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Syllabus

• Review of limits, continuity, differentiability.

• Mean value theorem, Taylor’s theorem, maxima and minima.

• Riemann integrals, fundamental theorem of calculus, improper integrals, applications to area,
volume.

• Convergence of sequences and series, power series.

• Partial derivatives, gradient and directional derivatives, chain rule, maxima and minima,
Lagrange multipliers.

• Double and triple integration, Jacobians and change of variables formula.

• Parametrization of curves and surfaces, vector fields, line and surface integrals.

• Divergence and curl, theorems of Green, Gauss, and Stokes.

Texts/References

[Apo80 ] T.M. Apostol, Calculus, Volumes 1 and 2, 2nd ed., Wiley Eastern, 1980.

[HGM03 ] Hughes-Hallett, Gleason, McCallum et al., Calculus Single And Multivariable, 4th ed.,
John-Wiley and Sons, 2003.

[GL06 ] S.R. Ghorpade and B.V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006.

[GL10 ] S.R. Ghorpade and B.V. Limaye, A Course in Multivariable Calculus and Analysis, Springer,
2010.

[Ste03 ] James Stewart, Calculus, 5th ed., Thomson, 2003.

[TF98 ] G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9th ed., ISE Reprint,
Addison-Wesley, 1998.

Policy on Attendance

Attendance in the lectures and tutorials is compulsory. In case you miss lectures for medical
reasons, get a medical certificate from the IIT Bombay Hospital and keep it with you. You may
be asked to produce it if you fall short of attendance.

Evaluation Plan

First Quiz (15 marks) to be held before the mid-semester break.
Mid-semster exam (30 marks)
Second quiz (15 marks) to be held after the mid-semester break.
Final exam (40 marks)
The dates and times of the quizes and exams will be announced in class.
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1 Tutorial Sheet No.1:
Sequences, Limits, Continuity, Differentiability

1. Using (ε-N) definition prove the following:

(i) lim
n→∞

10

n
= 0

(ii) lim
n→∞

5

3n+ 1
= 0

(iii) lim
n→∞

n2/3 sin(n!)

n+ 1
= 0

(iv) lim
n→∞

(
n

n+ 1
− n+ 1

n

)
= 0

2. Show that the following limits exist and find them:

(i) lim
n→∞

(
n

n2 + 1
+

n

n2 + 2
+ · · ·+ n

n2 + n

)
(ii) lim

n→∞

(
n!

nn

)
(iii) lim

n→∞

(
n3 + 3n2 + 1

n4 + 8n2 + 2

)
(iv) lim

n→∞
(n)1/n

(v) lim
n→∞

(
cosπ

√
n

n2

)
(vi) lim

n→∞

(√
n
(√
n+ 1−

√
n
))

3. Show that the following sequences are not convergent:

(i) { n2

n+ 1
}n≥1 (ii)

{
(−1)n

(
1

2
− 1

n

)}
n≥1

4. Determine whether the sequences are increasing or decreasing:

(i)

{
n

n2 + 1

}
n≥1

(ii)

{
2n3n

5n+1

}
n≥1

(iii)

{
1− n
n2

}
n≥2

5. Prove that the following sequences are convergent by showing that they are monotone and
bounded. Also find their limits:

(i) a1 =
3

2
, an+1 =

1

2

(
an +

2

an

)
∀ n ≥ 1

(ii) a1 =
√

2, an+1 =
√

2 + an ∀ n ≥ 1
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(iii) a1 = 2, an+1 = 3 +
an
2
∀ n ≥ 1

6. If lim
n→∞

an = L, find the following: lim
n→∞

an+1, lim
n→∞

|an|.

7. If lim
n→∞

an = L 6= 0, show that there exists n0 ∈ N such that

|an| ≥
|L|
2
, ∀ n ≥ n0.

8. If an ≥ 0 and lim
n→∞

an = 0, show that lim
n→∞

a
1/2
n = 0. State and prove a corresponding result

if an → L > 0.

9. For given sequences {an}n≥1 and {bn}n≥1, prove or disprove the following:

(i) {anbn}n≥1 is convergent, if {an}n≥1 is convergent.

(ii) {anbn}n≥1 is convergent, if {an}n≥1 is convergent and {bn}n≥1 is bounded.

10. Show that a sequence {an}n≥1 is convergent iff both the subsequences {a2n}n≥1 and {a2n+1}n≥1
are convergent to the same limit.

11. Let a < c < b and f, g : (a, b)→ R be such that lim
x→c

f(x) = 0. Prove or disprove the following

statements.

(i) lim
x→c

[f(x)g(x)] = 0.

(ii) lim
x→c

[f(x)g(x)] = 0, if g is bounded.

(iii) lim
x→c

[f(x)g(x)] = 0, if lim
x→c

g(x) exists.

12. Let f : R→ R be such that lim
x→α

f(x) exists for some α ∈ R. Show that

lim
h→0

[f(α+ h)− f(α− h)] = 0.

Analyze the converse.

13. Discuss the continuity of the following functions:

(i) f(x) = sin
1

x
, if x 6= 0 and f(0) = 0

(ii) f(x) = x sin
1

x
, if x 6= 0 and f(0) = 0

(iii) f(x) =



x

[x]
if 1 ≤ x < 2,

1 if x = 2,

√
6− x if 2 ≤ x ≤ 3.

