MA 5105 Coding Theory, IITB Exercises and Problems

Prof. Sudhir Ghorpade

(1) Exercise. Let Q be a finite set, n a positive integer, and let d_{H} denote the Hamming distance on Q^{n}. Show that d_{H} satisfies the triangle inequality. Deduce that $\left(Q^{n}, d_{H}\right)$ is a metric space.
(2) Exercise. Let $n, k \in \mathbb{Z}^{+}, k \leq n$ and q be a prime power. Find a formula for the number of $[n, k]_{q}$ codes.
(3) Problem. Let $n, k \in \mathbb{Z}^{+}, k \leq n$ and q be a prime power. Find a formula for the number of $[n, k]_{q}$ MDS codes.
(4) Exercise. Solve Problem (??) for $k=1,2$.
(5) Exercise. Let F be a field. Define when a $m \times n$ matrix with entries in F is said to be in (i) row echelon form, (ii) reduced row echelon form. Given any $A \in M_{m \times n}(\mathrm{~F})$, show that A is row-equivalent to a unique $B \in M_{m \times n}(\mathrm{~F})$ such that B is in reduced row echelon form. [Optional Question: Can you find an explicit formula for the entries of B in terms of the entries of A ?]
(6) Exercise. Let F be a field and let $n, k \in \mathbb{Z}^{+}, k \leq n$. Define a relation \sim on $M_{k \times n}(\mathrm{~F})$ by

$$
A \sim B \Longleftrightarrow B=E A \text { for some } E \in G L_{k}(\mathrm{~F})
$$

Show that \sim is an equivalence relation on $M_{k \times n}(\mathrm{~F})$ as well as on the subset $M_{k \times n}^{0}(\mathrm{~F})$ of $M_{k \times n}(\mathrm{~F})$ defined by $M_{k \times n}^{0}(\mathrm{~F})=\left\{A \in M_{k \times n}(\mathrm{~F}): \operatorname{rank}(A)=k\right\}$. Further, suppose $F=\mathbb{F}_{q}$ and let $\mathcal{C}^{0}=M_{k \times n}^{0}\left(\mathbb{F}_{q}\right) / \sim$ and $\mathcal{C}=M_{k \times n}\left(\mathbb{F}_{q}\right) / \sim$ denote the set of equivalence classes in $M_{k \times n}^{0}\left(\mathbb{F}_{q}\right)$ and $M_{k \times n}\left(\mathbb{F}_{q}\right)$ with respect to the above equivalence relation. Determine the cardinalities $\left|\mathcal{C}^{0}\right|$ and $|\mathcal{C}|$. Compare the former with Exercise (??).
(7) Exercise. Let F be a field and let $n, k \in \mathbb{Z}^{+}, k \leq n$. Let $A, B \in M_{k \times n}(\mathrm{~F})$. When will A and B have the same nullspace?
(8) Exercise. Let $n, k \in \mathbb{Z}^{+}, k \leq n$ and q be a prime power. Let C be an $[n, k]_{q}$ code. Show that C^{\perp} is an $[n, n-k]_{q}$ code.
(9) Let C be an $[n, k]_{q}$ code. Show that
(a) $\operatorname{dim} C^{\perp}=n-k$.
(b) $\left(C^{\perp}\right)^{\perp}=C$.
(10) Let C be an $[n, k]_{q}$ code. Show that a matrix $H \in M_{k \times n}\left(\mathbb{F}_{q}\right)$ is a parity check matrix for C if and only if H is a generator matrix for C^{\perp}.
(11) Let C be an $[n, k]_{q}$ code. Show that C is self-dual (i.e., $C=C^{\perp}$) if and only if C is selforthogonal (i.e., $C \subseteq C^{\perp}$) and $n=2 k$.
(12) Let C be an $[n, k]_{q}$ code. Show that C is MDS if and only if C^{\perp} is MDS.
(13) Let $n, k \in \mathbb{Z}^{+}, k \leq n$ and q be a prime power. Show that the q-binomial coefficient (or Gaussian binomial coefficient) defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{\left(q^{n}-1\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

is a polynomial in q of degree $k(n-k)$.
(14) Let $n, k \in \mathbb{Z}^{+}, k \leq n$. Consider the Gaussian binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ as a function from $(-\infty, 1) \cup(1, \infty)$ to $[0, \infty)$ defined by

$$
q \longmapsto \frac{\left(q^{n}-1\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

Find $\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.
(15) r be a positive integre and let $n:=\left(q^{r}-1\right) /(q-1)$ be the number of "lines" in \mathbb{F}_{q}^{r}, i.e., the number of 1-dimensional subspaces of \mathbb{F}_{q}^{r}. Let $\mathbf{H}_{r}(q)$ be a $r \times n$ matrix with entries in \mathbb{F}_{q} such that any two columns of $\mathbf{H}_{r}(q)$ are linearly independent. Define $\mathscr{H}_{r}(q)$ to be $[n, n-r]$-code with $\mathbf{H}_{r}(q)$ as its parity check matrix and $\mathscr{S}_{r}(q)$ to be $[n, r]$-code with $\mathbf{H}_{r}(q)$ as its generator matrix. These are called Hamming code and simplex code, respectively. Find the minimum distance of $\mathscr{S}_{r}(q)$ and $\mathscr{H}_{r}(q)$.
(16) Determine the spectrum of the simplex code $\mathscr{S}_{r}(q)$ defined above.
(17) Let n, k be positive integers with $n \geq k$ and q be a prime power with $q \geq n$. Fix distinct elements $a_{1}, \cdots, a_{n} \in \mathbb{F}_{q}[x]$ and let

$$
\mathrm{C}:=\left\{c_{f}=\left(f\left(a_{1}\right), f\left(a_{2}\right), \cdots, f\left(a_{n}\right)\right): f(x) \in \mathbb{F}_{q}[X] \text { with } \operatorname{deg} f(x)<k\right\}
$$

