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Additions to

A Course in Multivariable Calculus and Analysis
(Corrected Publication)

Undergraduate Texts in Mathematics, Springer, New York, 2019

Sudhir R. Ghorpade and Balmohan V. Limaye

The “additions” listed below may be incorporated if and when a new edi-

tion of A Course in Multivariable Calculus and Analysis is brought out. This

is a work in progress and the file will be updated as and when a new version

is ready. Comments and suggestions are welcome and may be communicated

to the authors by e-mail. In the following, p. i, +j means the jth line from

the top on page i, whereas p. i, −j means the jth line from the bottom on

page i. Also, ACICARA 2Ed will stand for the authors’ book A Course in

Calculus and Real Analysis, Second edition, Springer, New York, 2018.

Chapter 1

p. 4, +7

Two vectors x,y ∈ Rn are said to be orthogonal (to each other) if x ·y = 0.

In case both x and y are nonzero, this means that the angle between x and

y is π/2. Given any D ⊆ Rn, a vector x ∈ Rn is said to be orthogonal to D

if x · y = 0 for every y ∈ D.

p. 9, +7

We say that Γ is a closed path if the initial point of Γ and the terminal

point of Γ are the same, that is, if c = d.

p. 10, −8

Let D ⊆ R2 and let f : D → R be a function. Given a subset C of D, the

restriction of f to C is the function f|C : C → R defined by f|C(x, y) =

f(x, y) for (x, y) ∈ C.

p. 11, before Fig. 1.3

Note that the level curve of f corresponding to c is the projection of the

contour line of f corresponding to c on the plane given by z = 0.

p. 26, −4

If Γ is a closed path, that is, if (x(α), y(α) = (x(β), y(β)), then we say that

Γ passes through (x(α), y(α)), and further, we say that a tangent to Γ at the

point (x(α), y(α)) exists if x and y are differentiable at α and at β, and if

(x′(α), y′(α)) = (x′(β), y′(β)) 6= (0, 0).

p. 27, +1 to +3

Replace the sentence “In general, . . . (α, β).” by “In general, we say that Γ

is a regular path if a tangent to Γ is defined at every point through which

Γ passes.”
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p. 27, +11

We say that f has a local extremum at (x0, y0) along Γ if f has a local

maximum at (x0, y0) along Γ or if f has a local minimum at (x0, y0) along Γ .

p. 28, +5

a local extremum at (x0, y0) if f has a local maximum at (x0, y0) or if f

has a local minimum at (x0, y0)..

Chapter 2

p. 45, +2

The result in part (iii) of Fact 2.3 can be improved as follows. If an → a and

a 6= 0, then there is m ∈ N such that an 6= 0 for all n ≥ m and (1/an)→ 1/a.

(See Part (iv) of Proposition 2.3 in ACICARA 2Ed.)

p. 46, −1

Proposition 2.7 can be improved as follows: Let D ⊆ R2. Then D = D ∪ ∂D.

Consequently, D is closed if and only if ∂D ⊆ D.

p. 65, +10

Remark. In the notation of Proposition 2.40 (Implicit Function Theorem),

the solution set {(x, y) ∈ Sr(x0, y0) : x ∈ (x0−δ, x0+δ) and f(x, y) = 0} of the

equation f(x, y) = 0 is the graph {(x, η(x)) : x ∈ (x0− δ, x0 + δ)} of the func-

tion given by y = η(x). This follows by noting that given x ∈ (x0 − δ, x0 + δ),

the function y 7−→ f(x, y) is strictly monotonic and hence one-one on

(y0 − r, y0 + r).

p. 67, +13

Remark. In the notation of Proposition 2.46 (Trivariate Implicit Function

Theorem), the solution set {(x, y, z) ∈ Sr(x0, y0, z0) : (x, y) ∈ Sδ(x0, y0) and

f(x, y, z) = 0} of the equation f(x, y, z) = 0 is the graph {(x, y, ζ(x, y)) :

(x, y) ∈ Sδ(x0, y0)} of the function given by z = ζ(x, y). This follows by

noting that given (x, y) ∈ Sδ(x0, y0), the function z 7−→ f(x, y, z) is strictly

monotonic, and so one-one on (z0 − r, z0 + r).

pp. 68-69

The result in Corollary 2.49 can be proved independently, and Proposition

2.48 can be deduced from it.

p. 77, after Exercise 1

New Exercise: If (xn, yn)→ (x0, y0), then show that
(

max{xn, yn},min{xn, yn}
)

converges to
(

max{x0, y0},min{x0, y0}
)
.

p. 77, after Exercise 4

New Exercise: Show that if (x0, y0) is a cluster point of
(
(xn, yn)

)
, then x0 is

a cluster point of (xn) and y0 is a cluster point of (yn), but the converse does

not hold.

p. 78, after Exercise 9

New Exercise: Let D ⊆ R2, and let f and g be real-valued continuous func-
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tions on D. Show that the real-valued functions max{f, g} and min{f, g} are

also continuous on D.

Chapter 3

p. 87, after Fact 3.2 (MVT)

Remark. Fact 3.2 shows that if a, b ∈ R with a < b, and f : (a, b) → R is

any function, then f is a constant function on (a, b) if and only if f ′ exists

and is identically zero on (a, b). (See Corollary 4.23 of ACICARA 2Ed.) Now

let a, b, c, d ∈ R with a < b and c < d, and let D := (a, b)×(c, d). Suppose

f : D → R is any function. Then f is a constant function on D if and only if

∇f exists and is identically zero on D. To see this, note that the ‘only if’ part

is obvious. To prove the ‘if’ part, assume that ∇f exists and is identically

zero on D. Let (x1, y1), (x2, y2) ∈ D. Then there is x0 ∈ (x1, x2) such that

f(x2, y1)− f(x1, y1) = fx(x0, y1)(x2 − x1) and there is y0 ∈ (y1, y2) such that

f(x2, y2)−f(x2, y1) = fy(x2, y0)(y2−y1). Since ∇f(x2, y0) = 0 = ∇f(x0, y1),

we obtain fy(x2, y0) = 0 = fx(x0, y1), and hence f(x2, y2) = f(x2, y1) =

f(x1, y1). Thus f is constant on D.

Note that the key idea in the above proof is that any two points in

(x1, y1), (x2, y2) in (a, b)×(c, d) can be joined by a horizontal and a verti-

cal line segment lying in (a, b)×(c, d), namely, a horizontal line segment from

(x1, y1) to (x2, y1) followed by a vertical line segment from (x2, y1) to (x2, y2).

