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Coding Theory has its origins in the problem of information transmission across
what is called a noisy channel. A solution is found by encoding the message by suit-
ably adding redundancies in such a way that errors can be detected and corrected.
In effect, the message may consist of (up to) k symbols from a finite alphabet set Q
(for example, Q = {0, 1}) and encoding is simply an injective map Qk → Qn, where
n ≥ k. The image of this map thus consists of the codewords, and these constitute
an error correcting code or simply, a code of length n. When Q is a finite field
and the encoding is given by a linear map, the corresponding code is said to be
linear. In these lectures, we shall focus mainly on certain mathematical aspects
of the theory of error correcting codes, especially linear codes which are the most
widely studied classes of codes. For more on information theoretic aspects and the
origins of coding theory, we refer to the first section of [14, Ch. 1] and the references
therein. It may also suffice to glance at the table of contents and over 2000 pages of
this Handbook [14] or the 750 page treatise of MacWilliams and Sloane [13] which
is of an older vintage, to have some idea of the expanse the subject and deduce
an obvious corollary that these notes are only a selective, and not comprehensive,
introduction to the subject.

These notes are meant for limited distribution to participants of the AIS/IST on Gröbner Bases
and Their Applications at IIIT Delhi during December 11–23, 2017 as an accompaniment to the

lectures of the author on Gröbner Bases and Coding Theory. Much of the material is borrowed
from the informal notes of a series of six lectures given at the Advanced Instructional School on
Algebraic Combinatorics held at the Indian Statistical Institute, Bangalore during June 24–July
13, 2013. Thanks are due to Mrinmoy Datta, Kannappan Sampath and Prasant Singh for taking

and TeXing a preliminary version of the Bangalore notes. These notes will only cover some basic
aspects of coding theory. For connections to Gröbner bases, we refer to the notes of Carvalho [5].
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1. Basic Notions

We begin with the general definition of (possibly nonlinear) codes. Throughout
this section Q denotes a finite set and n a positive integer.

1.1. Definition. A code of length n over Q is a subset of Qn. If C is a code of
length n, then the number of elements in C (denoted |C|) is called the size of C.
Further, if q = |Q|, then C is called a q-ary code and k = logq |C| is called the
dimension of C. The ratio k/n is called the rate of transmission of C. Usually, the
elements of Q are called alphabets and the elements of C are called codewords. We
often write “C is a q-ary (n,M)-code over Q” to mean that C is a code of length
n and size M over an alphabet set of size q.

There is a simple, but useful, notion of distance in the ambient space Qn.

1.2. Definition. For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Qn, the Ham-
ming distance between x and y is the number of positions where they differ, i.e.,

d(x, y) = |{i : xi 6= yi}| .

It is easy to see that d defines a metric on Qn.

1.3. Definition. Let C be a code of length n over Q. The minimum distance of
C is denoted by d(C) and defined by

d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

If d = d(C), then the ratio d/n is called the relative distance of C.

Evidently, the rate as well as the relative distance of a code are positive real
numbers ≤ 1. It is usually of interest to construct codes for which the rate as
well as the relative distance are as large as possible. These are often conflicting
requirements, and moreover there are several limitations. The simplest of these is
the following.

1.4. Proposition (Singleton bound). Let Aq(n, d) denote the maximum possible
size of a q-ary code of length n and minimum distance d. Then Aq(n, d) ≤ qn−d+1.
In other words, for any q-ary code of length n, dimension k and minimum distance
d, we must have k ≤ n− d+ 1 or equivalently, d ≤ n− k + 1.

Proof. Let C be a code of length n over a set Q with q elements. If d = d(C),
then the projection map C −→ Qn−d+1 on the last n− d+ 1 coordinates, given by
(x1, . . . , xn) 7→ (xd, xd+1, . . . , xn), must be injective. Hence |C| ≤ qn−d+1. �

2. Linear Codes

By Fq we shall denote “the” finite field with q elements. As before, n denotes a
positive integer.

2.1. Definition. A q-ary linear code of length n is a subspace of Fnq .
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Note that if C is a q-ary linear code of length n, then the dimension of C is
dimFq

C. Henceforth, we will usually write “C is a [n, k]q- code” to mean that C is
a q-ary linear code of length n and dimension k.

2.2. Definition. For x = (x1, . . . , xn) ∈ Fnq , the support of x is the set

supp(x) = {i : xi 6= 0}

and the Hamming weight of x is the nonnegative integer

wH(x) = | supp(x)| = |{i : xi 6= 0}|.

Note that d(x, y) = wH(x− y) for any x, y ∈ Fnq . Thus for a linear code C,

d(C) = min{wH(x) : x ∈ C and x 6= 0}.

In other words, the minimum distance of a linear code is the minimum weight of
its nonzero codewords. For a linear code C, elements x ∈ C with wH(x) = d are
called minimum weight codewords of C.

2.3. Definition. A [n, k]q-code C is said to be a MDS code or a maximum distance
separable code if the Singleton bound is met, i.e., if d(C) = n− k + 1.

2.4. Exercise. Given positive integers k, n with k ≤ n determine (i.e., find a
formula for) the number of [n, k]q-codes.

2.5. Problem.1 Given n, k, q as above, determine the number of [n, k]q-MDS codes.

2.6. Exercise. Solve the above problem for k = 1 and k = 2.

In coding theory, it is customary to regard the elements of Fnq as row vectors of

length n, and we shall do so in the sequel. For x ∈ Fnq , we will write xT to denote
the transpose of x, i.e., the corrsponding column vector.

2.7. Definition. Let C be a [n, k]q-code. A k × n matrix G with entries in Fq is
called a generator matrix C if the rows of G forms a basis of C.

Note that if G is a generator matrix of a [n, k]q-code C, then G has rank k and
C = {uG : u ∈ Fkq}. Conversely, if G is any k × n matrix over Fq of rank k, then

{uG : u ∈ Fkq} is a [n, k]q-code. Further, if G, G̃ are k × n matrices over Fq of rank

k, then G and G̃ are generator matrices of the same code C if and only if G̃ = EG
for some E ∈ GLk(Fq). In particular, a generator matrix G of a [n, k]q-code C can
be chosen in such a way that it is in reduced row-echelon form; in this case G is
uniquely determined by C. In addition, if the pivotal 1’s are in the first k columns,
then G = [Ik|A] for some k× (n−k) matrix A over Fq and we then say that G is in
standard form. Here, and hereafter, Im denote the m ×m identity matrix, where
m is any positive integer. Also for any matrix A, we denote by AT its transpose.

