MA 5105 Coding Theory, IITB Exercises and Problems

Prof. Sudhir Ghorpade

- (1) Exercise. Let Q be a finite set, n a positive integer, and let d_H denote the Hamming distance on Q^n . Show that d_H satisfies the triangle inequality. Deduce that (Q^n, d_H) is a metric space.
- (2) Exercise. Let $n, k \in \mathbb{Z}^+$, $k \leq n$ and q be a prime power. Find a formula for the number of $[n, k]_q$ codes.
- (3) Problem. Let $n, k \in \mathbb{Z}^+$, $k \leq n$ and q be a prime power. Find a formula for the number of $[n, k]_q$ MDS codes.
- (4) Exercise. Solve Problem (??) for k = 1, 2.
- (5) Exercise. Let F be a field. Define when a $m \times n$ matrix with entries in F is said to be in (i) row echelon form, (ii) reduced row echelon form. Given any $A \in M_{m \times n}(F)$, show that A is row-equivalent to a unique $B \in M_{m \times n}(F)$ such that B is in reduced row echelon form. [Optional Question: Can you find an explicit formula for the entries of B in terms of the entries of A?]
- (6) Exercise. Let F be a field and let $n, k \in \mathbb{Z}^+$, $k \leq n$. Define a relation \sim on $M_{k \times n}(F)$ by

 $A \sim B \iff B = EA$ for some $E \in GL_k(\mathsf{F})$.

Show that \sim is an equivalence relation on $M_{k\times n}(\mathsf{F})$ as well as on the subset $M^0_{k\times n}(\mathsf{F})$ of $M_{k\times n}(\mathsf{F})$ defined by $M^0_{k\times n}(\mathsf{F}) = \{A \in M_{k\times n}(\mathsf{F}) : \operatorname{rank}(A) = k\}$. Further, suppose $F = \mathbb{F}_q$ and let $\mathcal{C}^0 = M^0_{k\times n}(\mathbb{F}_q) / \sim$ and $\mathcal{C} = M_{k\times n}(\mathbb{F}_q) / \sim$ denote the set of equivalence classes in $M^0_{k\times n}(\mathbb{F}_q)$ and $M_{k\times n}(\mathbb{F}_q)$ with respect to the above equivalence relation. Determine the cardinalities $|\mathcal{C}^0|$ and $|\mathcal{C}|$. Compare the former with Exercise (??).

- (7) Exercise. Let F be a field and let $n, k \in \mathbb{Z}^+$, $k \leq n$. Let $A, B \in M_{k \times n}(\mathsf{F})$. When will A and B have the same nullspace?
- (8) Exercise. Let $n, k \in \mathbb{Z}^+$, $k \leq n$ and q be a prime power. Let C be an $[n, k]_q$ code. Show that C^{\perp} is an $[n, n k]_q$ code.
- (9) Let C be an $[n, k]_q$ code. Show that
 - (a) dim $C^{\perp} = n k$.
 - **(b)** $(C^{\perp})^{\perp} = C.$
- (10) Let C be an $[n,k]_q$ code. Show that a matrix $H \in M_{k \times n}(\mathbb{F}_q)$ is a parity check matrix for C if and only if H is a generator matrix for C^{\perp} .

- (11) Let C be an $[n,k]_q$ code. Show that C is self-dual (i.e., $C = C^{\perp}$) if and only if C is self-orthogonal (i.e., $C \subseteq C^{\perp}$) and n = 2k.
- (12) Let C be an $[n, k]_q$ code. Show that C is MDS if and only if C^{\perp} is MDS.
- (13) Let $n, k \in \mathbb{Z}^+$, $k \leq n$ and q be a prime power. Show that the q-binomial coefficient (or Gaussian binomial coefficient) defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q^n - 1) \cdots (q^n - q^{k-1})}{(q^k - 1) \cdots (q^k - q^{k-1})}$$

is a polynomial in q of degree k(n-k).