14. Let f : R → R satisfy f(x + y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at 0, show
that f is continuous at every c ∈ R.
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15. Let f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0. Show that f is differentiable on R. Is f
′

a
continuous function?

16. Let f : (a, b)→ R be a function such that

|f(x+ h)− f(x)| ≤ C|h|α

for all x, x + h ∈ (a, b), where C is a constant and α > 1. Show that f is differentiable on
(a, b) and compute f

′
(x) for x ∈ (a, b).

17. If f : (a, b)→ R is differentiable at c ∈ (a, b), then show that

lim
h→0+

f(c+ h)− f(c− h)

2h

exists and equals f
′
(c). Is the converse true ? [Hint: Consider f(x) = |x|.]

18. Let f : R→ R satisfy
f(x+ y) = f(x)f(y) for all x, y ∈ R.

If f is differentiable at 0, then show that f is differentiable at every c ∈ R and f
′
(c) =

f
′
(0)f(c).

19. Using the theorem on derivative of inverse function, compute the derivative of
(i) cos−1 x, − 1 < x < 1. (ii) cosec−1x, |x| > 1.

20. Compute
dy

dx
, given

y = f

(
2x− 1

x+ 1

)
and f

′
(x) = sin(x2).

Supplement

1. A sequence {an}n≥1 is said to be Cauchy if for any ε > 0, there exists n0 ∈ N such that
|an − am| < ε, ∀ m,n ≥ n0. In other words, the elements of a Cauchy sequence come
arbitrarily close to each other after some stage. One can show that a sequence in R is
convergent if and only if it is Cauchy. This is an equivalent way of stating the completeness
property of real numbers.

2. To prove that a sequence {an}n≥1 is convergent to L, one needs to find a real number L
and verify the required property. However the concept of ‘Cauchyness’ of a sequence is an
intrinsic property which can be verified on the given sequence.

3. In problem 5(i), we defined

a0 = 1, an+1 =
1

2
(an +

2

an
) ∀ n ≥ 1.

The sequence {an}n≥1 is a monotonically decreasing sequence of rational numbers which is
bounded below. However, it cannot converge to a rational (why?). This exhibits the need to
enlarge the concept of numbers beyond rational numbers. The sequence {an}n≥1 converges to√

2 and its elements an’s are used to find a rational approximation (in computing machines)
of
√

2.
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Optional Exercises:

1. Show that the function f in Question 14 satisfies f(kx) = kf(x), for all k ∈ R.

2. Show that in Question 18, f has a derivative of every order on R.

3. Construct an example of a function f : R → R which is continuous everywhere and is
differentiable everywhere except at 2 points.

4. Let f(x) =

{
1, if x is rational,
0, if x is irrational.

Show that f is discontinuous at every c ∈ R.

5. Let g(x) =

{
x, if x is rational,

1− x, if x is irrational.
Show that g is continuous only at c = 1/2.

6. Let f : (a, b) → R and c ∈ (a, b) be such that lim
x→c

f(x) > α. Prove that there exists some

δ > 0 such that
f(c+ h) > α for all 0 < |h| < δ.

7. Let f : (a, b)→ R and c ∈ (a, b). Show that the following are equivalent:

(i) f is differentiable at c.

(ii) There exist δ > 0 and a function ε1 : (−δ, δ)→ R such that limh→0 ε1(h) = 0 and

f(c+ h) = f(c) + αh+ hε1(h) for all h ∈ (−δ, δ).

(iii) There exists α ∈ R such that

lim
h→0

(
|f(c+ h)− f(c)− αh|

|h|

)
= 0.

8. Suppose f is a function that satisfies the equation f(x+ y) = f(x) + f(y) + x2y+ xy2 for all
real numbers x and y. Suppose also that

lim
x→0

f(x)

x
= 1.

Find f(0), f ′(0), f ′(x).

9. Suppose f is a function with the property that |f(x)| ≤ x2 for all x ∈ R. Show that f(0) = 0
and f ′(0) = 0.

10. Show that any continuous function f : [0, 1]→ [0, 1] has a fixed point.
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2 Tutorial Sheet 2:
Rolle’s Theorem, MVT, Maxima/Minima

1. Show that the cubic x3 − 6x+ 3 has all roots real.

2. Let p and q be two real numbers with p > 0. Show that the cubic x3 + px+ q has exactly one
real root.

3. Let f be continuous on [a, b] and differentiable on (a, b). If f(a) and f(b) are of different signs
and f

′
(x) 6= 0 for all x ∈ (a, b), show that there is a unique x0 ∈ (a, b) such that f(x0) = 0.

4. Consider the cubic f(x) = x3 + px + q, where p and q are real numbers. If f(x) has three
distinct real roots, show that 4p3 + 27q2 < 0 by proving the following:

(i) p < 0.

(ii) f has a local maximum/minimum at ±
√
−p/3.

(iii) The maximum/minimum values are of opposite signs.

5. Use the MVT to prove | sin a− sin b| ≤ |a− b| for all a, b ∈ R.

6. Let f be continuous on [a, b] and differentiable on (a, b). If f(a) = a and f(b) = b, show that
there exist distinct c1, c2 in (a, b) such that f

′
(c1) + f

′
(c2) = 2.