In general, suppose D ⊆ R2 is nonempty, open and path-connected. Then any

two points of D can be joined by a finite number of horizontal and vertical

line segments (which are themselves joined end to end) lying in D. To see

this, fix (u0, v0) ∈ D. Let D0 be the set of all (x, y) ∈ D which can be joined

to (u0, v0) by a finite number of horizontal and vertical line segments lying

in D, and let D1 := D \ D0. Consider φ : D → R defined by φ(x, y) := 0 if

(x, y) ∈ D0 and φ(x, y) := 1 if (x, y) ∈ D1. We claim that φ is a continuous

function. To prove the claim, let (x0, y0) ∈ D. Since D is open, there is r > 0

such that Sr(x0, y0) ⊆ D. Clearly, every element of Sr(x0, y0) can be joined

to (x0, y0) by a horizontal and a vertical line segment lying in Sr(x0, y0) and

hence in D. It follows that if (x0, y0) ∈ D0, then Sr(x0, y0) ⊆ D0, whereas if

(x0, y0) ∈ D1, then Sr(x0, y0) ⊆ D1. Let
(
(xn, yn)

)
be a sequence in D such

that (xn, yn)→ (x0, y0). Then there is n0 ∈ N such that (xn, yn) ∈ Sr(x0, y0)

for all n ≥ n0. Consequently, φ(xn, yn) = 0 for all n ≥ n0 in case (x, y) ∈ D0,

whereas φ(xn, yn) = 1 for all n ≥ n0 in case (x0, y0) ∈ D1. In any case, we see

that φ(xn, yn) → φ(x, y), and so the claim is proved. Assume for a moment

thatD0 6= D. Then there is (u1, v1) ∈ D1, and sinceD is path-connected, there

is a (continuous) path (x(t), y(t)), t ∈ [α, β], joining (u0, v0) to (u1, v1) and

lying in D. Now by part (ii) of Proposition 2.17, the function F : [α, β] → R
given by F (t) := φ (x(t), y(t)), t ∈ [α, β], is continuous. Moreover, F (α) = 0

and F (β) = 1, but there is no t ∈ [α, β] with F (t) = 1/2. This contradicts

the IVP (Proposition 3.16 in ACICARA 2Ed). Thus D0 = D, and so any
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two points of D can be joined by a finite number of horizontal and vertical

line segments lying in D. As a consequence, if D ⊆ R2 is nonempty, open

and path-connected, and if f : D → R is any function, then f is a constant

function on D if and only if ∇f exists and is identically zero on D.

If D ⊆ R2 is not path-connected, then there may exist a nonconstant

function on D whose gradient vanishes identically on D. For example, if D :=

S1(0, 0) ∪ S1(2, 2) is a disjoint union of two open squares and f : D → R is

defined by f(x, y) := 1 if x ∈ S1(0, 0) and f(x, y) := 2 if x ∈ S1(2, 2), then

clearly D is nonempty and open, and fx = fy = 0 on D, but f is not a

constant function.

p. 88, before Examples 3.4

With notations as above, if we let F : D0 → R be the univariate function

defined by F (t) := f(x0 + tu1, y0 + tu2) for t ∈ D0, then it is clear that

f has a directional derivative at (x0, y0) along u⇐⇒ F is differentiable at 0.

Moreover, in this case, Duf(x0, y0) = F ′(0). Consequently, the Carathéodory

Lemma (Proposition 4.2 of ACICARA 2Ed) applied to F yields the following.

Carathéodory Lemma for Directional Derivatives: Let D ⊆ R2 and

let (x0, y0) ∈ D. Suppose u := (u1, u2) is a unit vector in R2 such that D

contains a segment of the line passing through (x0, y0) in the direction of u.

Let E := {(x0 + tu1, y0 + tu2) : t ∈ R}∩D and let f : E → R be any function.

Then (Duf)(x0, y0) exists if and only if there is a function f1 : E → R such

that f(x0 + tu1, y0 + tu2) − f(x0, y0) = t f1(x0 + tu1, y0 + tu2) for all t ∈ R
satisfying (x0 + tu1, y0 + tu2) ∈ D, and f1 is continuous at (x0, y0). Moreover,

if these conditions hold, then (Duf)(x0, y0) = f1(x0, y0).

Using the Carathéodory Lemma for Directional Derivatives given above

(or alternatively, applying Proposition 4.6 of ACICARA 2Ed to suitable uni-

variate functions), we readily see that directional derivatives of sums, scalar

multiples, products, reciprocals, and radicals possess exactly the same prop-

erties as derivatives of functions of one variable.

p. 90, +11

Proposition 3.5 (Bivariate Mean Value Theorem) can be improved as follows:

Suppose (x0, y0) and (x1, y1) are distinct points in R2. For t ∈ [0, 1], let

x(t) := x0 + t(x1 − x0) and y(t) := y0 + t(y1 − y0). Let

L := {
(
x(t), y(t)

)
∈ R2 : t ∈ (0, 1)} and E := {

(
x(t), y(t)

)
∈ R2 : t ∈ [0, 1]}

denote the (open and closed) line segments joining (x0, y0) to (x1, y1). Let r

be the length of L, and let u be the unit vector (x1 − x0, y1 − y0)/r. Suppose

f : E → R is a continuous function such that Duf exists at each point of L.

Then there is (c, d) ∈ L such that

f(x1, y1)− f(x0, y0) = r(Duf)(c, d).
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We remark that an alternative nomenclature for the Bivariate Mean Value

Theorem would be Mean Value Theorem for a Line Segment in R2. A version

of Mean Value Theorem for a Parallelogram in R2 is given in the Exercises

(as a new exercise on p. 153 mentioned below).

p. 91, +1

The hypotheses of Corollary 3.6 can be weakened as follows.

Let the notations and hypotheses be as in Proposition 3.5. In addition,

assume that Duf(x(t), y(t)) = ∇f(x(t), y(t)) · u for all t ∈ (0, 1).

p. 94, after the proof of Proposition 3.11

Remark. Let a, b, c, d ∈ R with a < b and c < d, and let f : [a, b]×[c, d]→ R.

Suppose f(x, y) = φ(x) +ψ(y) for all (x, y) ∈ [a, b]×[c, d], where φ : [a, b]→ R
is continuous on [a, b] and differentiable on (a, b), and ψ : [c, d] → R is any

function. Then it is easy to see that fxy = 0 on (a, b)×(c, d). Conversely,

suppose f satisfies the hypotheses of Proposition 3.11, and in addition, fxy = 0

on (a, b) × (c, d). Let x0 ∈ (a, b] and y0 ∈ (c, d]. Applying the Rectangular

Mean Value Theorem to the restriction of f to [a, x0]× [c, y0], it follows that

f(x0, y0) + f(a, c) − f(x0, c) − f(a, y0) = 0, that is, f(x0, y0) = f(x0, c) +

f(a, y0) − f(a, c). This equality also holds if x0 = a or y0 = c. Thus we

see that f(x, y) = f(x, c) + f(a, y) − f(a, c) for all (x, y) ∈ [a, b]×[c, d]. Now

define φ : [a, b] → R by φ(x) := f(x, c) for x ∈ [a, b] and ψ : [c, d] → R
by ψ(y) := f(a, y) − f(a, c) for y ∈ [c, d]. Then φ is continuous on [a, b] and

differentiable on (a, b), and f(x, y) = φ(x) + ψ(y) for all (x, y) ∈ [a, b]× [c, d].

p. 95, after Example 3.16

Another example to illustrate fxy 6= fyx: Consider f : R2 −→ R given by

f(x, y) :=


x3y

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

It is easy to see that fx(0, y0) = 0 for any y0 ∈ R and fy(x0, 0) = x0 for any

x0 ∈ R. Hence fxy(0, 0) = 0 6= 1 = fyx(0, 0).

p. 105, at the end of part (ii) of Remarks 3.26

More generally, suppose g1, g2 : D → R are functions such that g1 and g2

are continuous at (x0, y0). It is easy to see that (g1, g2) is a pair of increment

functions associated with f and (x0, y0) if and only if

(x−x0)
(
f1(x, y)−g1(x, y)

)
+(y−y0)

(
f2(x, y)−g2(x, y)

)
= 0 for all (x, y) ∈ D.