(14) Let $n, k \in \mathbb{Z}^+$, $k \leq n$. Consider the Gaussian binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ as a function from $(-\infty, 1) \cup (1, \infty)$ to $[0, \infty)$ defined by

$$q \longmapsto \frac{(q^n - 1) \cdots (q^n - q^{k-1})}{(q^k - 1) \cdots (q^k - q^{k-1})}.$$

Find $\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q$.

- (15) r be a positive integre and let $n := (q^r 1)/(q 1)$ be the number of "lines" in \mathbb{F}_q^r , i.e., the number of 1-dimensional subspaces of \mathbb{F}_q^r . Let $\mathbf{H}_r(q)$ be a $r \times n$ matrix with entries in \mathbb{F}_q such that any two columns of $\mathbf{H}_r(q)$ are linearly independent. Define $\mathscr{H}_r(q)$ to be [n, n r]-code with $\mathbf{H}_r(q)$ as its parity check matrix and $\mathscr{S}_r(q)$ to be [n, r]-code with $\mathbf{H}_r(q)$ as its generator matrix. These are called *Hamming code* and *simplex code*, respectively. Find the minimum distance of $\mathscr{S}_r(q)$ and $\mathscr{H}_r(q)$.
- (16) Determine the spectrum of the simplex code $\mathscr{S}_r(q)$ defined above.
- (17) Let n, k be positive integers with $n \ge k$ and q be a prime power with $q \ge n$. Fix distinct elements $a_1, \dots, a_n \in \mathbb{F}_q[x]$ and let

$$C := \{ c_f = (f(a_1), f(a_2), \cdots, f(a_n)) : f(x) \in \mathbb{F}_q[X] \text{ with } \deg f(x) < k \}.$$

This code C is known as *Reed-Solomon code*.

Find a parity check matrix for this code C.

- (18) Let m, ν be integers with $m \ge 1$ and $v \ge 0$, and let q be a prime power. Also let $\mathbb{F}_q[X_1, X_2, \ldots, X_m]_{\le \nu}$ denote the set of all polynomials in m variables X_1, \ldots, X_m of deg $\le \nu$ with coefficients in \mathbb{F}_q . Show that $\mathbb{F}_q[X_1, X_2, \ldots, X_m]_{\le \nu}$ is a finite dimensional vector space over \mathbb{F}_q and find a formula for dim $_{\mathbb{F}_q} \mathbb{F}_q[X_1, X_2, \ldots, X_m]_{\le \nu}$.
- (19) Let P_1, \ldots, P_{q^m} be a fixed ordering of the q^m points in \mathbb{F}_{q^m} . Consider the evaluation map

$$\operatorname{Ev}: \mathbb{F}_q[X_1, X_2, \dots, X_m]_{\leq \nu} \longrightarrow \mathbb{F}_{q^m}$$

defined by $\operatorname{Ev}(f) = (f(P_1), \ldots, f(P_{q^m}))$. Show that if $\nu < q$, then the map Ev is injective. Note: The image of this map Ev is called *generalized Reed-Muller code* of order ν and length q^m , denoted by $\operatorname{RM}_q(\nu, m)$.

- (20) Show that if $f \in \mathbb{F}_q[X_1, X_2, \dots, X_m]$ is a nonzero polynomial of degree d, then f has at most dq^{m-1} zeroes in \mathbb{F}_q^m . Deduce that if $\nu < q$, then $d(\mathrm{RM}_q(\nu, m)) = (q \nu)q^{m-1}$. (Optional Question: Find a formula for $\dim_{\mathbb{F}_q} \mathrm{RM}_q(\nu, m)$ for any $\nu \leq m(q-1)$.)
- (21) Let C be a $[n, k]_q$ -code. Use the MacWilliams Identity:

$$W_{C^{\perp}}(X,Y) = \frac{1}{|C|} W_{C}(X + (q-1)Y, X - Y)$$

to show that, the spectrum $\{A_i : 0 \leq i \leq n\}$ of C and $\{B_i : 0 \leq i \leq n\}$ of C^{\perp} are related by