7. Let a > 0 and f be continuous on [−a, a]. Suppose that f
′
(x) exists and f

′
(x) ≤ 1 for all

x ∈ (−a, a). If f(a) = a and f(−a) = −a, show that f(0) = 0. Is it true that f(x) = x for
every x?

8. In each case, find a function f which satisfies all the given conditions, or else show that no
such function exists.

(i) f
′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f
′
(1) = 1

(ii) f
′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f
′
(1) = 2

(iii) f
′′
(x) ≥ 0 for all x ∈ R, f ′

(0) = 1, f(x) ≤ 100 for all x > 0

(iv) f
′′
(x) > 0 for all x ∈ R, f ′

(0) = 1, f(x) ≤ 1 for all x < 0

9. Let f(x) = 1+12|x|−3x2. Find the global maximum and the global minimum of f on [−2, 5].
Verify it from the sketch of the curve y = f(x) on [−2, 5].

10. Sketch the following curves after locating intervals of increase/decrease, intervals of concavity
upward/downward, points of local maxima/minima, points of inflection and asymptotes. How
many times and approximately where does the curve cross the x-axis?

(i) y = 2x3 + 2x2 − 2x− 1

(ii) y = 1 + 12|x| − 3x2, x ∈ [−2, 5]

11. Sketch a continuous curve y = f(x) having all the following properties:

f(−2) = 8, f(0) = 4, f(2) = 0; f
′
(2) = f

′
(−2) = 0;

f
′
(x) > 0 for |x| > 2, f

′
(x) < 0 for |x| < 2;

f
′′
(x) < 0 for x < 0 and f

′′
(x) > 0 for x > 0.
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12. Give an example of f : (0, 1)→ R such that f is

(i) strictly increasing and convex.

(ii) strictly increasing and concave.

(iii) strictly decreasing and convex.

(iv) strictly decreasing and concave.

13. Let f, g : R → R satisfy f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ R. Define h(x) = f(x)g(x) for
x ∈ R. Which of the following statements are true? Why?

(i) If f and g have a local maximum at x = c, then so does h.

(ii) If f and g have a point of inflection at x = c, then so does h.
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3 Tutorial Sheet 3:
Riemann Integration, Taylor Series

1. Let f(x) = 1 if x ∈ [0, 1] and f(x) = 2 if x ∈ (1, 2]. Show from the first principles that f is

Riemann integrable on [0, 2] and find

∫ 2

0
f(x)dx.

2. (a) Let f : [a, b] → R be Riemann integrable and f(x) ≥ 0 for all x ∈ [a, b]. Show that∫ b

a
f(x)dx ≥ 0. Further, if f is continuous and

∫ b

a
f(x)dx = 0, show that f(x) = 0 for

all x ∈ [a, b].

(b) Give an example of a Riemann integrable function on [a, b] such that f(x) ≥ 0 for all

x ∈ [a, b] and

∫ b

a
f(x)dx = 0, but f(x) 6= 0 for some x ∈ [a, b].

3. Evaluate lim
n→∞

Sn by showing that Sn is an approximate Riemann sum for a suitable function

over a suitable interval:

(i) Sn =
1

n5/2

n∑
i=1

i3/2

(ii) Sn =
n∑
i=1

n

i2 + n2

(iii) Sn =
n∑
i=1

1√
in+ n2

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n

(v) Sn =
1

n

{
n∑
i=1

(
i

n

)
+

2n∑
i=n+1

(
i

n

)3/2

+
3n∑

i=2n+1

(
i

n

)2
}

4. Compute

(a)
d2y

dx2
, if x =

∫ y

0

dt√
1 + t2

(b)
dF

dx
, if for x ∈ R (i) F (x) =

∫ 2x

1
cos(t2)dt (ii) F (x) =

∫ x2

0
cos(t)dt.

5. Let p be a real number and let f be a continuous function on R that satisfies the equation

f(x + p) = f(x) for all x ∈ R. Show that the integral

∫ a+p

a
f(t)dt has the same value for

every real number a. (Hint : Consider F (a) =

∫ a+p

a
f(t)dt, a ∈ R.)

6. Let f : R→ R be continuous and λ ∈ R, λ 6= 0. For x ∈ R, let

g(x) =
1

λ

∫ x

0
f(t) sinλ(x− t)dt.

Show that g′′(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = 0 = g′(0).
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7. Find the area of the region bounded by the given curves in each of the following cases.

(i)
√
x+
√
y = 1, x = 0 and y = 0.

(ii) y = x4 − 2x2 and y = 2x2.

(iii) x = 3y − y2 and x+ y = 3.

8. Let f(x) = x − x2 and g(x) = ax. Determine a so that the region above the graph of g and
below the graph of f has area 4.5.

9. Find the area of the region inside the circle r = 6a cos θ and outside the cardioid r = 2a(1 +
cos θ).

10. Find the arc length of the each of the curves described below.

(i) the cycloid x = t− sin t, y = 1− cos t, 0 ≤ t ≤ 2π.

(ii) y =

∫ x

0

√
cos 2t dt, 0 ≤ x ≤ π/4.