Moreover, in that case, f1(x, y0) = g1(x, y0) for all x ∈ R such that (x, y0) ∈ D,

and f2(x0, y) = g2(x0, y) for all y ∈ R such that (x0, y) ∈ D. This follows by

first putting y = y0 and using the continuity of the functions f1 and g1 at

(x0, y0), and then putting x = x0, and using the continuity of the functions

f2 and g2 at (x0, y0). Thus if (f1, f2) and (g1, g2) are two pairs of increment

functions associated with f and (x0, y0), and if D1 := {(x, y) ∈ D : y = y0}
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and D2 := {(x, y) ∈ D : x = x0}, then (f1)|D1
= (g1)|D1

and (f2)|D2
= (g2)|D2

.

p. 108, +8

Proposition 3.33 can be improved as follows: Let D ⊆ R2 and let (x0, y0) be

an interior point of D. Let f : D → R be such that one of fx and fy exists on

D ∩ Sδ(x0, y0) for some δ > 0 and is continuous at (x0, y0), while the other

exists at (x0, y0). Then f is differentiable at (x0, y0).

p. 116, +18

Proposition 3.43 (Classical Version of Bivariate Mean Value Theorem) can be

improved as follows: Let D be a convex subset of R2, and let D◦ denote its

interior. Suppose f : D → R is a continuous function that is differentiable on

D◦. Given any distinct points (x0, y0) and (x1, y1) in D such that the open

line segment L joining them lies in D◦, there is (c, d) ∈ L such that

f(x1, y1)− f(x0, y0) = (x1 − x0)fx(c, d) + (y1 − y0)fy(c, d)

= (x1 − x0, y1 − y0) · ∇f(c, d).

Proof. Since f is differentiable on D◦, by Proposition 3.35 we see that

Duf(x, y) = ∇f(x, y) · u for all (x, y) ∈ D◦ and all unit vectors u in R2.

Thus the desired result follows from Corollary 3.6.

p. 116, −3 to p. 117, +14

Corollary 3.45 and Remark 3.46 are subsumed by the Remark added on page

87, after Fact 3.2 (MVT).

p. 122, −7

The displayed identities in (i) above can be written as follows:[
∂w

∂x
,
∂w

∂y

]
=
dw

dz

[
∂z

∂x
,
∂z

∂y

]
.

p. 151, −1

Additional item in Exercise 7: (viii)
x(x2 − y2)

x2 + y2
.

p. 152, after Exercise 8

New Exercise: Let D ⊆ R2, and let (x0, y0) be an interior point of D. Show

that f is differentiable at (x0, y0) if and only if there are α, β ∈ R and a

function φ : D → R such that φ(x0, y0) = 0, φ is continuous at (x0, y0) and

f(x, y) = f(x0, y0) +α(x− x0) + β(y− y0) +φ(x, y)
√

(x− x0)2 + (y − y0)2

for all (x, y) ∈ D. Moreover, if these conditions hold, then∇f(x0, y0) = (α, β).

Use this result to prove Propositions 3.28, 3.30, 3.33 and 3.35.

p. 153, before Exercise 29

New Exercise: Let a, b, c, d ∈ R with a < b and c < d. Let D := (a, b)× (c, d)

and let (x0, y0) ∈ D. Consider φ : (a, b) → R and ψ : (c, d) → R, and define

f, g : D → R by f(x, y) := φ(x)+ψ(y) and g(x, y) := φ(x)ψ(y) for (x, y) ∈ D.

Prove the following.
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(i) If φ is differentiable at x0 and ψ is differentiable at y0, and then f and

g are differentiable at (x0, y0), and ∇f(x0, y0) =
(
φ′(x0), ψ′(y0)

)
and

∇g(x0, y0) =
(
φ′(x0)ψ(y0), φ(x0)ψ′(y0)

)
.

(ii) If f is differentiable at (x0, y0), then φ is differentiable at x0 and ψ is

differentiable at y0.

(iii) If g is differentiable at (x0, y0), then φ is differentiable at x0 provided

ψ(y0) 6= 0, in which case φ′(x0) = gx(x0, y0)/ψ(y0), while ψ is differen-

tiable at y0 provided φ(x0) 6= 0, in which case ψ′(y0) = gy(x0, y0)/φ(x0).

Neither of the conditions ψ(y0) 6= 0 and φ(x0) 6= 0 can be dropped.

(Hint: Use Fact 3.24 and Proposition 3.25.)

p. 153, before Exercise 29

New Exercise: (Mean Value Theorem for a Parallelogram in R2). Let

(x0, y0), (x1, y1), (x2, y2) be noncollinear points in R2. For s, t ∈ [0, 1], let

x(s, t) := x0 +s(x1−x0)+ t(x2−x0) and y(s, t) := y0 +s(y1−y0)+ t(y2−y0).

Also let x3 := x1 +x2−x0 and y3 := y1 + y2− y0. Consider the parallelogram

E := {
(
x(s, t), y(s, t)

)
: s, t ∈ [0, 1]} with vertices at (xi, yi) for i = 0, 1, 2, 3,

and let P := {
(
x(s, t), y(s, t)

)
∈ R2 : s, t ∈ (0, 1)} be the interior of E. Let u :=

(x1−x0, y1− y0)/r1 and v := (x2−x0, y2− y0)/r2 be unit vectors along two

nonparallel sides of E, where ri denotes the length of the line segment joining

(x0, y0) to (xi, yi), for i = 1, 2. Suppose f : E → R is continuous and moreover,

Duf and D2
uvf exist at each point of P . Show that there is (x∗, y∗) ∈ P such

that f(x3, y3) + f(x0, y0)− f(x1, y1)− f(x2, y2) = r1r2(D2
uvf)(x∗, y∗). (Hint:

Define F : [0, 1] × [0, 1] → R by F (s, t) := f(x(s, t), y(s, t)) for s, t in [0, 1],

and apply Proposition 3.11 to F . Compare Proposition 3.5 and its proof.)

p. 153, after Exercise 29

New Exercise: (Extended Rectangular Mean Value Theorem).