In the remainder of this section, C will denote a [n, k]q-code.

1A Problem is an Exercise whose solution is not known. In the case of Problem 2.5, one may
consult [8] for more information. A solution to Exercise 2.6 can also be found there.
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2.8. Definition. A (n−k)×n matrix H with entries in Fq is called a parity check
matrix of C if C is its nullspace, i.e., C = {x ∈ Fnq : HxT = 0}.

It is clear that the rank of a parity check matrix of a [n, k]q-code is n− k.

2.9. Lemma. If C has a generator matrix G = [Ik|A] in standard form, then H =
[−AT |In−k] is a parity check matrix of C.

Proof. Suppose G = [Ik|A] is a generator matrix of C and H = [−AT |In−k]. Then
HGT = −AT + AT = 0. This implies that C ⊆ {x ∈ Fnq : HxT = 0}. Since

rank(H) = n−k, the linear map H : Fnq −→ Fn−kq defined by x 7→ HxT is surjective.
Consequently, its kernel, i.e., the nullspace of H, has dimension k. It follows that
C = {x ∈ Fnq : HxT = 0}. �

2.10. Lemma. Let H be a parity check matrix of C and t a positive integer. If x ∈ C
with wH(x) = t and supp(x) = {j1, j2, . . . , jt}, then the columns of H indexed by
j1, j2, . . . , jt are linearly dependent. Conversely if some t columns of H are linearly
dependent, but no proper subset of these columns is linearly dependent, then C
contains a codeword of weight t.

Proof. Let Hj denote the jth column of H (1 ≤ j ≤ n). For x = (x1, . . . , xn) ∈ Fnq ,

x ∈ C ⇐⇒ HxT = 0⇐⇒
n∑
j=1

xjHj = 0.

This implies the desired result. �

The above lemma leads to a useful characterization of the minimum distance.

2.11. Corollary. Let H be a parity check matrix of C and d be a nonnegative
integer. Then d = d(C) if and only if every set of d − 1 columns of H is linearly
independent and there exist d columns of H that are linearly dependent.

Proof. Clearly, d = d(C) if and only if wH(y) ≥ d for all y ∈ C and there exists
x ∈ C with wH(x) = d. Thus Lemma 2.10 yields the desired result. �

Note that the Singleton bound for linear codes can also be deduced from Corol-
lary 2.11. Indeed, if H is a parity check matrix of C, then rank(H) = n− k and so
every set of n− k+ 1 columns of H is linearly dependent. Hence d(C) ≤ n− k+ 1,
thanks to Corollary 2.11.

3. Duality

On Fnq , we have a nondegenerate symmetric bilinear form 〈 , 〉 given by

〈x, y〉 =

n∑
i=1

xiyi for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fnq .

The dual of a [n, k]q-code C is defined to be the linear code C⊥ of length n given by

C⊥ = {y ∈ Fnq : 〈x, y〉 = 0 for all x ∈ C}.
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3.1. Exercise. Show that if C is a [n, k]q-code, then
(i) dimC⊥ = n− k, and (ii) (C⊥)⊥ = C.

3.2. Remark. The notion of positive definiteness does not make sense for the bi-
linear form 〈 , 〉 defined above. Thus it may happen that a a [n, k]q-code C satisfies
C ⊆ C⊥ or even C = C⊥. In the first case, the code C is said to be self-orthogonal
and in the second case it is said to be self-dual. For an interesting connection of
self-dual codes with invariant theory, we refer to the Monthly article of Sloane [15].

3.3. Exercise. Show that a (n−k)×n matrix H with entries in Fq is parity check
matrix of [n, k]q-code C if and only if the rows of H form a basis of C⊥.

3.4. Exercise. Show that a [n, k]q-code C is self-dual if and only if it is self-
orthogonal and n = 2k.

3.5. Exercise. Show that a linear code C is MDS if and only if C⊥ is MDS.

3.6. Definition. Let C be a [n, k]q-code. The weight distribution or the spectrum
of C is given by the sequence (A0(C), A1(C), . . . , An(C)), where

Ai(C) = |{x ∈ C : wH(x) = i}| for i = 0, 1, . . . , n.

A useful way to describe the weight distribution of C is by means of the homoge-
neous polynomial WC(X,Y ) in two variables X and Y defined by

WC(x, y) =

n∑
i=0

Ai(C)Xn−iY i =
∑
c∈C

Xn−wH(c)Y wH(c).

This is called the (two variable) weight enumerator polynomial of C.

There is a beautiful relationship between the weight distribution of a code and
of its dual. This is given by the MacWilliams identities, which will be stated and
proved a little later. As a warm-up, consider a [n, k]q-code C, and let Ai = Ai(C)
and Bi = Ai(C

⊥) for i = 0, 1, . . . , n. Note that A0 = 1 = B0 and also that

n∑
i=0

Ai =
n∑
i=0

∑
c∈C

wH(x)=i

1 =
∑
c∈C

1 = |C| = qk = qkB0.

Next, consider the qk × n matrix M whose rows are the (coordinates of the) code-
words of C. The row corresponding to a codeword of weight j has n− j zeros and
there are Aj such codewords. Thus

the number of zeros in M =

n∑
j=0

(n− j)Aj .

On the other hand the jth column of M is the zero vector if and only if xj = 0 for
all x ∈ C or equivalently, ej ∈ C⊥, where ej denotes the jth standard basis vector
of Fnq . Now ej ’s and its nonzero scalar multiples are precisely the elements in Fnq
of weight 1. It follows that the number of j = 1, . . . , n for which the jth column
consists only of zeros is B1/(q− 1). In each of the remaining columns, every scalar
appears exactly qk−1 times. To see this, note that projection map C −→ Fq given



6 SUDHIR R. GHORPADE

by x 7→ xj is a nonzero linear map having qk−1 elements in its kernel. Thus we
conclude that

n∑
j=0

(n−j)Aj =
B1

q − 1
qk+

(
n− B1

q − 1

)
qk−1 = B1q

k−1+nqk−1 = qk−1
1∑
j=0

(
n− j
n− 1

)
Bj .

We will prove a string of such identities in Section 5. But first let us see some
examples.

4. Examples

Let r be a positive integer and let n = qr−1
q−1 = |Pr−1(Fq)| Let Hr(q) be a r × n

matrix with entries in Fq such that any two columns are linearly independent.
In effect, the columns of Hr(q) are obtained by representatives in Frq of distinct

points of Pr−1(Fq). Observe that the columns of Hr(q) include some nonzero scalar
multiples of the standard basis vectors of Frq, and hence the rank of Hr(q) is r. This
leads to the following example(s).