11. For the following curve

y =
x3

3
+

1

4x
, 1 ≤ x ≤ 3,

find the arc length as well as the the area of the surface generated by revolving it about the
line y = −1.

12. The cross sections of a certain solid by planes perpendicular to the x-axis are circles with
diameters extending from the curve y = x2 to the curve y = 8 − x2. The solid lies between
the points of intersection of these two curves. Find its volume.

13. Find the volume common to the cylinders x2 + y2 = a2 and y2 + z2 = a2.

14. A fixed line L in 3-space and a square of side r in a plane perpendicular to L are given. One
vertex of the square is on L. As this vertex moves a distance h along L, the square turns
through a full revolution with L as the axis. Find the volume of the solid generated by this
motion.

15. A round hole of radius
√

3 cms is bored through the center of a solid ball of radius 2 cms.
Find the volume cut out.

16. Evaluate
∫
ex

x dx as an infinite series.

17. Use series to approximate
∫ 1
0

√
1 + x4 dx correct to two decimal places.

18. Show that the Taylor series of the function f(x) = x
1−x−x2 is

∑∞
n=1 fnx

n where fn is the nth
Fibonacci number, that is, f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. By writing f(x)
as a sum of partial fractions and thereby obtaining the Taylor series in a different way, find
an explicit formula for the nth Fibonacci number.
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4 Tutorial Sheet 4:
Functions of two variables, Limits, Continuity, Partial Deriva-
tives

1. Find the natural domains of the following functions of two variables:

(i)
xy

x2 − y2
(ii) ln(x2 + y2)

2. Describe the level curves and the contour lines for the following functions corresponding to
the values c = −3,−2,−1, 0, 1, 2, 3, 4:
(i) f(x, y) = x− y (ii) f(x, y) = x2 + y2 (iii) f(x, y) = xy

3. Using definition, examine the following functions for continuity at (0, 0). The expressions
below give the value at (x, y) 6= (0, 0). At (0, 0), the value should be taken as zero:

(i)
x3y

x6 + y2
(ii) xy

x2 − y2

x2 + y2
(iii) ||x| − |y|| − |x| − |y|.

4. Suppose f, g : R→ R are continuous functions. Show that each of the following functions of
(x, y) ∈ R2 are continuous:
(i) f(x)± g(y) (ii) f(x)g(y) (iii) max{f(x), g(y)} (iv) min{f(x), g(y)}.

5. Let

f(x, y) =
x2y2

x2y2 + (x− y)2
for (x, y) 6= (0, 0).

Show that the iterated limits

lim
x→0

[
lim
y→0

f(x, y)

]
& lim

y→0

[
lim
x→0

f(x, y)
]

exist and both are equal to 0, but lim
(x,y)→(0,0)

f(x, y) does not exist.

6. Examine the following functions for the existence of partial derivatives at (0, 0). The ex-
pressions below give the value at (x, y) 6= (0, 0). At (0, 0), the value should be taken as
zero.

(i) xy
x2 − y2

x2 + y2

(ii)
sin2(x+ y)

|x|+ |y|

7. Let f(0, 0) = 0 and

f(x, y) = (x2 + y2) sin
1

x2 + y2
for (x, y) 6= (0, 0).

Show that f is continuous at (0, 0), and the partial derivatives of f exist but are not bounded
in any disc (howsoever small) around (0, 0).
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8. Let f(0, 0) = 0 and

f(x, y) =


x sin(1/x) + y sin(1/y), if x 6= 0, y 6= 0
x sin 1/x, if x 6= 0, y = 0
y sin 1/y, if y 6= 0, x = 0.

Show that none of the partial derivatives of f exist at (0, 0) although f is continuous at (0, 0).

9. Examine the following functions for the existence of directional derivatives and differentiability
at (0, 0). The expressions below give the value at (x, y) 6= (0, 0). At (0, 0), the value should
be taken as zero:

(i) xy
x2 − y2

x2 + y2
(ii)

x3

x2 + y2
(iii) (x2 + y2) sin

1

x2 + y2

10. Let f(x, y) = 0 if y = 0 and

f(x, y) =
y

|y|
√
x2 + y2 if y 6= 0.

Show that f is continuous at (0, 0), Duf(0, 0) exists for every vector u, yet f is not differen-
tiable at (0, 0).

11. Show that the function f(x, y) =
√

3xy is continuous and the partial derivatives fx and fy
exist at the origin but the directional derivatives in all other directions do not exist.

12. Let f, g be differentiable functions on R2. Show that

(i) ∇(fg) = f∇g + g∇f ;

(ii) ∇fn = nfn−1∇f ;

(iii) ∇(f/g) = (g∇f − f∇g)/g2 whenever g 6= 0.

13. Find the points on the hyperboloid x2− y2 + 2z2 = 1 where the normal line is parallel to the
line that joins the points (3,−1, 0) and (5, 3, 6).

14. Find the directions in which the directional derivative of f(x, y) = x2 + sinxy at the point
(1, 0) has the value 1.

15. Suppose f is a differentiable function of one variable. Show that all tangent planes to the
surface z = xf(y/x) intersect in a common point.
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5 Tutorial Sheet 5:
Maxima/Minima, Saddle Points, Lagrange Multipliers

1. Let F (x, y, z) = x2 + 2xy − y2 + z2. Find the gradient of F at (1,−1, 3) and the equations of
the tangent plane and the normal line to the surface F (x, y, z) = 7 at (1,−1, 3).