Let a, b, c, d ∈ R with a < b and c < d. Suppose f : [a, b] × [c, d] → R is a

function having continuous partial derivatives of orders 1, 2, 3 and 4. Show

that there is (x1, y1) ∈ (a, b)×(c, d) such that f(b, d)+f(a, c)−f(b, c)−f(a, d)

+(b−a)
(
fx(a, c)−fx(a, d)

)
+(d−c)

(
fy(a, c)−fy(b, c)

)
+(b−a)(d−c)fxy(a, c)

is equal to
(b− a)2(d− c)2

4
fxxyy(x1, y1).

Chapter 4

p. 157, −2 and p. 158, +6

Absolute minimum, absolute maximum, and absolute extremum are also

known as global minimum, global maximum, and global extremum, respec-

tively. This nomenclature is perhaps more appropriate since it juxtaposes with

the usual nomenclature local minimum, local maximum, and local extremum.

p. 158, −3 to −8

The proof of Lemma 4.2 can be improved as follows.

Suppose (Duf)(x0, y0) exists. Let E := {(x0 + tu1, y0 + tu2) : t ∈ R} ∩D. By

the Carathéodory Lemma for Directional Derivatives, there is f1 : E → R



8

such that f(x0 + tu1, y0 + tu2) − f(x0, y0) = t f1(x0 + tu1, y0 + tu2) for

all t ∈ R satisfying (x0 + tu1, y0 + tu2) ∈ D, and f1 is continuous at

(x0, y0). Suppose f has a local minimum at the interior point (x0, y0) of

D. Then there is δ > 0 such that f(x0 + tu1, y0 + tu2) ≥ f(x0, y0) for

all t ∈ (−δ, δ). Hence f1(x0 + tu1, y0 + tu2) ≤ 0 for all t ∈ (−δ, 0) and

f1(x0 + tu1, y0 + tu2) ≥ 0 for all t ∈ (0, δ). The continuity of f1 at (x0, y0)

shows that f1(x0, y0) = limt→0+ f1(x0+tu1, y0+tu2) ≥ 0 and also f1(x0, y0) =

limt→0− f1(x0 + tu1, y0 + tu2) ≤ 0. Thus (Duf)(x0, y0) = f1(x0, y0) = 0.

p. 159, −3

These one-variable methods are useful if the boundary of D consists of line

segments. In general, the boundary of D may be determined by one or more

paths in R2, and we need to find the local extrema of f along each such path.

It turns out that the gradient of f is orthogonal to the tangent vectors of

paths at points of local extema of f along them. Here is a more precise result.

Orthogonal Gradient Theorem. Let D0 ⊆ R2 and (x0, y0) be an interior

point of D0. Let Γ be a path lying in D0 given by (x(t), y(t)), t ∈ [α, β], such

that (x0, y0) = (x(t0), y(t0)) for some t0 ∈ (α, β), and the functions x, y are

differentiable at t0. Suppose f0 : D0 → R is differentiable at (x0, y0) and has

a local extremum at (x0, y0) along Γ . Then (∇f0)(x0, y0) · (x′(t0), y′(t0)) = 0.

Proof. Define F : [α, β] → R by F (t) := f0(x(t), y(t)). Clearly, F has a local

extremum at t0. Also, by the Chain Rule (part (ii) of Proposition 3.51), F is

differentiable at t0 and F ′(t0) = (f0)x(x0, y0)x′(t0) + (f0)y(x0, y0)y′(t0). Now,

by Fact 4.1, F ′(t0) = 0. This yields (∇f0)(x0, y0) · (x′(t0), y′(t0)) = 0.

In view of the Orthogonal Gradient Theorem, to find the absolute extrema

f : D → R, where D ⊆ R2 is closed and bounded, and the boundary of D

is given by one or more paths in R2, we can proceed as follows. Let Γ be

such a path. Consider an open subset D0 of R2 containing D and a function

f0 : D0 → R such that (f0)|D = f . Find points at which f0 is differentiable, a

tangent vector to Γ is defined and is orthogonal to∇f0 at that point. Consider

the values of f at all such points and also at the initial point as well as the ter-

minal point of Γ , and at points where a tangent vector to Γ is not defined or

f0 is not diffentiable, and moreover, at the critical points of f . Then compare

these values. The maximum among these will give the absolute maximum of

f , whereas the minimum among these will give the absolute minimum of f .

p. 161, +14

A part of Example 4.5 (iii) can be reworked using the Orthogonal Gradient

Theorem as follows. Let f(x, y) := x2 − y2 for (x, y) ∈ R2. The boundary of

D corresponds to the path Γ given by (x(t), y(t)), where x(t) := a cos t and

y(t) := b sin t, t ∈ [0, 2π]. Now for t ∈ (0, 2π), (∇f)(x(t), y(t)) · (x′(t), y′(t)) =

(2a cos t, −2b sin t) · (−a sin t, b cos t) = −2(a2 + b2) cos t sin t, and this equals

0 if and only if cos t = 0 or sin t = 0, that is, if and only if t ∈ {π/2, π, 3π/2}.
The initial point as well as the terminal point of Γ is (a, 0), which corresponds
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to t = 0 and t = 2π. Thus the boundary points of D at which the absolute ex-

trema of f on D can possibly be attained are (a, 0), (0, b), (−a, 0), and (0,−b).
Since the value of f at any of these points is either a2 or −b2, and also since

the value of f at its only critical point (0, 0) is 0, it follows that the absolute

maximum of f is a2, which is attained at (±a, 0), while the absolute minimum

of f is −b2, which is attained at (0,±b).

p. 161, before Remark 4.6

Additional example: (iv) Let a, b ∈ R be positive and as in (iii) above, let

D := {(x, y) ∈ R2 : b2x2 + a2y2 ≤ a2b2}. Let f(x, y) := x y for (x, y) ∈ R2.

Let us find the absolute extrema of the continuous function f on the closed

and bounded subset D of R2. To begin with, ∇f(x, y) = (y, x) for (x, y) ∈ R2,

and thus (0, 0) is the only critical point of f in D. As before, the boundary of

D corresponds to the path Γ given by (x(t), y(t)), where x(t) := a cos t and

y(t) := b sin t, t ∈ [0, 2π]. Now for t ∈ (0, 2π), (∇f)(x(t), y(t)) · (x′(t), y′(t)) =

(b sin t, a cos t) · (−a sin t, b cos t) = ab(cos2 t− sin2 t), and this equals 0 if and

only if cos t = ± sin t, that is, if and only if t ∈ {π/4, π, 3π/4, 5π/4, 7π/4}. The

initial point as well as the terminal point of Γ is (a, 0), which corresponds to

t = 0 and t = 2π. The Orthogonal Gradient Theorem shows that the bound-

ary points of D at which the absolute extrema of f on D can possibly be

attained are (a/
√

2, b/
√

2), (−a/
√

2, b/
√

2), (−a/
√

2,−b/
√

2), (a/
√

2,−b/
√

2)

and (a, 0). The value of f at any of these points is ab/2 or −ab/2 or 0. Since

f(0, 0) = 0, we see that the absolute maximum of f is ab/2, which is attained

at (a/
√

2, b/
√

2) as well as at (−a/
√

2,−b/
√

2), while the absolute minimum of

f is −ab/2, which is attained at (−a/
√

2, b/
√

2) as well as at (a/
√

2,−b/
√

2).