4.1. Example. Define Hr(q) to be [n, n− r]q-code with Hr(q) as its parity check
matrix and Sr(q) to be [n, r]q-code with Hr(q) as its generator matrix. These are
called Hamming code and simplex code, respectively.

4.2. Exercise. Find d(Hr(q)) and d(Sr(q)). Also show that Hr(q)
⊥ = Sr(q) .

4.3. Exercise. Determine the weight distribution of Sr(q) and write its weight
enumerator polynomial.

The next example is the simplest kind of MDS codes, and it is usually meaningful
to consider this when q is large.

4.4. Example. Let n, k be positive integers with n ≥ k and q be a prime power
with q ≥ n. Fix distinct elements a1, a2, . . . , an ∈ Fq and let

C = {cf = (f(a1), f(a2), . . . , f(an)) : f(x) ∈ Fq[x] with deg f(x) < k}.

Then one can easily verify that C is a [n, k]q-code with minimum distance n−k+1.
In other words C is a MDS code. This code C is known as a Reed Solomon code.

The next example is one of the most widely studied classes of codes. Classically,
it was first studied by Reed and Muller in the binary case (when q = 2) by means
of the so called boolean functions; see, e.g., [13, Ch. 13]. Here we adopt a more
general viewpoint.

4.5. Example. Let m, ν be integers with m ≥ 1 and ν ≥ 0, and let q be a prime
power. Denote by Fq[X1, . . . , Xm]≤ν is the space of all polynomials in X1, . . . , Xm

with coefficients in Fq of total degree at most ν. Fix a listing P1, . . . , Pqm of elements
of Fmq The image of the evaluation map

Ev : Fq[X1, . . . , Xn]≤ν → Fq
m

q given by f 7→ (f(P1), . . . , f(Pqm))

is a linear code of length n := qm and it is denoted by RMq(ν,m). It is called the
(generalized) Reed Muller code of order ν and length qm.



ASPECTS OF CODING THEORY 7

4.6. Exercise. Show that Fq[X1, . . . , Xm]≤ν is a finite dimensional vector space
over Fq and find its dimension. Further, show that if ν < q then the map Ev is
injective. Use this to find the dimension of RMq(ν,m) when ν < q.

To determine the dimension of RMq(ν,m) for more general values of ν it is
important to understand the distinction between polynomials in m variables over
Fq and their evaluations, i.e., the corresponding functions from Fmq to Fq. Indeed

two polynomials can give rise to the same function; for example, Xq
i and Xi take the

same values on Fmq . To avoid such situations, one can look at reduced polynomials
that are defined as follows. A monomial Xα1

1 . . . Xαm
m in Fq[X1, . . . , Xm] is said to

be reduced if αi ≤ q − 1 for each i = 1, . . . ,m. A polynomial in Fq[X1, . . . , Xm]
is said to be reduced if it is a Fq-linear combination of reduced monomials. Note
that for f ∈ Fq[X1, . . . , Xm], the condition deg f < q implies that f is reduced,
but the converse is not true. However, if f ∈ Fq[X1, . . . , Xm] is reduced, then
deg f ≤ m(q − 1).

We have a natural map from the set of all monomials onto the set of all reduced

monomials in Fq[X1, . . . , Xm] given by Xα1
1 . . . Xαm

m 7→ Xβ1

1 . . . Xβm
m , where for

i = 1, . . . ,m, the exponent βi is obtained from αi as follows:

βi =

{
αi if 0 ≤ αi ≤ q − 1,

ri if αi ≥ q and αi = (q − 1)si + ri where ri, si ∈ Z with 0 < ri ≤ q − 1.

This map on monomials extends, by linearity, to Fq[X1, . . . , Xm] and the image of

f ∈ Fq[X1, . . . , Xm] under the (extended) map is denoted by f . Evidently f is a

reduced polynomial and f(P ) = f(P ) for all P ∈ Fmq . Now let

Rq(m, ν) = {f ∈ Fq[X1, . . . , Xm] : deg f ≤ ν and f is reduced}.

Observe that Rq(m, ν) is precisely the image of Fq[X1, . . . , Xm]≤ν under the re-

duction map f 7→ f and also that Rq(m, ν) = Rq(m,m(q − 1)) if ν ≥ m(q − 1).
In particular, RMq(ν,m) = Ev (Rq(m, ν)) and RMq(ν,m) = RMq (ν,m(q − 1)) if
ν ≥ m(q − 1). With this in view, one usually restricts to 0 ≤ ν ≤ m(q − 1) while
considering RMq(ν,m).

4.7. Exercise. Show that the restriction of Ev to Rq(m, ν) is injective and find
dimFq

Rq(m, ν) when 0 ≤ ν ≤ m(q− 1). Use it to find the dimension of RMq(ν,m)
if 0 ≤ ν ≤ m(q − 1).

A codeword of RMq(ν,m) is an evaluation of a polynomial of degree ≤ ν, and its
Hamming weights are determined by the number of zeros of corresponding polyno-
mial. More precisely, for any f ∈ Fq[X1, . . . , Xm]≤ν ,

wH(Ev(f)) = qm −#Z(f) where Z(f) := {P ∈ Fmq : f(P ) = 0}.

4.8. Exercise. If f ∈ Fq[X1, . . . , Xm] has degree d < q, then show that

|Z(f)| ≤ dqm−1.

Further show that if d < q and a1, . . . , ad ∈ Fq are distinct, then the polynomial
f = (X1 − a1) . . . (X1 − ad) is an element of Fq[X1, . . . , Xm] with deg f = d and
|Z(f)| = dqm−1. Deduce that if ν < q, then d(RMq(ν, q

m)) = (q − ν)qm−1.
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Those who like challenges may also attempt to determine d(RMq(ν, q
m)) in gen-

eral, for 0 ≤ ν ≤ m(q − 1).
Finally in this section, we outline some of the standard constructions used to

construct new codes from a given linear code. These together with the above
examples furnishes many more examples of linear codes.

Let C be a [n, k]q code and let P ⊆ {1, . . . , n}. For any x = (x1, . . . , xn) ∈ Fnq ,

let xP denote the element of Fn−|P |q obtained from x by removing the xi’s for all
i ∈ P . Define

CP = {xP : x ∈ C} and CP = {xP : x ∈ C with xi = 0 for all i ∈ P}.

These are linear codes of length n−|P |, called, respectively, the puncturing of C at
P and the shortening of C at P . There is a nice relationship between puncturing,
shortening, and taking duals.