2. Find DuF (2, 2, 1), where F (x, y, z) = 3x− 5y + 2z, and u is the unit vector in the direction
of the outward normal to the sphere x2 + y2 + z2 = 9 at (2, 2, 1).

3. Given sin(x+ y) + sin(y + z) = 1, find
∂2z

∂x∂y
, provided cos(y + z) 6= 0.

4. If f(0, 0) = 0 and

f(x, y) = xy
x2 − y2

x2 + y2
for (x, y) 6= (0, 0),

show that both fxy and fyx exist at (0, 0), but they are not equal. Are fxy and fyx continuous
at (0, 0)?

5. Show that the following functions have local minima at the indicated points.

(i) f(x, y) = x4 + y4 + 4x− 32y − 7, (x0, y0) = (−1, 2)

(ii) f(x, y) = x3 + 3x2 − 2xy + 5y2 − 4y3, (x0, y0) = (0, 0)

6. Analyze the following functions for local maxima, local minima and saddle points:

(i) f(x, y) = (x2 − y2)e−(x2+y2)/2 (ii) f(x, y) = x3 − 3xy2

7. Find the absolute maximum and the absolute minimum of

f(x, y) = (x2 − 4x) cos y for 1 ≤ x ≤ 3, −π/4 ≤ y ≤ π/4.

8. The temperature at a point (x, y, z) in 3-space is given by T (x, y, z) = 400xyz. Find the
highest temperature on the unit sphere x2 + y2 + z2 = 1.

9. Maximize the f(x, y, z) = xyz subject to the constraints

x+ y + z = 40 andx+ y = z.

10. Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraints

x+ 2y + 3z = 6 and x+ 3y + 4z = 9.
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6 Tutorial Sheet 6:
Multiple Integrals

1. For the following, write an equivalent iterated integral with the order of integration reversed:

(i)

∫ 1

0

[∫ ex

1
dy

]
dx

(ii)

∫ 1

0

[∫ √y
−√y

f(x, y)dx

]
dy

2. Evaluate the following integrals∫ π

0

[∫ π

x

sin y

y
dy

]
dx

(i)(ii)

∫ 1

0

[∫ 1

y
x2exydx

]
dy

(iii)

∫ 2

0
(tan−1 πx− tan−1 x)dx.

3. Find

∫∫
D
f(x, y)d(x, y), where f(x, y) = ex

2
and D is the region bounded by the lines y =

0, x = 1 and y = 2x.

4. Evaluate the integral ∫∫
D

(x− y)2 sin2(x+ y)d(x, y),

where D is the parallelogram with vertices at (π, 0), (2π, π), (π, 2π) and (0, π).

5. Let D be the region in the first quadrant of the xy-plane bounded by the hyperbolas xy =

1, xy = 9 and the lines y = x, y = 4x. Find

∫∫
D
d(x, y) by transforming it to

∫∫
E
d(u, v),

where x =
u

v
, y = uv, v > 0.

6. Find

lim
r→∞

∫∫
D(r)

e−(x
2+y2)d(x, y),

where D(r) equals:

(i) {(x, y) : x2 + y2 ≤ r2}.
(ii) {(x, y) : x2 + y2 ≤ r2, x ≥ 0, y ≥ 0}.
(iii) {(x, y) : |x| ≤ r, |y| ≤ r}.
(iv) {(x, y) : 0 ≤ x ≤ r, 0 ≤ y ≤ r}.

7. Find the volume common to the cylinders x2 +y2 = a2 and x2 +z2 = a2 using double integral
over a region in the plane. (Hint: Consider the part in the first octant.)

8. Express the solid D = {(x, y, z)|
√
x2 + y2 ≤ z ≤ 1} as

{(x, y, z)|a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x), ξ1(x, y) ≤ z ≤ ξ2(x, y)}.
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9. Evaluate

I =

∫ √2
0

(∫ √2−x2
0

(∫ 2

x2+y2
xdz

)
dy

)
dx.

Sketch the region of integration and evaluate the integral by expressing the order of integration
as dxdydz.

10. Using suitable change of variables, evaluate the following:

(i)

I =

∫∫∫
D

(z2x2 + z2y2)dxdydz

where D is the cylindrical region x2 + y2 ≤ 1 bounded by −1 ≤ z ≤ 1.

(ii)

I =

∫∫∫
D

exp(x2 + y2 + z2)3/2dxdydz

over the region enclosed by the unit sphere in R3.
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7 Tutorial Sheet 7:
Vector Fields, Parametrized Curves

1. Let a,b be two fixed vectors, r = xi + yj + zk and r2 = x2 + y2 + z2. Prove the following:

(i) ∇(rn) = nrn−2r for any integer n.

(ii) a · ∇
(

1

r

)
= −

(a · r
r3

)
.

(iii) b · ∇
(
a · ∇

(
1

r

))
=

3(a · r)(b · r)

r5
− a · b

r3
.

2. Prove the following:

(i) ∇ · (fv) = f∇ · v + (∇f) · v
(ii) ∇× (fv) = f(∇× v) +∇f × v

(iii) ∇×∇× v = ∇(∇ · v)− (∇ · ∇)v,

where ∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is called the Laplacian operator.

