Indian Institute of Technology Bombay

MA 414: Algebra I

Mid Semester Examination

Date \& Time: 23 Feb 2008, 10.30 AM - 12.30 PM
Max Marks : 25
Note: Throughout n denotes a positive integer, S_{n} the group of permutations of $\{1,2, \ldots, n\}$, and $\mathrm{GL}_{n}(\mathbb{R})$ the group of $n \times n$ nonsingular matrices with entries in the set \mathbb{R} of all real numbers.
Q. 1 Define the cycle-type of a permutation in S_{n}. Given any $\sigma, \tau \in S_{n}$, show that σ and τ are conjugate to each other if and only if σ and τ have the same cycle-type. [2 marks]
Q. 2 Define the center of a group. Prove that for $n \geq 3$, the center of S_{n} is trivial and for $n \geq 1$, the center of $\mathrm{GL}_{n}(\mathbb{R})$ consists precisely of the scalar matrices, that is, matrices of the form $c I_{n}$ where $c \in \mathbb{R}$.
[3 marks]
Q. 3 Define when a group is said to be (i) simple, and (ii) solvable. Show that a simple group is solvable if and only if it is abelian. Further show that an abelian group is simple if and only if it is cyclic of prime order.
[3 marks]
Q. 4 Let G be a group. Define the upper central series $\left\{Z_{i}(G)\right\}_{i \geq 0}$ and the lower central series $\left\{G^{i}\right\}_{i \geq 0}$ of G. Show that if $Z_{n}(G)=G$ for some $n \geq 1$, then $G^{n}=\{1\}$. Prove any auxiliary results that you may require.
[2 marks]
Q. 5 Let G be a transitive subgroup of S_{n}.
(a) If $N \unlhd G$ and if O_{1}, \ldots, O_{k} denote the disjoint orbits with respect to the natural action of N on $\{1,2, \ldots, n\}$, then show that for any $j=2, \ldots, k$, there exists $\sigma_{j} \in G$ such that $\sigma_{j}\left(O_{1}\right)=O_{j}$. Deduce that $k \mid n$ and $\left|O_{j}\right|=\frac{n}{k}$ for $j=1, \ldots, k$.
(b) If $\{1\} \neq N \unlhd G$ and if N is p-group for some prime p, then show that $p \mid n$.
(c) If G is nilpotent, then for every prime p dividing $|G|$, show that $p \mid n$. [5 marks]
Q. 6 (a) Define the composition series of a group.
(b) State the Jordan-Hölder Theorem.
(c) Determine a composition series for the dihedral group D_{12} of order 24 and the symmetric group S_{6} of order 720 .
Q. 7 Give an example of a group G such that every finite group is isomorphic to a subgroup of G. Justify your answer.
Q. 8 Show that the group Q_{8} of quaternions is not the semidirect product of any two of its subgroups.
Q. 9 Let G be a finitely generated abelian group, with group operation written additively. Show that $T:=\{x \in G: n x=0$ for some $n \geq 1\}$ is a finite subgroup of G. [3 marks]

Bonus Problems: Write the complete statement and a solution of any of the bonus problems from any of the Exercise sets given thus far.