4.9. Proposition. C be a [n, k]q code and let P ⊆ {1, . . . , n}. Then

(CP )⊥ = (C⊥)P and (C⊥)P = (CP )⊥.

Proof. Let z ∈ (C⊥)P . Then z = yP for some y ∈ C⊥ with yi = 0 for all i ∈ P .
Hence 〈z, xP 〉 = 〈yP , xP 〉 = 〈y, x〉 = 0 for all x ∈ C. Thus (C⊥)P ⊆ (CP )⊥.

To prove the other inclusion, suppose z ∈ (CP )⊥. Extend z to y ∈ Fnq by

yi =

{
zi if i /∈ P,
0 if i ∈ P.

Then, 〈y, x〉 = 〈yP , xP 〉 = 〈z, xP 〉 = 0 for all x ∈ C. Hence z ∈ (C⊥)P . This proves
that (CP )⊥ ⊆ (C⊥)P .

Thus (C⊥)P = (CP )⊥. Replacing C by C⊥, we obtain (C⊥)P = (CP )⊥. �

5. MacWilliams Identities

As before n, k will always denote positive integers with k ≤ n and q a prime
power. Further, we let [n] denote the set {1, . . . , n} of the first n positive integers.
The MacWilliams identities alluded to toward the end of Section 3 are as follows.

5.1. Theorem. Let C be a [n, k]q-code. Let Ai = Ai(C) and Bi = Ai(C
⊥) for

0 ≤ i ≤ n. Then, for ν = 0, 1, . . . , n, we have,

n∑
j=0

(
n− j
ν

)
Aj = qk−ν

n∑
j=0

(
n− j
n− ν

)
Bj

Proof. Fix 0 6 ν 6 n. Let Nν denote the cardinality of the set

{(x, I) : x ∈ C, I ⊆ [n], |I| = ν and xi = 0 for all i ∈ I}.

For I ⊆ [n], let Ic := [n] \ I denote the complement of I in [n]. Note that for any
x ∈ Fnq , the condition xi = 0 for all i ∈ I is equivalent to supp(x) ⊆ Ic. Thus

(5.1) Nν =
∑
x∈C

∑
I⊆[n]
|I|=ν

supp(x)⊆Ic

1 =

n∑
j=0

∑
x∈C

wH(x)=j

∑
I⊆[n]
|I|=ν

supp(x)⊆Ic

1 =

n∑
j=0

Aj

(
n− j
ν

)
.
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On the other hand,

Nν =
∑
I⊆[n]
|I|=ν

|{x ∈ C : xi = 0 ∀ i ∈ I}| .

Moreover, x 7→ xI
c

defines a linear map C → CI
c

and {x ∈ C : xi = 0 ∀ i ∈ I} is the

kernel of this map. The cardinality of this kernel is qk−k
Ic

where kI
c

:= dimCI
c

.
Consequently, using Proposition 4.9 and noting that the length of CI

c

is ν, we find

Nν =
∑
I⊆[n]
|I|=ν

qk−k
Ic

= qk−ν
∑
I⊆[n]
|I|=ν

|(CI
c

)⊥| = qk−ν
∑
I⊆[n]
|I|=ν

∣∣(C⊥)Ic
∣∣ .

Now,
∣∣(C⊥)Ic

∣∣ =
∣∣{y ∈ C⊥ : yi = 0 ∀ i ∈ Ic}

∣∣ =
∣∣{y ∈ C⊥ : supp(y) ⊆ I}

∣∣. Hence

qν−kNν =
∑
I⊆[n]
|I|=ν

∑
y∈C⊥

supp(y)⊆I

1

=
∑
I⊆[n]
|I|=ν

n∑
j=0

∑
y∈C⊥

wH(y)=j
supp(y)⊆I

1

=

n∑
j=0

∑
y∈C⊥

wH(y)=j

∑
|I|=ν
I⊆[n]

supp(y)⊆I

1

=

n∑
j=0

∑
y∈C⊥

wH(y)=j

(
n− j
ν − j

)

=

n∑
j=0

(
n− j
ν − j

)
Bj .

Thus, we have:

(5.2) Nν = qk−ν
n∑
j=0

(
n− j
ν − j

)
Bj .

Combining (5.1) and (5.2), we obtain the desired result. �

It may be noted that for j, ν ∈ {0, 1, . . . , n}, the binomial coefficient
(
n−j
ν

)
van-

ishes if j > n−ν, whereas
(
n−j
ν−j
)

vanishes if j > ν. Thus the MacWilliams identities

in Theorem 5.1 can also be written as

n−ν∑
j=0

(
n− j
ν

)
Aj = qk−ν

ν∑
j=0

(
n− j
n− ν

)
Bj for ν = 0, 1, . . . , n.

These identities could be expressed in a more compact form using the two variable
weight enumerator polynomial as follows.
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5.2. Corollary (MacWilliams Identity). For any [n, k]q-code C,

(5.3) WC⊥(X,Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y ).

In particular, in the binary case, WC⊥(X,Y ) = 2−kWC(X + Y,X − Y ).

Proof. Putting X = Y + Z, we see that (5.3) is equivalent to:

WC⊥(Y + Z, Y ) =
1

|C|
WC(Z + qY, Z).

Now,

WC⊥(Y + Z, Y ) =

n∑
j=0

Bj(Y + Z)n−jY j

=

n∑
j=0

BjY
j

n−j∑
ν=0

(
n− j
ν

)
Y n−j−νZν

=
n∑
ν=0

n−ν∑
j=0

(
n− j
ν

)
Bj

Y n−νZν

=

n∑
ν=0

 ν∑
j=0

(
n− j
n− ν

)
Bj

Y νZn−ν .

where the penultimate equality is obtained by interchanging summations and the
last equality is obtained by changing ν to n− ν. On the other hand,

1

|C|
WC(Z + qY, Z) =

1

qk

n∑
j=0

Aj(Z + qY )n−jZj

=
1

qk

n∑
j=0

(
n−j∑
ν=0

Aj

(
n− j
ν

)
Zn−j−νqνY ν

)
Zj

=

n∑
ν=0

1

qk−ν

n−ν∑
j=0

(
n− j
ν

)
Aj

Zn−νY ν .

Thus Theorem 5.1 yields the desired result. �

5.3. Remark. Comparing coefficients in (5.3), we obtain, for j = 0, 1, . . . , n:

Bj =
1

|C|

n∑
i=0

Kj(i)Ai

where Kj(X) = Kn,q
j (X) is the jth Krawtchouk polynomial defined by:

Kj(X) =

j∑
r=0

(−1)r
(
X

r

)(
n−X
j − r

)
(q − 1)j−r

where for any r ∈ Z, and variable X,(
X

r

)
:=

{
X(X−1)···(X−r+1)

r! if r > 0,

0, if r < 0.