(iv) ∇ · (f∇g)−∇ · (g∇f) = f∇2g − g∇2f

(v) ∇ · (∇× v) = 0

(vi) ∇× (∇f) = 0

(vii) ∇ · (g∇f × f∇g) = 0.

3. Let r = xi + yj + zk and r = |r|. Show that

(i) ∇2f = div (∇f(r)) =
d2f

dr2
+

2

r

df

dr
(ii) div (rnr) = (n+ 3)rn

(iii) curl(rnr) = 0

(iv) div (∇1

r
) = 0 for r 6= 0.

4. Prove that

(i) ∇ · (u× v) = v · (∇× u)− u · (∇× v)

Hence, if u,v are irrotational, u× v is solenoidal.

(ii) ∇× (u× v) = (v · ∇)u− (u · ∇)v + (∇ · v)u− (∇ · u)v.

(iii) ∇(u · v) = (v · ∇)u + (u · ∇)v + v × (∇× u) + u× (∇× v).

Hint: Write ∇ =
∑

i
∂

∂x
, ∇× v =

∑
i
∂

∂x
× v and ∇ · v =

∑
i
∂

∂x
· v

5. (i) If w is a vector field of constant direction and ∇×w 6= 0, prove that ∇×w is always
orthogonal to w.

(ii) If v = w × r for a constant vector w, prove that ∇× v = 2w.

(iii) If ρv = ∇p where ρ(6= 0) and p are continuously differentiable scalar functions, prove
that

v · (∇× v) = 0.
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6. At what point on the curve x = t3, y = 3t, z = t4 is the normal plane parallel to the plane
6x+ 6y − 8z = 1?

7. Find the curvature of the curve with parametric equations

x =

∫ t

o
sin(

1

2
πθ2) dθ, y =

∫ t

o
cos(

1

2
πθ2) dθ.
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8 Tutorial Sheet 8:
Line Integrals

1. Calculate the line integral of the vector field

f(x, y) = (x2 − 2xy)i + (y2 − 2xy)j

from (−1, 1) to (1, 1) along y = x2.

2. Calculate the line integral of

f(x, y) = (x2 + y2)i + (x− y)j

once around the ellipse b2x2 + a2y2 = a2b2 in the counter clockwise direction.

3. Calculate the value of the line integral∮
C

(x+ y)dx− (x− y)dy

x2 + y2

where C is the curve x2 + y2 = a2 traversed once in the counter clockwise direction.

4. Calculate ∮
C
ydx+ zdy + xdz

where C is the intersection of two surfaces z = xy and x2+y2 = 1 traversed once in a direction
that appears counter clockwise when viewed from high above the xy-plane.

5. Consider the helix

r(t) = a cos t i + a sin t j + ctk lying on x2 + y2 = a2,

where a > 0. Parametrize this in terms of arc length.

6. Evaluate the line integral ∮
C

x2ydx− x3dy
(x2 + y2)2

,

where C is the square with vertices (±1,±1) oriented in the counterclockwise direction.

7. Let C : x2 + y2 = 1. Find ∮
C

grad (x2 − y2) · ds.

8. Evaluate ∫ (2,8)

(0,0)
grad (x2 − y2) · ds,

where C is y = x3.

9. Compute the line integral ∮
C

dx+ dy

|x|+ |y|
where C is the square with vertices (1, 0), (0, 1), (−1, 0) and (0,−1) traversed once in the
counter clockwise direction.
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10. A force F = xyi+ x6y2j moves a particle from (0, 0) onto the line x = 1 along y = axb where
a, b > 0. If the work done is independent of b find the value of a.

11. Calculate the work done by the force field F (x, y, z) = y2i + z2j + x2k along the curve C of
intersection of the sphere x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ax where z ≥ 0, a > 0
(specify the orientation of C that you use.)

12. Determine whether or not the vector field f(x, y) = 3xyi + x3yj is a gradient on any open
subset of R2.

13. Let S = R2 \ {(0, 0)}. Let

F(x, y) = − y

x2 + y2
i +

x

x2 + y2
j := f1(x, y)i + f2(x, y)j.

Show that
∂

∂y
f1(x, y) =

∂

∂x
f2(x, y) on S while F is not the gradient of a scalar field on S.

14. For v = (2xy+z3)i+x2j+3xz2k, show that ∇φ = v for some φ and hence calculate

∮
C
v ·ds

where C is any arbitrary smooth closed curve.

15. A radial force field is one which can be expressed as F = f(r)r where r is the position vector
and r = ‖r‖. Show that F is conservative if f is continuous.
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9 Tutorial Sheet 9:
Green’s Theorem

1. Verify Green’s theorem in each of the following cases:

(i) f(x, y) = −xy2; g(x, y) = x2y; R : x ≥ 0, 0 ≤ y ≤ 1− x2;
(ii) f(x, y) = 2xy; g(x, y) = ex + x2; where R is the triangle with vertices (0, 0), (1, 0), and

(1, 1).

2. Use Green’s theorem to evaluate the integral

∮
∂R
y2 dx+ x dy, where

(i) R is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

(ii) R is the square with vertices (±1,±1).