$$B_j = \frac{1}{|\mathbf{C}|} \sum_{i=0}^n K_j(i) A_i \text{ for } j = 0, 1, \dots, n$$

where $K_j = K_j^{n,q}(X)$ is the jth **Krawtchouk polynomial** defined by:

$$K_j(X) := \sum_{r=0}^{j} (-1)^r \binom{X}{r} \binom{n-X}{j-r} (q-1)^{j-r}.$$

where for any $r \in \mathbb{Z}$, and variable X,

$$\binom{X}{r} := \begin{cases} \frac{X(X-1)\cdots(X-r+1)}{r!} & \text{if } r \ge 0, \\ 0 & \text{if } r < 0. \end{cases}$$

(22) Let C be a $[n, k]_q$ -code and let A_j, B_j be as in Q. ??. Show that

$$\sum_{j=0}^{n} {j \choose \nu} A_j = q^k \sum_{j=0}^{\nu} (-1)^j {n-j \choose n-\nu} (q-1)^{\nu-j} B_j \quad \text{for } \nu = 0, 1, \dots, n.$$

- (23) Show that $\{X^j : j \ge 0\}$ and $\{\binom{X}{j} : j \ge 0\}$ form two bases of the polynomial ring over a field in one variable.
- (24) Show that every $[n, k]_q$ -code C is permutation equivalent to a code whose generator matrix is in standard form.
- (25) Show that the Hamming code $\mathscr{H}_r(q)$ is perfect for any prime power q.
- (26) Let **C** is a (n,M) code over an alphabet set **Q** of size q and if $d = d(\mathbf{C})$ and qd > (q-1)n, then $M \leq \left\lfloor \frac{qd}{qd - (q-1)n} \right\rfloor$. This bound on size of **C** is called **Plotkin Bound**. Show that the equality holds if and only if **C** is an equidistant code with $d(\mathbf{C}) = d$ and M(q-1)n = (M-1)qd.
- (27) The q-ary entropy function is the function $H_q: [0,1] \longrightarrow \mathbb{R}$ defined by

$$H_q(x) := x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x) \quad \text{for } 0 < x < 1.$$

Show that

(i) $H_q(1-x) - H_q(x) = (1-2x)\log_q(q-1)$ for all $x \in [0,1]$.

- (ii) H_q is continuous on [0,1], differentiable on (0,1) increasing on $\left[0, \frac{q-1}{q}\right]$ and decreasing on $\left[\frac{q-1}{q}, 1\right]$. It has absolute maximum at $\frac{q-1}{q}$ with value 1 and local minima at 0 and 1 with values 0 and $\log_q(q-1)$, respectively.
- (iii) Draw the graph of H_q for q = 2, q = 3, show that H_q has vertical tangent at 0 & 1.

(28) Suppose $q \ge 2$ and $0 < \theta < 1 - \frac{1}{q}$. Use Stirling's Formula to show that

$$\lim_{n \to \infty} \frac{1}{n} \log_q \binom{n}{\lfloor \theta n \rfloor} = -\theta \log_q \theta - (1 - \theta) \log_q (1 - \theta).$$

(Stirling's formula or approximation for factorials: $\log n! \approx n \log n - n + \frac{1}{2} \log(2\pi n)$, where $f(n) \approx g(n)$ means the ratio f(n)/g(n) tends to 1 as n tends to ∞)

- (29) Show that $\binom{n}{j}(q-1)^j$ is increasing in j for $\frac{j}{n} \leq \frac{q-1}{q}$.
- (30) (Spoiling a code) Suppose there exists a $[n, k, d]_q$ -code C with $k \ge 2, d \ge 2 \& n > d$. Then show that there exists q-ary linear codes with the following parameters:
 - (i) [n+1,k,d]
 - (ii) [n, k, d-1]
 - (iii) [n-1, k, d-1]
 - (iv) [n, k 1, d]
 - (v) [n-1, k-1, d].
- (31) Consider the binary Hamming code $C = \mathscr{H}_3(2)$ of length 7 and dimension 4. Show that a generator matrix of this code is given by