ASPECTS OF CODING THEORY 11

These Krawtchouk polynomials satisfy the following orthogonality relations.
n∑
i=0

Kj(i)Ki(k) = qnδj,k and

n∑
i=0

µ(i)Kj(i)Kk(i) = qnµ(j)δj,k,

where µ(i) :=
(
n
i

)
(q − 1)i and δ is the Kronecker delta. We refer to [17, Ch. 1] for

a quick introduction to Krawtchouk polynomials and their properties.

5.4. Exercise. Let C and Ai, Bi be as in Theorem 5.1. Prove that
n∑
j=ν

(
j

ν

)
Aj = qk−ν

ν∑
j=0

(−1)j
(
n− j
n− ν

)
(q − 1)ν−jBj for ν = 0, 1, . . . , n.

(Hint: Put Y = X + Z in (5.3).)

5.5. Remark. We remark in passing that, (5.3) can be used to obtain Pless power
moment formulae, which express the νth moment

∑n
j=0 j

νAj in terms of the Bj ’s

and also express
∑n
j=0(n − j)νAj in terms of the Bj ’s. To this end, it suffices to

express the two bases {Xj : j ≥ 0} and {
(
X
j

)
: j ≥ 0} in terms of each other (and

this can be done using the so called Stirling numbers of the second kind) and using
Exercise 5.4. For details, we refer to [14, Ch. 1].

6. Equivalence and Automorphisms of Codes

6.1. Definition. Let C1 and C2 be two linear codes of length n. We say that C1

and C2 are permutation equivalent if there exists σ ∈ Sn such that

C2 = {(xσ(1), . . . , xσ(n)) : (x1, . . . , xn) ∈ C1}
In other words, the map:

fσ : Fnq → Fnq defined by (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n))

induces a linear isomorphism of C1 → C2.
Equivalently, two codes C1 and C2 of length n are permutation equivalent, if

there exists a permutation matrix P ∈ GLn(Fq) such that fσ(x) = xP gives a
bijection of C1 onto C2.

6.2. Notation. If C1 and C2 are permutation equivalent, we write C1 ∼ C2.

For our next definition, recall that an n× n matrix M is said to be a monomial
matrix if M = PD where P is a permutation matrix and D a diagonal matrix
whose diagonal entries are nonzero.

6.3. Definition. Let C1 and C2 be two linear codes of length n. We say that C1

and C2 are (monomially) equivalent if there exists a monomial matrixM ∈ GLn(Fq)
such that x 7→ xM gives a bijection of C1 onto C2.

6.4. Notation. We write C1 ≈ C2 to denote that C1 and C2 are monomially
equivalent; we also say that C1 ≈ C2 via M if the monomial matrix M gives the
bijection C1 → C2 via the map x 7→ xM .

6.5. Definition. A map f : Fnq → Fnq is said to be an isometry if it is bijective and

d(x, y) = d(f(x), f(y)) for all x, y ∈ Fnq .
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Clearly, if f : Fnq → Fnq is linear and bijective, then, f is an isometry if and only
if wH(f(x)) = wH(x) for all x ∈ Fnq .

6.6. Proposition. If f : Fnq → Fnq is a linear isometry, then there exists a mono-
mial matrix M ∈ GLn(Fq) such that f(x) = xM for all x ∈ Fnq .

Proof. Suppose f : Fnq → Fnq is a linear isometry. Let {e1, . . . , en} be the standard
basis for Fnq . Then for each i = 1, . . . , n, f(ei) has Hamming weight 1, and hence

f(ei) = λieσ(i) for some λi ∈ F∗q and σ(i) ∈ [n].

Note that σ ∈ Sn, since f is a bijection. Let Pσ be the permutation matrix in
GLn(Fq) associated to σ, and let M ∈ GLn(Fq) be the monomial matrix

M = PσD where D =


λ1 0 . . . 0

0 λ2 0
...

... 0
. . . 0

0 . . . 0 λn

 .

Then f : Fnq → Fnq is given by f(x) = xM for x ∈ Fnq . This proves the assertion. �

6.7. Remark.

(1) The notions of permutation equivalence and monomial equivalence coincide
for binary code.

(2) If C1 and C2 are (permutation or monomial) equivalent, they have the same
parameters.

(3) Also, if C1 ≈ C2 via M , and if G1 is a generator matrix of C1, then,
G2 = G1M is a generator matrix of C2. In particular, any linear code is
(permutation) equivalent to a code whose generator matrix is in standard
form.

Equivalences of a code with itself leads to the important notion of automorphism
of a code. In the remainder of this section, C denotes a [n, k]q-code.

6.8. Definition. The permutation automorphism group of C is:

PAut(C) = {σ ∈ Sn : (xσ(1), . . . , xσ(n)) ∈ C for all (x1, . . . , xn) ∈ C}

Clearly, this group is a subgroup of Sn. Also we have the following isomorphism:

PAut(C) ' {P ∈ GLn(Fq) : P a permutation matrix such that xP ∈ C ∀ x ∈ C},

Thus we may think of the permutation automorphism group as a subgroup of
GLn(Fq).

6.9. Definition. The monomial automorphism group of C is:

MAut(C) = {M ∈ GLn(Fq) : M a monomial matrix and xM ∈ C ∀ x ∈ C}.

Clearly, this is a subgroup of GLn(Fq).

The most general notion of automorphism of a code is given by the following.
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6.10. Definition. The semilinear automorphism group of C is

ΓAut(C) =

{
Mµ

∣∣∣∣∣ M ∈ GLn(Fq) a monomial matrix
µ ∈ Aut(Fq) such that xMµ ∈ C ∀x ∈ C

}
Clearly, ΓAut(C) is a subgroup of the group ΓL(n, q) of semilinear isomorphisms
of Fnq .

In general, if V1, V2 are vector spaces over a field F and µ ∈ Aut(F) is an auto-
morphism of F, then a map f : V1 → V2 is said to be µ-semilinear if f(x + y) =
f(x) +f(y) for all x, y ∈ V1 and f(ax) = µ(a)f(x) for all x ∈ V1 and a ∈ F. We say
that f : V1 → V2 is semilinear if it is µ-semilinear for some µ ∈ Aut(F). A bijective
semilinear map whose inverse is semilinear is called a semilinear isomorphism.

In connection with semilinear isomorphisms, we state without proof the following
analogue of Proposition 6.6. A proof can be found, for example, in [4] or [9].