(iii) R is the disc of radius 2 and center (0, 0) (specify the orientation you use for the curve.)

3. For a simple closed curve given in polar coordinates show using Green’s theorem that the
area enclosed is given by

A =
1

2

∮
C
r2dθ.

Use this to compute the area enclosed by the following curves:

(i) The cardioid: r = a(1− cos θ), 0 ≤ θ ≤ 2π; .

(ii) The lemniscate: r2 = a2 cos 2θ, ; −π/4 ≤ θ ≤ π/4.

4. Find the area of the following regions:

(i) The area lying in the first quadrant of the cardioid r = a(1− cos θ).

(ii) The region under one arch of the cycloid

r = a(t− sin t)i + a(1− cos t)j, 0 ≤ t ≤ 2π.

(iii) The region bounded by the limaçon

r = 1− 2 cos θ, 0 ≤ θ ≤ π/2

and the two axes.

5. Evaluate ∮
C
xe−y

2
dx+ [−x2ye−y2 + 1/(x2 + y2)]dy

around the square determined by |x| ≤ a, |y| ≤ a traced in the counter clockwise direction.

6. Let C be a simple closed curve in the xy-plane. Show that

3I0 =

∮
C
x3dy − y3dx,

where I0 is the polar moment of inertia of the region R enclosed by C.
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7. Consider a = a(x, y), b = b(x, y) having continuous partial derivatives on the unit disc D. If

a(x, y) ≡ 1, b(x, y) ≡ y

on the boundary circle C, and

u = ai + bj; v = (ax − ay)i + (bx − by)j,w = (bx − by)i + (ax − ay)j,

find ∫∫
D
u · v d(x, y) and

∫∫
D
u ·w d(x, y).

8. Let C be any counterclockwise closed curve in the plane. Compute

∮
C
∇(x2 − y2) · nds.

9. Recall the Green’s Identities:

(i)

∫∫
R
∇2w d(x, y) =

∮
∂R

∂w

∂n
ds.

(ii)

∫∫
R

[w∇2w +∇w · ∇w] d(x, y) =

∮
∂R

w
∂w

∂n
ds.

(iii)

∮
∂R

(
v
∂w

∂n
− w ∂v

∂n

)
ds =

∫∫
R

(v∇2w − w∇2v) d(x, y).

(a) Use (i) to compute ∮
C

∂w

∂n
ds

for w = ex sin y, and R the triangle with vertices (0, 0), (4, 2), (0, 2).

(b) Let D be a plane region bounded by a simple closed curve C and let F,G : U −→ R2

be smooth functions where U is a region containing D ∪ C such that

curlF = curlG, div F = div G on D ∪ C

and
F · n = G · n on C,

where n is the unit normal to the curve. Show that F = G on D.

10. Evaluate the following line integrals where the loops are traced in the counter clockwise sense

(i) ∮
C

y dx− x dy
x2 + y2

where C is any simple closed curve not passing through the origin.

(ii) ∮
C

x2ydx− x3dy
(x2 + y2)2

,

where C is the square with vertices (±1,±1).

(iii) Let C be a smooth simple closed curve lying in the annulus 1 < x2 + y2 < 2. Find∮
C

∂(ln r)

∂y
dx− ∂(ln r)

∂x
dy.
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10 Tutorial Sheet 10:
Parametrized Surfaces

1. Find a suitable parametrization Φ(u, v) and the normal vector Φu × Φv for the following
surface:

(i) The plane x− y + 2z + 4 = 0.

(ii) The right circular cylinder y2 + z2 = a2.

(iii) The right circular cylinder of radius 1 whose axis is along the line x = y = z.

2. (a) For a surface S let the unit normal n at every point make the same acute angle α with
z-axis. Let SAxy denote the area of the projection of S onto the xy plane. Show that SA,
the area of the surface S satisfies the relation: SAxy = SA cosα.
(b) Let S be a parallelogram not parallel to any of the coordinate planes. Let S1, S2, and S3
denote the areas of the projections of S on the three coordinate planes. Show that the ares
of S is

√
S2
1 + S2

2 + S2
3 .

3. Compute the surface area of that portion of the sphere x2 + y2 + z2 = a2 which lies within
the cylinder x2 + y2 = ay, where a > 0.

4. A parametric surface S is described by the vector equation

Φ(u, v) = u cos v i + u sin v j + u2k,

where 0 ≤ u ≤ 4 and 0 ≤ v ≤ 2π.

(i) Show that S is a portion of a surface of revolution. Make a sketch and indicate the
geometric meanings of the parameters u and v on the surface.

(ii) Compute the vector Φu × Φv in terms of u and v.

(iii) The area of S is
π

n
(65
√

65− 1) where n is an integer. Compute the value of n.

5. Compute the area of that portion of the paraboloid x2 + z2 = 2ay which is between the
planes y = 0 and y = a.

6. A sphere is inscribed in a right circular cylinder. The sphere is sliced by two parallel planes
perpendicular the axis of the cylinder. Show that the portions of the sphere and the cylinder
lying between these planes have equal surface areas.