Chapter 5

p. 193, +13

In general, if f : [a, b]×[c, d]→ R is any integrable function, then it will be seen

later (in Remark 5.35) that the double integral of f can be interpreted as the

“signed volume” delineated by the surface z = f(x, y), (x, y) ∈ [a, b]× [c, d].

p. 193, before Basic Inequality and Criterion for Integrability

Proposition Let f : [a, b]×[c, d]→ R be a bounded function. Given any ε > 0,

there is δ > 0 such that for every partition P of [a, b]× [c, d] with µ(P ) < δ,

L(f)− ε < L(P, f) ≤ U(P, f) < U(f) + ε

Proof. Let ε > 0 be given. Since U(f) is the infimum of the set of all upper

sums for f and L(f) is the supremum of the set of all lower sums for f , there

are partitions P1 and P2 of [a, b]× [c, d] such that U(P1, f) < U(f) + ε/2 and

L(P2, f) > L(f) − ε/2. Let P0 denote the common refinement of P1 and P2.

Then by part (i) of Proposition 5.3,

U(P0, f) < U(f) +
ε

2
and L(P0, f) > L(f)− ε

2
.
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Let α > 0 be such that |f(x, y)| ≤ α for all (x, y) ∈ [a, b] × [c, d]. Also, let

m0 be the number of grid points of P0, and let ` := 2 (b− a+ d− c) be the

perimeter of [a, b]× [c, d]. Define δ := ε/2α`m0. Suppose P is any partition of

[a, b]× [c, d] such that µ := µ(P ) < δ. Let P ∗ denote the common refinement

of P and P0. Then P ∗ is obtained from P by successive one-step refinements

by points of P0 that are not in P . Since the number of such points is atmost

m0, successive applications of Lemma 5.2 shows that

U(P, f) ≤ U(P ∗, f) +m0αµ` and L(P, f) ≥ L(P ∗, f)−m0αµ`.

Further, in view of part (i) of Proposition 5.3,

U(P ∗, f) ≤ U(P0, f) < U(f) +
ε

2
and L(P ∗, f) ≥ L(P0, f) > L(f)− ε

2
.

Combining the last two sets of inequalities displayed above and noting that

m0αµ` < (ε/2), thanks to our choice of δ, we see that

L(f)− ε < L(P, f) ≤ U(P, f) < U(f) + ε. ut

p. 194, −12

It may be better to write (in the usual order of factors of the summands)

n∑
i=1

n∑
j=1

mi,j(f)(xi − xi−1)(yj − yj−1) = (d− c)
n∑
i=1

mi(φ)(xi − xi−1).

p. 195, add to Proposition 5.6 (Riemann Condition)

Furthermore, if f is integrable, then for every ε > 0, there is δ > 0 such that

U(P, f)− L(P, f) < ε for every partition P of [a, b]× [c, d] with µ(P ) < δ.

Proof. Let ε > 0 be given. By the Proposition added on page 193, there is

δ > 0 such that L(f) − (ε/2) < L(P, f) ≤ U(P, f) < U(f) + (ε/2) for every

partition P of [a, b]× [c, d] with µ(P ) < δ. This implies the desired result since

L(f) = U(f) if f is integrable.

p. 196, after Example 5.7

An immediate consequence of the Riemann Condition (Proposition 5.6) is the

following. Here and hereinafter, by a sequence (Pn) of partitions of [a, b]×[c, d]

we mean a map that associates to each n ∈ N, a partition Pn of [a, b]× [c, d].

Corollary Let f : [a, b]×[c, d]→ R be a bounded function. If (Pn) is a sequence

of partitions of [a, b]× [c, d] such that µ(Pn)→ 0, then L(Pn, f)→ L(f) and

U(Pn, f)→ U(f).

Moreover, we have the following sequential characterization of integrability:

f is integrable if and only if there is a sequence (Pn) of partitions of [a, b]×[c, d]

such that U(Pn, f)− L(Pn, f)→ 0. In this case,

L(Pn, f)→
∫∫

[a,b]×[c,d]
f and U(Pn, f)→

∫∫
[a,b]×[c,d]

f.
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Proof. Let ε > 0 be given. Then there is δ > 0 satisfying the conclusion of the

Proposition added on page 193. Now, let (Pn) be a sequence of partitions of

[a, b]× [c, d] such that µ(Pn)→ 0. Then there is n0 ∈ N such that 0 ≤ µ(Pn) <

δ for all n ≥ n0. It follows that

0 ≤ L(f)− L(Pn, f) < ε and 0 ≤ U(Pn, f)− U(f) < ε for all n ≥ n0,

Hence L(Pn, f)→ L(f) and U(Pn, f)→ U(f).

To prove the sequential characterization, first suppose f is integrable. Then

we can use the Riemann condition with ε = 1/n for each n ∈ N to obtain a

desired sequence of partitions. Conversely, suppose there is a sequence (Pn) of

partitions of [a, b]× [c, d] such that U(Pn, f)− L(Pn, f)→ 0. Then for every

ε > 0, we can find n0 ∈ N such that U(Pn, f) − L(Pn, f) < ε for all n ≥ n0.

So the Riemann condition is satisfied with Pε = Pn0
. Hence f is integrable.

Finally, suppose f is integrable and (Pn) is a sequence of partitions such

that U(Pn, f) − L(Pn, f) → 0. Let I(f) :=
∫∫

[a,b]×[c,d] f and for n ∈ N, let

δn := U(Pn, f)− L(Pn, f). Then

0 ≤ I(f)− L(Pn, f) ≤ δn and 0 ≤ U(Pn, f)− I(f) ≤ δn for all n ∈ N.

Since δn → 0, it follows that L(Pn, f)→ I(f) and U(Pn, f)→ I(f). ut

p. 201, +1

The proof of parts (i) and (ii) of Proposition 5.12 can be simplified by using

the Corollary added on page 196.

p. 211, before Remark 5.21

While part (i) of the FTC (Fact 5.18) for Riemann integrable functions on

[a, b] provides the most widely used method of evaluating Riemann integrals,

this is not the case for the analogue of the FTC for double integrals given in

part (i) of Proposition 5.20. This is partly because the analogue itself is not

widely known. Also, while in the case of a Riemann integrable function on

[a, b], one needs to think of a function whose derivative is the given function

on (a, b), in the case of an integrable function f on [a, b] × [c, d], one needs

to conjure up a function F such that Fxy = f on (a, b) × (c, d). The latter

is admittedly a more challenging task. Nonetheless, if one can come up with

such a function F , then the evaluation of the double integral of f is extremely

easy. The following example illustrates this method.

Example. Let R := [0, 1]× [0, 1] and let f : R→ R be defined by

f(x, y) :=
1

(1 + x+ y)3/2
for (x, y) ∈ R.