6.11. Proposition (MacWilliams). Let C1 and C2 be linear codes of length n and
dimension at least 3, and let f : C1 → C2 be a map of C1 into C2. Then f
is a weight preserving bijection that maps r-dimensional subspaces of C1 onto r-
dimensional subspaces of C2 for each r ≥ 0 if and only if f : C1 → C2 is a semilinear
isomorphism.

In the binary case (i.e., when q = 2), we have PAut(C) = MAut(C) = ΓAut(C),
and we use Aut(C) to denote this group. It can be shown, for example, that
Aut(Hr(2)) = GL(r, 2). In general, it is difficult to determine the automorphism
group of a given class of codes. For the determination of the automorphism group
of Reed-Muller codes, we refer to [7, 3, 12].

7. Cyclic Codes

Cyclic codes are an important and well-studied class of linear codes. Here we
give a very brief introduction. As before, n denotes a positive integer.

7.1. Definition. A linear code C of length n is said to be cyclic if

(c0, c1, . . . , cn−1) ∈ C =⇒ (cn−1, c0, c1, . . . , cn−2) ∈ C.

We have used here c = (c0, c1, . . . , cn−1) to denote a typical element of Fnq . This is

in order to identify c with the polynomial c0+c1X+c2X
2+· · ·+cn−1Xn−1 in Fq[X]

or equivalently the image of this polynomial in the ring Rn := Fq[X]/ 〈Xn − 1〉
obtained from Fq[X] by “moding out” by the ideal generated by Xn − 1. The
resulting map from Fnq to Rn will be denoted by π. Clearly, π : Fnq → Rn is a
natural Fq-linear isomorphism.

7.2. Exercise. Let C ⊆ Fnq . Show that C is a cyclic code of length n if and only
if π(C) is an ideal of Rn.

Note that Fq[X] is a PID and the ideals of Rn correspond precisely to the ideals
of Fq[X] containing 〈Xn − 1〉. In particular, every ideal of Rn is principal. If I is
an ideal of Rn, then there is a unique monic polynomial, g(X) ∈ Fq[X], such that
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g(X) | Xn − 1 and I is generated by the image of g(X) in Rn. We call g(X) the
generator polynomial of I or of the corresponding cyclic code C = π−1(I).

7.3. Exercise. Let I, g(X) and C be as above. Suppose deg g(X) = n− k. Write
g(X) = g0 + g1X + · · ·+ gn−kX

n−k. Show that dim(C) = k and the k× n matrix:

G =



g0 g1 . . . gn−k 0 . . . 0
0 g0 g1 . . . gn−k 0 . . . 0

...
...

0 0 . . . 0 g0 g1 . . . gn−k


is a generator matrix of C. Further if we let

h(X) =
Xn − 1

g(X)
= h0 + h1X + · · ·+ hkX

k,

then show that the (n− k)× k matrix

H =



hk hk−1 . . . h0 0 . . . 0
0 hk hk−1 . . . g0 0 . . . 0

...
...

0 0 . . . 0 hk hk−1 . . . h0


is a parity check matrix of C.

8. Bounds for Codes

By a [n, k, d]q code we shall mean a [n, k]q-code C with d(C) = d.

8.1. Theorem (Griesmer). Let C be a [n, k, d]q code. Then

n >
k−1∑
i=0

⌈
d

qi

⌉
.

Before proving, we show that, the singleton bound follows as a corollary:

8.2. Corollary (Singleton Bound). n > d+ k − 1.

Proof of Corollary. We simply note that:⌈
d

q0

⌉
= d and

⌈
d

qi

⌉
> 1 for all i = 1, . . . , k − 1.

Hence Theorem 8.1 yields the Singleton bound. �

The proof of Griesmer’s bound involves iterating the construction of a code C ′

from a linear code C and a minimum weight codeword x of C. The resulting code
C ′ is sometimes called the residue of the code C at the word x ∈ C. We outline
this construction in the following lemma.
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8.3. Lemma. Let C be a [n, k, d]q code with k > 0 and let x ∈ C be such that

wH(x) = d. If P = supp(x), then C ′ = CP is a [n−d, k−1, d′]-code with d′ >
⌈
d
q

⌉
.

Proof. By passing to an equivalent code, if necessary, we may assume:

x = (1, . . . , 1︸ ︷︷ ︸
d times

, 0, . . . , 0) ∈ C.

Then P = supp(x) = {d, d + 1, . . . , n} and the map given by y 7→ yP is a linear
map of C onto C ′ that has x in its kernel. Hence, dim(C ′) 6 k − 1. Further, if
dim(C ′) < k − 1, then, there is y in the kernel such that y 6= λx for all λ ∈ Fq and

yd+1 = · · · = yn = 0.

But, then, y − λx is a nonzero codeword of C whose weight is at most d − 1, for
some λ ∈ Fq. This is a contradiction. So, dim(C ′) = k − 1.

Let z ∈ C ′ be a nonzero codeword. Then, z = yP for some y = (y1, . . . , yn) ∈ C.
Look at y1, . . . , yd. By the Pigeonhole Principle, there exists α ∈ Fq such that at
least dd/qe of the yis are equal to α. Hence

wH(y − αx) ≤ d−
⌈
d

q

⌉
+ wH(yd+1, . . . , yn) = d−

⌈
d

q

⌉
+ wH(z).

On the other hand, y − αx 6= 0, by the choice of y, and so wH(y − αx) ≥ d. Thus

it follows that wH(z) ≥
⌈
d
q

⌉
. This proves that d′ = d(C ′) >

⌈
d
q

⌉
. �

Proof of Theorem. We induct on k. The cases k = 0 and k = 1 are trivial. Assume
that k > 1 and that, the result holds for k− 1. Choose x ∈ C such that wH(x) = d
and let C ′ be as in the previous lemma. By the induction hypothesis,

n− d ≥
k−2∑
i=0

⌈
d′

qi

⌉
≥
k−2∑
i=0

⌈
d

qi+1

⌉
=

k−1∑
i=1

⌈
d

qi

⌉
.

Thus n ≥
∑k−1
i=0

⌈
d/qi

⌉
, as desired. �

8.4. Exercise. Show that the simplex codes meet the Griesmer bound.

Before proving more bounds, we make the following definitions:

8.5. Definition. Let Q be a finite set with q elements. For x ∈ Qn and t ∈ R, the
(solid) sphere of radius t centered at x is:

St(x) = {y ∈ Qn : dH(x, y) 6 t}.