7. Let S denote the plane surface whose boundary is the triangle with vertices at (1, 0, 0), (0, 1, 0),
and (0, 0, 1), and let F(x, y, z) = xi + yj + zk. Let n denote the unit normal to S having a

nonnegative z-component. Evaluate the surface integral

∫∫
S
F · n dS, using

(i) The vector representation Φ(u, v) = (u+ v)i + (u− v)j + (1− 2u)k.

–

(ii) An explicit representation of the form z = f(x, y).
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8. If S is the surface of the sphere x2 + y2 + z2 = a2, compute the value of the surface integral
(with the choice of outward unit normal)∫∫

S
xzdy ∧ dz + yzdz ∧ dx+ x2dx ∧ dy.

Choose a representation in which the fundamental vector product points in the direction of
the outward normal.

9. A fluid flow has flux density vector

F(x, y, z) = xi− (2x+ y)j + zk.

Let S denote the hemisphere x2 + y2 + z2 = 1, z ≥ 0, and let n denote the unit normal that
points out of the sphere. Calculate the mass of the fluid flowing through S in unit time in
the direction of n.

10. Solve the previous exercise when S includes the planar base of the hemisphere also with the
outward unit normal on the base being −k.
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11 Tutorial Sheet 11:
Stokes’ Theorem

1. Consider the vector field F = (x−y)i+(x+z)j+(y+z)k. Verify Stokes theorem for F where
S is the surface of the cone: z2 = x2 + y2 intercepted by
(a) x2 + (y − a)2 + z2 = a2 : z ≥ 0 (b) x2 + (y − a)2 = a2

2. Evaluate using Stokes Theorem, the line integral∮
C
yz dx+ xz dy + xy dz

where C is the curve of intersection of x2 + 9y2 = 9 and z = y2 + 1 with clockwise orientation
when viewed from the origin.

3. Compute ∫∫
S

(curlv) · ndS

where v = yi+xz3j− zy3k and n is the outward unit normal to S, the surface of the cylinder
x2 + y2 = 4 between z = 0 and z = −3.

4. Compute
∮
C v · dr for

v =
−yi + xj

x2 + y2
,

where C is the circle of unit radius in the xy plane centered at the origin and oriented
clockwise. Can the above line integral be computed using Stokes Theorem?

5. Compute ∮
C

(y2 − z2)dx+ (z2 − x2)dy + (x2 − y2)dz,

where C is the curve cut out of the boundary of the cube

0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a

by the plane x+ y + z = 3
2a (specify the orientation of C.)

6. Calculate ∮
C
ydx+ zdy + xdz,

where C is the intersection of the surface bz = xy and the cylinder x2 + y2 = a2, oriented
counter clockwise as viewed from a point high upon the positive z-axis.

7. Consider a plane with unit normal ai+ bj+ ck. For a closed curve C lying in this plane, show
that the area enclosed by C is given by

A(C) =
1

2

∮
C

(bz − cy)dx+ (cx− az)dy + (ay − bx)dz,

where C is given the anti-clockwise orientation. Compute A(C) for the curve C given by

u cos t+ v sin t, 0 ≤ t ≤ 2π.

.
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12 Tutorial Sheet 12:
Divergence Theorem

1. Verify the Divergence Theorem for

F(x, y, z) = xy2i + yz2j + zx2k

for the region
R : y2 + z2 ≤ x2; 0 ≤ x ≤ 4.

2. Verify the Divergence Theorem for

F(x, y, z) = xyi + yzj + zxk

for the region in the first octant bounded by the plane

x

a
+
y

b
+
z

c
= 1

3. Let R be a region bounded by a piecewise smooth closed surface S with outward unit normal

n = nx i + ny j + nz k.

Let u, v : R→ R be continuously differentiable. Show that∫∫∫
R
u
∂v

∂x
dV = −

∫∫∫
R
v
∂u

∂x
dV +

∫∫
∂R
u v nx dS.

[ Hint: Consider F = u v i.]

4. Suppose a scalar field φ, which is never zero has the properties

‖∇φ‖2 = 4φ and ∇ · (φ∇φ) = 10φ.

Evaluate

∫∫
S

∂φ

∂n
dS, where S is the surface of the unit sphere.

5. Let V be the volume of a region bounded by a closed surface S and n = (nx, ny, nz) be its
outer unit normal. Prove that

V =

∫∫
S
xnx dS =

∫∫
S
y ny dS =

∫∫
S
z nz dS

6. Compute

∫∫
S

(x2dy ∧ dz + y2 dz ∧ dx+ z2dx ∧ dy), where S is the surface of the cube 0 ≤
x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

7. Compute

∫∫
S
yz dy ∧ dz + zx dz ∧ dx+ xy dx ∧ dy, where S is the unit sphere.

8. Let u = −x3i+(y3+3z2 sin z)j+(ey sin z+x4)k and S be the portion of the sphere x2+y2+z2 =
1 with z ≥ 1

2 and n is the unit normal with positive z-component. Use Divergence theorem

to compute

∫∫
S

(∇× u) · n dS.
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9. Let p denote the distance from the origin to the tangent plane at the point (x, y, z) to the

ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1. Prove that

(a)

∫∫
S
p dS = 4πabc.

(b)

∫∫
S

1

p
dS =

4π

3abc
(b2c2 + c2a2 + a2b2)

10. Interpret Green’s theorem as a divergence theorem in the plane.
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