Consider F : R→ R and g : R→ R defined by

F (x, y) := −4(1 + x+ y)1/2 and g(x, y) :=
−2

(1 + x+ y)1/2
for (x, y) ∈ R.
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Then it is easy to see that Fx = g and Fxy = gy = f on (0, 1) × (0, 1).

Consequently, by part (i) of Proposition 5.20,∫∫
[0,1]×[0,1]

f = F (1, 1)− F (1, 0)− F (0, 1) + F (0, 0) = −4(
√

3− 2
√

2 + 1).

p. 214, +11

If f : D → R is assumed to be continuous (instead of integrable), then a simple

proof of part (ii) of Proposition 5.26 (Double Integration by Substitution)

can be given follows. Let R := [φ(α), φ(β)] × [ψ(γ), ψ(δ)]. Then in Case 1,

R = [a, b]× [c, d] and |J(Φ)| = J(Φ), in Case 2, R = [a, b]× [d, c] and |J(Φ)| =
−J(Φ), in Case 3, R = [b, a] × [c, d] and |J(Φ)| = −J(Φ), and in Case 4,

R = [b, a] × [d, c] and |J(Φ)| = J(Φ). Thus, in view of our convention stated

in Remark 5.11, the conclusion of part (ii) is immediate from part (i).

p. 220, −1

Additional Example: Consider the function f : [0, 1]×[0, 1] → R defined by

f(x, y) := xy(x2 − y2)/(x2 + y2)3 if (x, y) 6= (0, 0) and f(0, 0) := 0. Since

f(1/n, 1/2n) = 24n2/125 → ∞ and f(1/2n, 1/n) = −24n2/125 → −∞, the

function f is neither bounded above nor bounded below. Hence the double

integral of f is not defined. Now,
∫ 1

0
f(0, y)dy =

∫ 1

0
0dy = 0, and for x ∈ (0, 1],∫ 1

0

f(x, y)dy =

∫ 1

0

xy(x2 − y2)

(x2 + y2)3
dy =

1

2

∫ 1+x2

x2

x(2x2 − u)

u3
du =

x

2(1 + x2)2
,

where the second equality is obtained using the substitution u = x2+y2. Thus∫ 1

0

(∫ 1

0

f(x, y)dy

)
dx =

∫ 1

0

x

2(1 + x2)2
dx =

1

4

∫ 2

1

1

t2
dt =

1

8
.

By interchanging the roles of x and y, we obtain
∫ 1

0

(∫ 1

0
f(x, y)dx

)
dy = −1/8.

So we see that both the iterated integrals exist without being equal.

p. 222, before Riemann Double Sums

Remark. A result related to Proposition 5.28 (Fubini’s Theorem on Rectan-

gles), but not involving a double integral, was proved by G. Fichtenholz and,

independently, by L. Lichtenstein in 1910. It can be stated as follows.

Theorem Let a, b, c, d ∈ R with a ≤ b and c ≤ d, and let f : [a, b]×[c, d]→ R
be a bounded function such that for each fixed y ∈ [c, d], the function given

by x 7−→ f(x, y) is integrable on [a, b], and for each fixed x ∈ [a, b], the

function given by y 7−→ f(x, y) is integrable on [c, d]. Then the function

F : [c, d]→ R defined by F (y) :=
∫ b
a
f(x, y)dx is integrable on [c, d] and the

function G : [a, b]→ R defined by G(x) :=
∫ d
c
f(x, y)dy is integrable on [a, b],

and moreover,
∫ d
c
F (y)dy =

∫ b
a
G(x)dx, that is,∫ d

c

(∫ b

a

f(x, y)dx

)
dy =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

For a proof, we refer to Theorem 16.6.2 in J. Lewin’s book An Interactive

Introduction to Mathematical Analysis, third ed., Cambridge University Press,
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Cambridge, 2014. For a weaker version of this result (in which the integrability

of the functions F and G is assumed), see Proposition 10.50 of ACICARA2Ed.

p. 222, -11 to p. 225, -1

Alternative treatment of Riemann Double Sums:

Let f : [a, b] × [c, d] → R be an integrable function. As a consequence of

the Riemann condition, we have seen that if (Pn) is a sequence of parti-

tions of [a, b]× [c, d] such that µ(Pn)→ 0, then L(Pn, f)→
∫∫

[a,b]×[c,d] f and

U(Pn, f) →
∫∫

[a,b]×[c,d] f . (See Corollary added on page 196.) Although we

have made good use of the Riemann Condition (and its corollary) to prove

several interesting results (including Proposition 5.12) earlier in this section, a

major difficulty arises in calculating the approximations L(Pn, f) and U(Pn, f)

of the double integral of f . For a given partition P , the calculation of U(P, f)

and L(P, f) involves finding suprema and infima of f over many subrectangles

of [a, b]× [c, d]. This task is rarely easy, and performing it for a large number

of partitions in the sequence (Pn) would be challenging. To overcome this dif-

ficulty, we observe that evaluating f at points of [a, b] × [c, d] is much easier

than finding suprema and infima of f over subrectangles. With this in mind,

we introduce the following variant of lower and upper double sums.

Let P := {(xi, yj) : i = 0, 1, . . . , n and j = 0, 1, . . . , k} be a partition of

[a, b] × [c, d], and let T be a tag set associated with P , by which we mean

a set T = {(si, tj) : i = 1, . . . , n and j = 1, . . . , k}, where si ∈ [xi−1, xi] for

i = 1, . . . , n and tj ∈ [yj−1, yj ] for j = 1, . . . , k. Then

S(P, T , f) :=

n∑
i=1

k∑
j=1

f(si, tj)(xi − xi−1)(yj − yj−1)

is called a Riemann double sum for f corresponding to the partition P and

the tag set T . It is clear that L(P, f) ≤ S(P, T , f) ≤ U(P, f) for every tag set

T associated with the partition P . In some special cases, L(P, f) or U(P, f)

can itself be a Riemann double sum. For example, when f is monotonic or

continuous, the proof of Proposition 5.12 shows that for any partition P of

[a, b]× [c, d], the lower sum L(P, f) as well as the upper sum U(P, f) is itself

a Riemann double sum S(P, T , f) for some tag set T associated with P .

It will turn out that the integrability of f can be characterized in terms of

Riemann double sums. But first we show how Riemann double sums can be

used to approximate the double integral of an integrable function.

Proposition 1 Let f : [a, b] × [c, d] → R be a bounded function. Given any

ε > 0, there is δ > 0 such that for every partition P of [a, b] × [c, d] with

µ(P ) < δ, and for every tag set T associated with P ,

L(f)− ε < S(P, T , f) < U(f) + ε,

and, in particular, if f is integrable, then∣∣∣∣∣S(P, T , f)−
∫∫

[a,b]×[c,d]
f

∣∣∣∣∣ < ε.
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Proof. Let ε > 0 be given. By the Corollary added on page 196, there is δ > 0

such that for every partition P of [a, b]× [c, d] with µ(P ) < δ,

L(f)− ε < L(P, f) ≤ U(P, f) < U(f) + ε.