Clearly, the number Vq(n, t) of points in the sphere St(x) (this is also the volume
of the sphere St(x) with respect to the counting measure in Qn) is given by:

Vq(n, t) :=

t∑
i=0

(
n

i

)
(q − 1)i.

Note that, this number is independent of the center x ∈ Qn of the sphere St(x).
In most applications, Q will be the finite field Fq and this may be tacitly assumed
when we consider linear codes.
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We now look at the question of how large can a code be, given its desired prop-
erties (some natural constraints on its parameters)? In this context, the following
notation is relevant:

8.6. Notation. For a prime power q and integers n, d with n ≥ 1 and d ≥ 0, let

Aq(n, d) := max {|C| : C q-ary code of length n and minimum distance d} , and

Bq(n, d) := max {|C| : C q-ary linear code of length n and minimum distance d} .

Clearly, Bq(n, d) is defined only when q is a prime power and in this case,
Bq(n, d) 6 Aq(n, d). The following theorem gives an upper bound on Aq(n, d),
which is obtained by “packing” C with spheres of radius t.

8.7. Theorem (Hamming Bound/Sphere-packing Bound). Let q, n, d be any posi-
tive integers with d ≤ n. Then

Aq(n, d) 6
qn

Vq(n, t)
, where t :=

⌊
d− 1

2

⌋
.

Proof. Let C be a q-ary code of length n and minimum distance d. We observe
that, the spheres St(c) as c varies over C are disjoint. Indeed, if, x ∈ St(c1)∩St(c2),
where c1, c2 ∈ C and c1 6= c2, then

d(c1, c2) ≤ d(c1, x) + d(x, c2) ≤ 2t ≤ d− 1 < d,

which is a contradiction. Thus,
∐
c∈C St(c) ⊆ Fnq . This shows that

|C| · Vq(n, t) ≤ qn and hence |C| ≤ qn

Vq(n, t)

which yields the desired bound for Aq(n, d). �

Recall that, the codes that meet singleton bound were called MDS codes. Here
is yet another notion of a “good” code.

8.8. Definition. A [n, k, d]-code C that meets sphere packing bound is called a
perfect code.

Evidently, if C is perfect code on an alphabet set Q, then,∐
c∈C

St(c) = Qn.

8.9. Example. Trivial examples of perfect linear codes include {0} and Fnq .

8.10. Example. The binary Hamming code Hr(2) is perfect. Here d = 3, so t = 1.
Set n = 2r− 1, the length of Hr(2); and let M = |Hr(2)| = 2n−r. We compute the
volume of a unit sphere in Fn2 :(

n

0

)
(q − 1)0 +

(
n

1

)
(q − 1) = 1 + n(2− 1) = 2r



ASPECTS OF CODING THEORY 17

Now, it is easy to see Hr(2) is perfect:

M · 2r = 2n∐
c∈Hr(2)

S1(c) = Fn2

8.11. Exercise. Show that Hr(q) is perfect for any prime power q.

8.12. Remark.

(1) Firstly, if C is perfect, C⊥ is not necessarily perfect. For example, the
binary simplex code is not perfect, but the binary Hamming code is.

(2) The Golay Codes

G23 [23, 12, 7]2-code

G24 [24, 12, 8]2-code

G11 [11, 6, 5]3-code

G12 [12, 6, 6]3-code

have the property that, G23 and G11 are perfect. It is said, the following
curious observation,(

23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 211 = 223−12

led to the construction of these codes. We note in passing that, G23 is a
cyclic code whose generator polynomial is one of the irreducible factors of
the polynomial

X23 − 1

X − 1
.

The Golay codes are usually defined by describing explicitly their generator
matrices (that happen to be in standard form). For more on these, we refer
to the Handbook [14]. See also the book of Conway and Sloane [6] for Golay
codes, their automorphism groups, and many other fascinating topics.

8.13. Theorem (Gilbert Bound/Sphere Covering Bound). Let q, n, d be any posi-
tive integers with d ≤ n. Then

Aq(n, d) >
qn

Vq(n, d− 1)

Equivalently, logq(Aq(n, d)) > n− logq(Vq(n, d− 1).

Proof. Let C = {c1, . . . , cM} be a code of length n over a finite alphabet set Q with
q elements such that M = Aq(n, d).

Since C is optimal, if x ∈ Qn, then, d(x, ci) < d for some i (for otherwise, if
d(x, ci) > d for all i, then, the code C ∪ {x} has length n and minimum distance d,
contradicting the optimality of C). Consequently,

Qn ⊆
M⋃
i=1

Sd−1(ci) and so qn ≤
M∑
i=1

Vq(n, d− 1) = MVq(n, d− 1).

Thus, M ≥ qn/Vq(n, d− 1), as desired. �
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For a linear code, we may do slightly better. To do this, we appeal to linear
algebra in the following slightly technical lemma:

8.14. Lemma. Let n, d be integers with 2 6 d 6 n. If k is a positive integer such
that:

(8.1) Vq(n− 1, d− 2) < qn−k

then, there exists a [n, k]q-code C with d(C) > d.

Proof. We will construct columns h1, . . . , hn of a (n − k) × n matrix H such that
any d− 1 of these columns are linearly independent. Then, the code C with H as
its parity check matrix will have the desired property.

The trick is to get the greedy algorithm to work: that is, we show that, we can
satisfy our greed!

First, take h1 to be an arbitrary non-zero column in Fn−kq . Having chosen

h1, . . . , hj ∈ Fn−kq such that any d− 1 of them are linearly independent and j < n,
we choose hj+1 from the complement of the set of all linear combinations of d− 2
of the j vectors h1, . . . , hj .

We just need to show that, such a choice can always be made: to show this, we
count the number L of linear combinations of d− 2 of the j vectors h1, . . . , hj :

L =

d−2∑
i=0

(
j

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i = Vq(n− 1, d− 2) < qn−k

Thus, we can find hj+1 ∈ Fn−kq which is different from any of these linear combi-
nations. This finishes the proof. �

8.15. Corollary (Varshamov Bound). Let q be a prime power and n, d be any
positive integers with d ≤ n. Then

Bq(n, d) > qn−dlogq(1+Vq(n−1,d−2))e.

Further, the above bound implies the following weaker, but simpler bound:

Bq(n, d) >
qn−1

1 + Vq(n− 1, d− 2)
.

Proof. First, suppose d = 1 Then C = Fnq is evidently a q-ary linear code of length
n with d(C) = 1, and hence Bq(n, d) ≥ qn (in fact, Bq(n, d) = qn), which implies
both the assertions, since Vq(n− 1,−1) = 0. Now suppose d ≥ 2. Consider

k := n−dlogq (1 + Vq(n− 1, d− 2))e, i.e., n− k = dlogq (1 + Vq(n− 1, d− 2))e.