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Use this to show that C is not cyclic. On the other hand, if C' is the binary [7, 4]-code with generator matrix given by

$$G' = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix},$$

then show that C' is cyclc and C' is (permutation) equivalent to C. Further, consider the ring $R_7 := \mathbb{F}_2[x] = \mathbb{F}_2[X]/\langle X^7 - 1 \rangle$ and the natural map $\pi : \mathbb{F}_2^7 \to R_7$ given by $\pi(c_0, c_1, \ldots, c_6) = c_0 + c_1 x + \cdots + c_6 x^6$ for $(c_0, c_1, \ldots, c_6) \in \mathbb{F}_2^7$. Compare the ideals generated by the elements of $\pi(C')$ corresponding to the rows of C'. Also find the generator polynomial for the cyclc code C'. Is this polynomial irreducible? Is it primitive?

(32) Suppose C is a q-ary cyclic code of length n and g(X) is the generator polynomial of C. Suppose c(X) is a polynomial in $\mathbb{F}_q[X]$ such that c(x) generates the ideal $\pi(C)$ under the natural map $\pi : \mathbb{F}_q^n \to R_n$, where $R_n = \mathbb{F}_q[X] = \mathbb{F}_q[X]/\langle X^n - 1 \rangle$. Show that

$$g(X) = \operatorname{GCD}(c(X), X^n - 1).$$

Deduce that if G is a generator matrix of C and if $g_1(X), \ldots, g_k(X)$ denote polynomials of degree < n corresponding to the k rows of G, then the generator polynomial of C is given by

$$g(X) = \operatorname{GCD}(g_1(X), \dots, g_k(X), X^n - 1).$$

(33) Let C be a $[n, k]_q$ cyclic code, where $1 \le k \le n$, and let G be any generator matrix of C. Show that the $k \times k$ submatrix formed by the first k columns of G is nonsingular. Deduce that the reduced row echelon form (rref) of G is a matrix of the form $[I_k|A]$, i.e., in standard form. Further show that if the last row of the rref of G is $[0, \ldots, 0, 1, a_1, \ldots, a_{n-k}]$, then $a_{n-k} \ne 0$ and the generator polynomial of C is given by

$$\frac{1}{a_{n-k}} \left(1 + a_1 X + a_z X^2 + \dots + a_{n-k} X^{n-k} \right).$$

(34) Consider the [6,3]-code over \mathbb{F}_7 with generator matrix G defined by

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 6 & 4 & 5 \\ 1 & 2 & 4 & 1 & 2 & 4 \end{pmatrix},$$

Show that C is cyclic and determine the generator polynomial of C.

(35) Suppose C is a q-ary code of length n. Recall that the reversed code $\rho(C)$ is defined by

 $\rho(C) := \{\rho(c) : c \in C\}, \text{ where } \rho(c_0, c_1, \dots, c_{n-1}) := (c_{n-1}, c_{n-2}, \dots, c_1, c_0).$

Show that $\rho(C)$ is also a q-ary code of length n, and the codes C and $\rho(C)$ are (permutation) equivalent. Further show that if C is cyclic and g(X) is the generator polynomial of C, then $\rho(C)$ is cyclic with the monic reciprocal of g(X) as its generator polynomial. Deduce that if C is reversible, i.e., $\rho(C) = C$, and also C is cyclic, then the generator polynomial of C is equal to its monic reciprocal.

- (36) Show that a cyclic code C is reversible iff it is complementary dual, i.e., $C \cap C^{\perp} = \{0\}$.
- (37) Suppose C is a binary cyclic code of length 7 such that the ideal $\pi(C)$ is generated by $1+x+x^5$. Determine the generator polynomial of C.
- (38) Show that if q is a power of a prime p, then the binomial coefficient $\binom{q}{i}$ is divisible by p for $1 \leq i < q$. Deduce that $(a+b)^q = a^q + b^q$ for all $a, b \in \mathbb{F}_q$.
- (39) Use the formula

$$I_q(n) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d$$

for the number $I_q(n)$ of irreducible polynomials of degree n in $\mathbb{F}_q[X]$ to show that for every positive integer n, there exists at least one irreducible polynomial of degree n in $\mathbb{F}_q[X]$.