Let P be a partition of [a, b] × [c, d] satisfying µ(P ) < δ, and let T be a

tag set associated with P . Since L(P, f) ≤ S(P, T , f) ≤ U(P, f), and since

L(f) = U(f) when f is integrable, the desired results follow. ut
Corollary 2 Let f : [a, b]× [c, d]→ R be an integrable function, and let (Pn)

be a sequence of partitions of [a, b] × [c, d] such that µ(Pn) → 0. If Tn is any

tag set associated with Pn for n ∈ N, then

S(Pn, Tn, f)→
∫∫

[a,b]×[c,d]
f.

Proof. Let ε > 0 be given. Then there is δ > 0 satisfying the conclusion of

Proposition 1. Since µ(Pn)→ 0, there is n0 ∈ N such that 0 ≤ µ(Pn) < δ for

all n ≥ n0. Let Tn be any tag set associated with Pn for n ∈ N. Since f is

integrable, it follows that∣∣∣∣S(Pn, Tn, f)−
∫∫

[a,b]×[c,d]
f

∣∣∣∣ < ε for all n ≥ n0.

Hence the desired result follows. ut
Remarks 3

(i) It may be tempting to define the mesh of a partition P = {(xi, yj) :

i = 0, 1, . . . , n and j = 0, 1, . . . , k} of [a, b] × [c, d] to be the maximum of the

areas of subrectangles induced by P , that is, max{(xi − xi−1)(yj − yj−1) :

i = 1, . . . , n and j = 1, . . . , k}. However, with this definition, Corollary 2

does not hold. To see this, consider the bivariate Thomae function defined

in Example 5.30 (iv). This is an integrable function f : [0, 1] × [0, 1] → R
with the property that f(0, y) = 1 = f(1, y) for y ∈ Q ∩ [0, 1] and I(f) = 0,

where I(f) denotes the double integral of f on [0, 1] × [0, 1]. If for k ∈ N,

we let Pk := {(i, j/k) : i = 0, 1 and j = 0, 1, . . . k}, then Pk is a partition of

[0, 1] × [0, 1] such that the area of each subrectangle induced by Pk is 1/k,

which tends to 0 as k → ∞. Let Tk := {(1, j/k) : j = 1, . . . , k} for k ∈ N.

Then the Riemann double sum S(Pk, Tk, f) =
∑1
i=1

∑k
j=1 f(i, j/k)(1/k) is

equal to 1 for every k ∈ N. In particular, S(Pk, Tk, f) 6→ I(f). This example

shows why it is important to define the mesh of a partition as the maximum

of the lengths of sides of the subrectangles induced by it. An alternative, and

essentially equivalent, definition would be to define the mesh of a partition as

the maximum of the diameters of the subrectangles induced by it.

(ii) Corollary 2 overcomes the difficulty mentioned at the beginning of

this subsection. For n ∈ N, one chooses a partition Pn whose mesh tends

to zero as n → ∞ and picks a suitable tag set for each of them. It may be



15

emphasized that the only requirement here is that µ(Pn) → 0; the actual

partition points and the points in the tag sets at which f is evaluated can

be chosen with sole regard to the convenience of summation. In practice, it

is often convenient to use the partition Pn,n of the given rectangle into n2

equal parts, and the tag sets consisting of the upper right corner points, or

sometimes the centroids of the subrectangles corresponding to the partition.

This enables us to find approximations of the double integral of f when we

are not able to evaluate it exactly. For example, if we are not in a position

to find a function F : [a, b] × [c, d] → R such that Fxy = f , (so that part

(i) of Proposition 5.20 becomes inoperative as far as the evaluation of the

double integral of f is concerned), or if the methods of Double Integration

by Parts and Double Integration by Substitution are ineffective, or if Fubini’s

Theorem on Rectangles cannot be used, then we may resort to calculating the

double integral of f approximately. On the other hand, if the double integral

of f can indeed be evaluated exactly, then limits of certain Riemann double

sums for f can be found. In Chapter 7, after introducing the concept of a

“double sequence”, we shall see that Corollary 2 can be used to find the limits

of certain double sequences as well. The following examples illustrate these

observations.

Examples 4

(i) Let f : [0, 1] × [0, 1] → R be defined by f(x, y) := 1/(1 + x2 + y2).

Clearly, f is continuous and hence integrable on [0, 1]× [0, 1]. Let n ∈ N and

let Pn,n := {(i/n, j/n) : i, j = 0, 1, . . . , n} be the partition of [0, 1]× [0, 1] into

n2 equal parts, and let Tn,n := {(i/n, j/n) : i, j = 1, . . . , n} be the tag set

consisting of the upper right corner points associated with the partition Pn,n.

Then µ(Pn,n) = 1/n→ 0 and S(Pn,n, Tn,n, f) is equal to

n∑
i=1

n∑
j=1

1

1 + (i/n)2 + (j/n)2

(
i

n
− i− 1

n

)(
j

n
− j − 1

n

)
=

n∑
i=1

n∑
j=1

1

n2 + i2 + j2
.

Hence by Corollary 2,

n∑
i=1

n∑
j=1

1

n2 + i2 + j2
→
∫∫

[0,1]×[0,1]

1

1 + x2 + y2
d(x, y).

Thus
∑n
i=1

∑n
j=1 1/(n2 + i2 + j2) provides an approximation of the double

integral
∫∫

[0,1]×[0,1] d(x, y)/(1 + x2 + y2) for large n ∈ N.

(ii) Consider

an :=
1√
n

n∑
i=1

n∑
j=1

1

(n+ i+ j)3/2
for n ∈ N.

Then

an =

n∑
i=1

n∑
i=1

1(
1 + (i/n) + (j/n)

)3/2 ( in − i− 1

n

)(
j

n
− j − 1

n

)
for n ∈ N.



16

We observe that an = S(Pn,n, Tn,n, f), where f(x, y) := 1/(1 + x + y)3/2

for (x, y) ∈ [0, 1] × [0, 1], and Pn,n, Tn,n are as in (i) above. Using part (i)

of Proposition 5.20, we have seen that the double integral of f is equal to

−4(
√

3−2
√

2+1). (See the Addition on page 211, before Remark 5.21.) Since

µ(Pn,n) = 1/n→ 0, Corollary 2 shows that limn→∞ an = −4(
√

3− 2
√

2 + 1).

(iii) Consider

an :=
1

n4

n∑
i=1

n∑
j=1

(i+ j)2 for n ∈ N.

Then

an =

n∑
i=1

n∑
j=1

(
i

n
+
j

n

)2(
i

n
− i− 1

n

)(
j

n
− j − 1

n

)
for n ∈ N.

