A Course in Multivariable Calculus and Analysis Errata

Last Update: May 30, 2022
In the following, $\mathbf{p} . \mathbf{i}$, line $+\mathbf{j}$ means the j th line from the top on page i, whereas \mathbf{p}. \mathbf{i}, line $-\mathbf{j}$ means the j th line from the bottom on page i. The text to be changed appears after the word Change, while the corrected version appears after the word TO.
p. 5, line + 16: Change least upper bound TO greatest lower bound
p. 10, line - 12: Change $f(x, y) \geq 0$ to $f(x, y)>0$
p. 34, line -6: CHANGE handled them with TO handled with
p. 45, line $+\mathbf{2}$: Change If to Let $a_{n} \rightarrow a$. If
p. 85, line $\mathbf{- 1 0}$: Change D тo D_{1}
p. 88, line $+\mathbf{5}$: Change $x_{0} \in[c, d]$ TO $x_{0} \in[a, b]$
p. 97, line +4 : Change $f_{i, j}$ TO $g_{i, j}$
p. 97, line - 13: Change $u: D \rightarrow \mathbb{R}^{2}$ то $u: D \rightarrow \mathbb{R}$
p. 97, line - $\mathbf{8}$: Change f Change g
p. 117, line $+\mathbf{7}$: CHANGE differentiable TO nonconstant differentiable
p. 117, llne $+\mathbf{8}$: Change does not vanish to vanishes
p. 118, line - 10: Change $f(x, y)$ TO $f\left(x_{1}, y_{1}\right)$
p. 118, line - 10: CHANGE AT TWO PLACES $k \frac{\partial}{\partial x}$ TO $k \frac{\partial}{\partial y}$
p. 122, line $-\mathbf{5}$: Change $\left[\begin{array}{c}\frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial t}\end{array}\right]$ то $\left[\begin{array}{c}\frac{d x}{\partial t} \\ \frac{d y}{\partial t}\end{array}\right]$
p. 123, line - 3: Change (at two places) $\frac{d F}{d z}$ TO $\frac{d g}{d z}$
p. 124, lines $+\mathbf{1 0},+\mathbf{1 1}, \mathbf{- 1 4}, \mathbf{- 1 3}:$ CHANGE $\frac{\partial F}{\partial x}$ TO $\frac{\partial f}{\partial x}$
p. 154, line $+\mathbf{9}$: Change $\sqrt{h^{2}+k^{2}}$ то $|h|+|k|$
p. 156, line -2: Change $(y-b)(z-c)$ TO $(y-c)(z-p)$
p. 163, line $+\mathbf{1 5}$: CHANGE vanishes TO is equal to the zero vector
p. 163, line +20: CHANGE $\nabla f=\lambda \nabla g$ TO $\nabla f(x, y)=\lambda \nabla g(x, y)$
p. 165, line +10 : CHANGE $\nabla f=\lambda \nabla g$ TO $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$
p. 165, line - 17: CHANGE ∇g TO $\nabla g(x, y, z)$
p. 166, line +22: CHANGE $\mu h(x, y, z)$ TO $\mu \nabla h(x, y, z)$
p. 187, line -10 : Change $1 / n, 1 / k$ то $(b-a) / n,(d-c) / k$
p. 202, line $+\mathbf{2}$: Change P to P_{ϵ}
p. 202, line - 4: Change $f(x, y))$ то $f(x, y)$
p. 213, line +11: Change R то \mathbb{R}
p. 213, line - 6: CHANGE 5.19 TO 5.23
p. 219, line -6: ChANGE $0 \leq a<b$ and $0 \leq c<d$ TO $0<a<b$ and $0<c<d$
p. 220, line - 13: Change Moreover, by Proposition 5.28, we have To Moreover,
p. 222, line -4: Change subintervals to subrectangles
p. 223, line $+\mathbf{1}$: CHANGE subintervals TO subrectangles
p. 223, lines $\mathbf{- 1 3},-\mathbf{9}$: CHANGE any TO an arbitrary
p. 223, line - 8: Change double integrable TO integrable
p. 224, line $+\mathbf{3}$: Change $[a, b) \times[c, d)$ TO $[a, b] \times[c, d]$
p. 238, line - 19: ChANGE iterated integral TO integral
p. 245, line $+\mathbf{1 4}$: CHANGE and $D_{1} \cap D_{2}$ are TO and $D_{1} \cap D_{2}$ is
p. 268, line $+\mathbf{1 8}$: Change Exercise 43 to Exercise 43 of Chapter 3
p. 272, line - 10: Change $d(y, z)$ то $d(x, y)$
p. 272, line -9: Change $f(x, y, z)$ TO $\int_{\phi_{1}(x, y)}^{\phi_{2}(x, y)} f(x, y, z) d z$
p. 275, line $+\mathbf{1 6}$: Change f TO $f \circ \Phi$
p. 278: Change Figure 5.26 to this Revised Figure
p. 282, line - 3: Change $x \leq y$ то $y \leq x$
p. 285, line $+\mathbf{1 9}$: Change $49 / 192$ тo $49 / 576$
p. 302, line - 16: CHANGE D, $y z$-plane TO D by the $y z$-plane
p. 303, line $+\mathbf{1 1}$: Change $[-\pi, \pi] \times\left[f_{1}(x), f_{2}(x)\right]$ To $\left[f_{1}(x), f_{2}(x)\right] \times[-\pi, \pi]$
p. 349, line -5: Change the the to the
p. 350, line $+\mathbf{1 0}$: Change of to under
p. 359, line -6: CHANGE tetrahedron D TO tetrahedral region D in \mathbb{R}^{3}
p. 359, line -4: CHANGE polyhedron TO polyhedral region
p. 416, line - 13: Change Proposition 5.19 то Proposition 5.20

From p. 422, line -6 to p. 425, line -11 : CHANGE the entire text from the statement of the Integral Test until the beginning of the next subsection то THIS Revised Text
p. 438 , line $+\mathbf{1 0}$: Change if and only if то if and only if there is
p. 442, lines $+\mathbf{1},-\mathbf{1}$: CHANGE subsets TO subset
p. 456, line +3 : Change diverge to ∞. (Hint: Divergence of to converge if $p>1$ and diverge to ∞ if $p \leq 1$. (Hint: Convergence as well as divergence of
p. 471, line - 6, left column: Change area, 186, 241 To area, 186, 241, 441
p. 473, line $+\mathbf{1 2}$, right column: DROP iterated series, 381
p. 475 , line +10 , left column: CHANGE smooth TO smooth curve

Please notify the authors if you know of errata not on the above list. Please write to any one or both of the following:
srg@math.iitb.ac.in bvl@math.iitb.ac.in
A continuously updated version of the errata is available at:
http://www.math.iitb.ac.in/~srg/acimc/

