the largest graded submodule of
N , i.e., N∗ is the submodule generated by the homogeneous elements in N .

(4.1) Lemma. Every associated prime of M is a homogeneous prime ideal and the annihilator
of some homogeneous element of M .

Proof: Suppose p ∈ Ass(M) and p = (0 : x) for some x ∈ M . Then x 6= 0, and we can write
x = xe+xe+1+· · ·+xd with xj ∈ Mj and xe 6= 0. Now for any a ∈ p with a = ar+ar+1+· · ·+as

and ai ∈ Ri, the equation ax = 0 yields the equations

arxe = 0, arxe+1 + ar+1xe = 0, arxe+2 + ar+1xe+1 + ar+2xe = 0, . . .

which imply that arxe = a2
rxe+1 = a3

rxe+2 = · · · = ad−e+1
r xd = 0. Hence ad−e+1

r x = 0, i.e.,

ar ∈
√

(0 : x). Since p = (0 : x) is prime, we have ar ∈ p. Now (a − ar)x = 0 and using
arguments similar to those above, we find that ar+1 ∈ p. Proceeding in this manner, we see
that ai ∈ p for r ≤ i ≤ s. This proves that p is homogeneous. Moreover, if we let Ij = (0 : xj),
then we have p ⊆ Ij for e ≤ j ≤ d and ∩d

j=eIj ⊆ p. Since p is prime, we have Ij ⊆ p for some
j and thus p = (0 : xj). �
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(4.2) Corollary. Given any p ∈ Ass(M), there exists an integer m and a graded ring
isomorphism of (R/p)(−m) onto a graded submodule of M .

Proof: Write p = (0 : x) for some homogeneous element x of M . Let m = deg(x). The map
a 7→ ax of R → M is a homomorphism with p as its kernel and it maps Rd into Mm+d. Hence
it induces a desired graded ring isomorphism of (R/p)(−m). �

(4.3) Exercise: Show that if p ∈ Supp (M), then p∗ ∈ Supp (M).

(4.4) Theorem. If R is noetherian and M is f. g., then there exists a chain 0 = M0 ⊆ M1 ⊆
· · · ⊆ Mn = M of graded submodules of M , homogeneous prime ideals p1, . . . , pn of R and
integers m1, . . . ,mn such that Mi/Mi−1 ' (R/pi)(−mi), the isomorphism being that of graded
modules.

Proof: Similar to the proof of (1.7) in view of (4.1) and (4.2) above. �

Now let us turn to primary submodules of M .

(4.5) Lemma. Let N be a graded submodule of M such that N 6= M and for any homoge-
neous elements b ∈ R and y ∈ N we have

by ∈ N and y /∈ N =⇒ bnM ⊆ N for some n ≥ 1.

Then N is a primary submodule of M .

Proof: Let a ∈ R and x ∈ M be any elements such that ax ∈ N and x /∈ N . Then we can
write x = x′+xe+xe+1+· · ·+xd with x′ ∈ N , xj ∈ Mj and xe /∈ N . Let a = ar +ar+1+· · ·+as

where ai ∈ Ri. Now a(xe +xe+1 + · · ·+xd) ∈ N , and since N is graded, we find that arxe ∈ N .
By assumption, there exists n1 ≥ 1 with an1

r M ⊆ N . Now (a−ar)
n1(xe +xe+1 + · · ·+xd) ∈ N ,

and hence there exists n2 ≥ 1 with an1n2
r+1 M ⊆ N . Proceeding in this manner, we can find

n0 ≥ 1 such that an0
i M ⊆ N for r ≤ i ≤ s. Therefore, we can find n ≥ 1 [e.g., n = n0(s−r+1)]

such that anM ⊆ N . Thus N is primary. �

(4.6) Lemma. If Q is a p–primary submodule of M , then Q∗ is p∗–primary.