We observe that an = S(Pn,n, Tn,n, f), where f(x, y) := (x+ y)2 for (x, y) in

[0, 1] × [0, 1], and Pn,n, Tn,n are as in (i) above. Since µ(Pn,n) = 1/n → 0,

Corollary 2 and Proposition 5.28 show that the limit of the given sequence

(an) is equal to∫∫
[0,1]×[0,1]

f =

∫ 1

0

(∫ 1

0

(x+ y)2dx

)
dy =

1

3

∫ 1

0

(1 + 3y + 3y2)dy =
7

6
.

We can verify this answer by writing

n∑
i=1

n∑
j=1

(i+ j)2 =

n∑
i=1

n∑
j=1

(i2 + 2ij + j2)=n

n∑
i=1

i2 + 2

( n∑
i=1

i

)( n∑
j=1

j

)
+ n

n∑
j=1

j2

and then using the well-known formulas for the sum of the first n positive

integers and for the sum of squares of the first n positive integers, to obtain

an =
2

n4

[
n
n(n+ 1)(2n+ 1)

6
+

(
n(n+ 1)

2

)2
]

=
n2(n+ 1)(7n+ 5)

6n4
. �

We end this section with a result of theoretical interest. It is sometimes

ascribed to Darboux, and it can be used to provide an alternative definition

of the double integral of a bounded function as a “limit of a double sum”.

In particular, it gives a condition, in terms of Riemann double sums, for the

integrability of a bounded real-valued function on [a, b]×[c, d]. It is noteworthy

that this result does not involve the notion of mesh of a partition.

Proposition 5 (Darboux Theorem). Let f : [a, b]× [c, d]→ R be a bounded

function. Then f is integrable if and only if there is r ∈ R satisfying the

condition that for every ε > 0, there is a partition P of [a, b]× [c, d] such that

|S(P, T , f)− r| < ε for all tag sets T associated with P.

In this case, r =
∫∫

[a,b]×[c,d] f .
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Proof. If f is integrable, then by Proposition 1, the stated condition holds

with r =
∫∫

[a,b]×[c,d] f .

Conversely, suppose r ∈ R satisfies the stated condition. Let ε > 0 be given.

Then there is a partition P := {(xi, yj) : i = 0, 1, . . . , n and j = 0, 1, . . . , k}
of [a, b]× [c, d] such that

|S(P, T , f)− r| < ε for all tag sets T associated with P.

Now, let A := (b − a)(d − c) =
∑n
i=1

∑k
j=1(xi − xi−1)(yj − yj−1). Also, for

each i = 1, . . . , n and j = 1, . . . , k, let

Mi,j(f) := sup{f(x, y) : (x, y) ∈ [xi−1, xi]× [yj−1, yj ]}

and

mi,j(f) := inf{f(x, y) : (x, y) ∈ [xi−1, xi]× [yj−1, yj ]}.

Then there are (si, tj) and
(
s̃i, t̃j

)
in [xi−1, xi]× [yj−1, yj ] such that

Mi,j(f) < f(si, tj) + ε and mi,j(f) > f
(
s̃i, t̃j

)
− ε.

If we consider the tag sets T := {(si, tj) : i = 1, . . . , n and j = 1, . . . , k} and

T̃ := {(s̃i, t̃j) : i = 1, . . . , n and j = 1, . . . , k}, then we readily see that

U(P, f) < S(P, T , f) + εA and L(P, f) > S(P, T̃ , f)− εA.

Since L(P, f) ≤ L(f) ≤ U(f) ≤ U(P, f), we obtain

S(P, T , f)− εA < L(f) ≤ U(f) < S(P, T̃ , f) + εA.

But S(P, T , f) > r − ε and S(P, T̃ , f) < r + ε. It follows that

r − ε(1 +A) < L(f) ≤ U(f) < r + ε(1 +A).

Since ε > 0 is arbitrary, we see that r ≤ L(f) ≤ U(f) ≤ r. Consequently,

L(f) = U(f) = r. Thus f is integrable and
∫∫

[a,b]×[c,d] f(x, y)d(x, y) = r.

p. 234, before Remark 5.40

Example 5.39 (iii): If a path in R2 is given by differentiable functions with

bounded derivatives, then its image is of content zero. More precisely, consider

a path in R2 given by (x(t), y(t)), t ∈ [α, β], where the real-valued functions

x, y are continuous on [α, β] and differentiable on (α, β), and moreover, their

derivatives x′, y′ are bounded on (α, β). Then the set E := {(x(t), y(t)) ∈ R2 :

t ∈ [α, β]} is of content zero. To see this, let n ∈ N and consider the partition

of [α, β] into n equal parts. For i = 1, . . . , n, let si denote the mid-point of the

ith subinterval of this partition. Let t ∈ [α, β]. Then there is i ∈ {1, . . . , n}
such that |t − si| ≤ (β − α)/2n. By Fact 3.2 (MVT), there are c1 and c2

between t and si such that

x(t)− x(si) = x′(c1)(t− si) and y(t)− y(si) = y′(c2)(t− si).
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Let M ∈ R be such that |x′(u)| ≤M and |y′(u)| ≤M for all u ∈ (α, β). Then

|x(t)− x(si)| ≤
M(β − α)

2n
and |y(t)− y(si)| ≤

M(β − α)

2n
.

It follows that the point (x(t), y(t)) lies in the square Si whose centroid is at

(x(si), y(si)), whose sides are parallel to the coordinate axes and whose area

is equal to M2(β − α)2/n2. Thus the set E is contained in the union of the n

squares S1, . . . , Sn, the sum of whose areas is equal to M2(β − α)2/n. Given

any ε > 0, we may choose n ∈ N such that n > M2(β − α)2/ε. Then E is

contained in the union of the n squares S1, . . . , Sn, the sum of whose areas is

less than ε. Hence the set E is of content zero.

p. 282, after Exercise 5

New Exercise: Define f, g : [0, 1]× [0, 1]→ R by f(x, y) := 1/(1+x+y)1/2 and

g(x, y) := 1/(1+x+y) for (x, y) ∈ [0, 1]× [0, 1]. Find
∫∫

[0,1]×[0,1] f(x, y)d(x, y)

and
∫∫

[0,1]×[0,1] g(x, y)d(x, y) by using part (i) of Proposition 5.20, and also

by using Proposition 5.28.

New Exercise: Define f : [−1, 1] × [−1, 1] → R by f(x, y) := ex
2y2 for (x, y)

in [−1, 1]× [−1, 1]. Find approximations of
∫∫

[−1,1]×[−1,1] f(x, y)d(x, y) using

Riemann double sums obtained by dividing the rectangle [−1, 1]× [−1, 1] into

n2 equal parts for n ∈ N.

New Exercise: Find the limits of the sequences (an) and (bn), if for n ∈ N,

an :=
1

n

n∑
i=1

n∑
j=1

1

(n+ i+ j)
and bn :=

1

n9

n∑
i=1

n∑
j=1

i3j4.

p. 282, before Exercise 6

New Exercise: Let D be a bounded subset of R2, and let f and g be real-valued

integrable functions on D. Show that the real-valued functions max{f, g} and

min{f, g} are also integrable on D.