- (40) Show that if q is a prime power and n a positive integer such that GCD(q, n) = 1, then there exists a positive integer e such that $q^e \equiv 1 \pmod{n}$. Further show that $\mathbb{F}_{q^e}^*$ has exactly $\varphi(n)$ elements of order n. Find the least positive integer e such that the extension \mathbb{F}_{3^e} of \mathbb{F}_3 has an element of order 11.
- (41) Let q be a prime power and n a positive integer such that GCD(q, n) = 1. Also let e be the least positive integer such that $q^e \equiv 1 \pmod{n}$, and $\alpha \in \mathbb{F}_{q^e}$ be an element of order n in $\mathbb{F}_{q^e}^*$. For $i \in \mathbb{Z}/n\mathbb{Z}$, let $m_i(X)$ be the minimal polynomial of α^i . Show that the monic reciprocal of $m_i(X)$ is $m_{-i}(X)$. Further
- (42) With notations as in the previous question, compute the following. Suppose q = 7, n = 6, and $\alpha = 3$. Show that α is an element of order 6 in \mathbb{F}_7 . Compute $m_i(X)$ for each $i \in \mathbb{Z}/6Z$.
- (43) Let q, n, α and $m_i(X)$ be as in Q. (??). For $i \in \mathbb{Z}/n\mathbb{Z}$, let $C_q(i)$ denote the q-cyclotomy subset of $\mathbb{Z}/n\mathbb{Z}$ corresponding to i. Prove that

$$m_i(X) = \prod_{j \in C_q(i)} (X - \alpha^j).$$

- (44) Let q be a prime power and n a positive integer such that GCD(q, n) = 1. If $i_1, i_2 \in \mathbb{Z}/n\mathbb{Z}$ are such that $GCD(i_1, n) = 1$ and $GCD(i_1, n) = 1$. Show that the q-cyclotomy subsets $C_q(i_1)$ and $C_q(i_2)$ have the same cardinality. Deduce that the number of monic irreducible factors of the cyclotomic polynomial $\Phi_n(X)$ over \mathbb{F}_q is equal to $\varphi(n)/|C_q(1)|$.
- (45) Determine the number of monic irreducible factors and their degrees for the cyclotomic polynomials (i) $\Phi_{11}(X)$ in $\mathbb{F}_3[X]$, and (ii) $\Phi_{23}(X)$ in $\mathbb{F}_2[X]$.
- (46) Consider the $[6,3]_7$ -cyclic code C of Q. (??). Take $\alpha = 3$ as the fixed element of order 6 in \mathbb{F}_7 . Determine the zero-set Z(C) of C and also the zero-set $Z(C^{\perp})$ of its dual.
- (47) Show that if a $[n,k]_q$ -code C is r-MDS for some $r \in \{1,\ldots,k\}$, then it is s-MDS for each $s \in \mathbb{Z}$ with $r \leq s \leq k$. Deduce that a MDS code is r-MDS for each $r \in \{1,\ldots,k\}$, and in particular, it is nondegenerate.
- (48) Let r be a positive integer and let $n = \frac{q^r 1}{q 1}$. Determine all the generalized Hamming weights of the q-ary simplex code $\mathscr{S}_r(q)$ of length n and dimension r.
- (49) Show that the generalized Hamming weights $d_r = d_r(C)$ of a $[n, k]_q$ -code C satisfy the Griesmer-Wei bound:

$$d_r \ge \sum_{i=0}^{r-1} \lceil \frac{d_1}{q^i} \rceil$$
 for each $r = 1, \dots, k$.

(Hint: Use the Griesmer bound for a r-dimensional subcode D of C such that $w_H(D) = d_r(C)$.)

(50) Let $C = \text{RM}_2(1, m)$ be the binary first order Reed-Muller code of order m. Determine all the generalized Hamming weights of C.