Proof: Since the homogeneous elements of Q (resp: p) are elements of Q∗ (resp: p∗), it
follows from (4.5) that Q∗ is a primary submodule. Further, if a is any homogeneous element

of p =
√

Ann(M/Q), then anM ⊆ Q for some n ≥ 1, and since M is graded, anM ⊆
Q∗. It follows that p∗ ⊆

√
Ann(M/Q∗). On the other hand, since M/Q∗ is graded and

Ann(M/Q∗) ⊆ Ann(M/Q), we see that
√

Ann(M/Q∗) is a homogeneous ideal contained in

p, and hence
√

Ann(M/Q∗) ⊆ p∗. Thus Q∗ is p∗–primary. �

(4.7) Theorem. Suppose A is noetherian, M is f. g., and N is a graded submodule of M .
Let N = Q1 ∩ · · · ∩ Qh be a primary decomposition of N , and p1, . . . , ph be the associated
primes corresponding to Q1, . . . , Qh, respectively. Then we have

(i) pi = p∗i , Q∗
i is pi–primary for 1 ≤ i ≤ h and N = Q∗

1 ∩ · · · ∩Q∗
h.

(ii) If the primary decomposition N = Q1∩ · · ·∩Qh is irredundant, then so is the primary
decomposition N = Q∗

1 ∩ · · · ∩Q∗
h.
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(iii) If pi is minimal among p1, . . . , ph, then Qi is a graded submodule of N .

Proof: Applying (4.1) to M/N , we get pi = p∗i . So by (4.6), we find that Q∗
i is pi–primary.

Since N is graded and N ⊆ Qi, we have N ⊆ Q∗
i . Thus N ⊆ Q∗

1∩· · ·∩Q∗
h ⊆ Q1∩· · ·∩Qh = N ,

which proves (i). If N = Q1∩· · ·∩Qh is an irredundant primary decomposition, then p1, . . . , ph

are distinct, and Ass(M/N) = {p1, . . . , ph}. Thus the associated primes corresponding to
Q∗

1, . . . , Q
∗
h are distinct. Moreover, if the decomposition N = Q∗

1 ∩ · · · ∩Q∗
h can be shortened,

then Ass(M/N) would have less than h elements, which is a contradiction. This proves (ii).
Finally, if pi is minimal among p1, . . . , ph, then the corresponding primary component Qi is
unique. Hence from (i), we obtain Qi = Q∗

i , i.e., Qi is graded. �

Remark: As a special case of the results of this section, we obtain some useful results about
ideals in graded rings. You may find it instructive to write these down explicitly.

(4.8) Exercise: Show that all the results of this section remain valid if R is replaced by
a Zs–graded ring and M by a Zs–graded module over it. Deduce from this that if I is a
monomial ideal in k[X1, . . . , Xn], then the associated primes of I are monomial ideals and
that I has a primary decomposition such that each of the primary ideals occurring in it is a
monomial ideal.

The following exercise indicates a constructive method to obtain primary decompositions
of monomial ideals.

(4.9) Exercise: Let J be a monomial ideal of k[X1, . . . , Xn] and u, v be relatively prime mono-
mials in k[X1, . . . , Xn]. Show that (J, uv) = (J, u)∩(J, v). Also show that if e1, . . . , en are pos-
itive integers, then the ideal (Xe1

1 , . . . , Xen
n ) is (X1, . . . , Xn)–primary. Use these facts to deter-

mine the associated primes and a primary decomposition of the ideal I = (X2Y Z, Y 2Z, Y Z3)
of k[X, Y, Z].

References

[Ab] S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, American Math. Society, 1990.
[AM] M. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison–Wesley, 1969.
[Bo] N. Bourbaki, Commutative Algebra, Hermann, 1972.
[BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
[Ei] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer–Verlag, 1995.
[Gh] S. R. Ghorpade, A Quick Review of Commutative Algebra, Unpublished lecture notes, 2000.
[Ka] I. Kaplansky, Commutative Rings, The University of Chicago Press, 1974.
[KS] A. I. Kostrikin and I. R. Shafarevich (Eds), Algebra I : Basic Notions of Algebra, Springer–Verlag, 1990.
[Ku] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985.
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