Note that k is a positive integer ≤ n, since 1 ≤ Vq(n − 1, d − 2) ≤ qn−1, i.e.,
2 ≤ 1+Vq(n−1, d−2) ≤ 1+qn−1 < qn, and so 1 ≤ dlogq (1 + Vq(n− 1, d− 2))e ≤ n.
Further, from the definition of k and the fact that dxe ≥ x for all x ∈ R, we obtain

qn−k ≥ qlogq(1+Vq(n−1,d−2)) = 1 + Vq(n− 1, d− 2) > Vq(n− 1, d− 2).

Hence by Lemma 8.14, there exists a [n, k]q-code C with d(C) > d. We can see that

this code C can be suitably punctured and extended to obtain a [n, k]q-code Ĉ with

d(Ĉ) = d. Indeed, if d1 := d(C) and d1 > d, then we may choose x ∈ C with x 6= 0
and wH(x) = d1. Pick a subset P of supp(x) such that |P | = d1 − d. Consider the
map φ : C → Fnq that associates to c = (c1, . . . , cn) ∈ C, the n-tuple ĉ = (ĉ1, . . . , ĉn),
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where ĉi = ci if i 6∈ P and ĉi = 0 if i ∈ P , Evidently, φ is a linear map and it is
injective because a nonzero element c ∈ ker(φ) iwould satisfy wH(c) ≤ d1 − d < d1,

which is a contradiction. Hence the image of φ is a [n, k]q-code, say Ĉ. Also for any

nonzero ĉ = φ(c) ∈ Ĉ, it is clear that wH(ĉ) > wH(c)− (d1−d) > d1 = (d1−d) = d,

and moreover, wH(x̂) = d. It follows that d(Ĉ) = d. This implies that

Bq(n, d) > qk = qn−dlogq(1+Vq(n−1,d−2))e,

and the first assertion is proved. This implies the weaker, but simpler bound, since

qn−dlogq(1+Vq(n−1,d−2))e >
qn−1

qlogq(1+Vq(n−1,d−2))
=

qn−1

1 + Vq(n− 1, d− 2)
,

where the first inequality follows by noting that dθe ≤ θ + 1 for all θ ∈ R. �

The bounds obtained in this section lead to important asymptotic bounds for
the largest possible rate of a family of q-ary codes having lengths going to ∞ and
relative distances approaching δ, that is, for the function

α(δ) = limsup
n→∞

logq Aq(n, bδnc)
n

.

These are not difficult, but rather technical. We thus skip them here, but refer the
interested reader to the Handbook [14] or to [16].

9. Generalized Hamming Weights

The notion of generalized Hamming weight, also known as higher weight, is a
natural generalization of the notion of minimum distance of a code. It is closely
connected to questions about intersections of hypersurfaces of a given degree on a
projective algebraic variety over a finite field and also has applications to cryptog-
raphy. We provide some basics of the theory here.

Recall that for any codeword x of a code C, we defined the support of x. We
extend this notion to subcodes, or more generally, subsets of C.

9.1. Definition. Let C be a q-ary linear code of length n. For any D ⊆ C, the
support of D is defined by

supp(D) := {i ∈ {1, . . . , n} : there is x ∈ D with xi 6= 0},

and the Hamming weight of D is defined by wH(D) := | supp(D)|.

It is clear that if D is one-dimensional subspace of C spanned by x, then
supp(D) = supp(x) and wH(D) = wH(x).

9.2. Definition. Let C be a [n, k]q-code and r be a positive integer ≤ k. The rth
generalized Hamming weight or the rth higher weight of C is defined by

dr(C) := min{wH(D) : D a subspace of C with dimD = r}.

The k-tuple (d1(C), . . . , dk(C)) is called the weight hierarchy of C.

Observe that d1(C) = d(C).

9.3. Exercise. Compute the weight hierarchy of the simplex codes.



20 SUDHIR R. GHORPADE

If C is any [n, k]q-code, then is clear that d1(C) ≤ d2(C) ≤ . . . ≤ dk(C) ≤ n.
Actually, more is true.

9.4. Proposition (Monotonicity). Let C be a [n, k]q-code. Then

d1(C) < d2(C) < . . . < dk(C) ≤ n.

Proof. Write dj = dj(C) for 1 ≤ j ≤ k. Fix an integer r with 1 ≤ r < k. Clearly
dr ≤ dr+1 ≤ n. Suppose D is a subcode of C of dimension r + 1 such that
wH(D) = dr+1, and suppose i ∈ supp(D). Consider E = {x ∈ D : xi = 0}. Then E
is the kernel of the ith projection map πi : D −→ Fq. Since i ∈ supp(D), the map
πi is nonzero, and hence dimE = r. Moreover, supp(E) ⊆ supp(D) \ {i}, and so
wH(E) ≤ wH(D)− 1 = dr+1 − 1. It follows that dr < dr+1. �

9.5. Definition. A [n, k]q-code C is said to be nondegenerate if C is not contained
in a coordinate hyperplane of Fnq or equivalently, if dk(C) = n.

9.6. Corollary (Generalized Singleton Bound). Let C be a [n, k]q-code. Then
dr(C) ≤ n− k + r for all 1 ≤ r ≤ k.

Proof. By the monotonicity, dk(C) ≤ n ⇒ dk−1(C) ≤ n − 1 ⇒ dk−2(C) ≤ n − 2,
and so on. In this way, we obtain dr(C) ≤ n− k + r for 1 ≤ r ≤ k. �

9.7. Exercise. Show that if a [n, k]q-code C is MDS, then it is a r-MDS code, i.e.,
dr(C) = n− k + r for all r = 1, 2, . . . k.

9.8. Theorem (Wei Duality Theorem). Let C be a [n, k]q-code and let dr = dr(C)
and d⊥s = ds(C

⊥) for r = 1, 2, . . . , k and s = 1, 2, . . . , n− k. Then

{d⊥1 , d⊥2 , . . . , d⊥n−k} = {1, 2, . . . , n} \ {n+ 1− d1, n+ 1− d2, . . . , n+ 1− dk}
For a proof of the above theorem, one may refer to the original paper of Wei [18].

In general, determining the weight hierarchy of a code is difficult. In a remarkable
paper [10], Heijnen and Pellikaan determined the complete weight hierarchy of
Reed-Muller codes. For a more streamlined proof of their result, and in fact, a
more general result, we refer to the recent article [2].
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