This code C is known as Reed-Solomon code.
Find a parity check matrix for this code C.
(18) Let m, ν be integers with $m \geq 1$ and $v \geq 0$, and let q be a prime power. Also let $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]_{\leq \nu}$ denote the set of all polynomials in m variables X_{1}, \ldots, X_{m} of $\operatorname{deg} \leq \nu$ with coefficients in \mathbb{F}_{q}. Show that $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]_{\leq \nu}$ is a finite dimensional vector space over \mathbb{F}_{q} and find a formula for $\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]_{\leq \nu}$.
(19) Let $P_{1}, \ldots, P_{q^{m}}$ be a fixed ordering of the q^{m} points in $\mathbb{F}_{q^{m}}$. Consider the evaluation map

$$
\operatorname{Ev}: \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]_{\leq \nu} \longrightarrow \mathbb{F}_{q^{m}}
$$

defined by $\operatorname{Ev}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{q^{m}}\right)\right)$. Show that if $\nu<q$, then the map Ev is injective. Note: The image of this map Ev is called generalized Reed-Muller code of order ν and length q^{m}, denoted by $\mathrm{RM}_{q}(\nu, m)$.
(20) Show that if $f \in \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ is a nonzero polynomial of degree d, then f has at most $d q^{m-1}$ zeroes in \mathbb{F}_{q}^{m}. Deduce that if $\nu<q$, then $d\left(\mathrm{RM}_{q}(\nu, m)\right)=(q-\nu) q^{m-1}$. (Optional Question: Find a formula for $\operatorname{dim}_{\mathbb{F}_{q}} \mathrm{RM}_{q}(\nu, m)$ for any $\nu \leq m(q-1)$.)
(21) Let \mathbf{C} be a $[n, k]_{q}$-code. Use the MacWilliams Identity:

$$
\mathrm{W}_{\mathrm{C}^{\perp}}(X, Y)=\frac{1}{|C|} \mathrm{W}_{\mathrm{C}}(X+(q-1) Y, X-Y)
$$

to show that, the spectrum $\left\{A_{i}: 0 \leq i \leq n\right\}$ of C and $\left\{B_{i}: 0 \leq i \leq n\right\}$ of C^{\perp} are related by

$$
B_{j}=\frac{1}{|\mathbf{C}|} \sum_{i=0}^{n} K_{j}(i) A_{i} \quad \text { for } j=0,1, \ldots, n
$$

where $K_{j}=K_{j}^{n, q}(X)$ is the $j^{\text {th }}$ Krawtchouk polynomial defined by:

$$
K_{j}(X):=\sum_{r=0}^{j}(-1)^{r}\binom{X}{r}\binom{n-X}{j-r}(q-1)^{j-r}
$$

where for any $r \in \mathbb{Z}$, and variable X,

$$
\binom{X}{r}:= \begin{cases}\frac{X(X-1) \cdots(X-r+1)}{r!} & \text { if } r \geq 0 \\ 0 & \text { if } r<0\end{cases}
$$

(22) Let \mathbf{C} be a $[n, k]_{q}$-code and let A_{j}, B_{j} be as in Q. ??. Show that

$$
\sum_{j=0}^{n}\binom{j}{\nu} A_{j}=q^{k} \sum_{j=0}^{\nu}(-1)^{j}\binom{n-j}{n-\nu}(q-1)^{\nu-j} B_{j} \quad \text { for } \nu=0,1, \ldots, n
$$

(23) Show that $\left\{X^{j}: j \geq 0\right\}$ and $\left\{\binom{X}{j}: j \geq 0\right\}$ form two bases of the polynomial ring over a field in one variable.
(24) Show that every $[n, k]_{q}$-code C is permutation equlvalent to a code whose generator matrix is in standard form.
(25) Show that the Hamming code $\mathscr{H}_{r}(q)$ is perfect for any prime power q.
(26) Let \mathbf{C} is a (n, M) code over an alphabet set Q of size q and if $d=\mathrm{d}(\mathbf{C})$ and $q d>(q-1) n$, then $\mathrm{M} \leq\left\lfloor\frac{q d}{q d-(q-1) n}\right\rfloor$. This bound on size of \mathbf{C} is called Plotkin Bound. Show that the equality holds if and only if \mathbf{C} is an equidistant code with $\mathrm{d}(\mathbf{C})=d$ and $M(q-1) n=(M-1) q d$.
(27) The q-ary entropy function is the function $H_{q}:[0,1] \longrightarrow \mathbb{R}$ defined by

$$
H_{q}(x):=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) \quad \text { for } 0<x<1 .
$$

Show that
(i) $H_{q}(1-x)-H_{q}(x)=(1-2 x) \log _{q}(q-1)$ for all $x \in[0,1]$.
(ii) H_{q} is continuous on $[0,1]$, differentiable on (0,1) increasing on $\left[0, \frac{q-1}{q}\right]$ and decreasing on $\left[\frac{q-1}{q}, 1\right]$. It has absolute maximum at $\frac{q-1}{q}$ with value 1 and local minima at 0 and 1 with values 0 and $\log _{q}(q-1)$, respectively.
(iii) Draw the graph of H_{q} for $q=2, q=3$, show that H_{q} has vertical tangent at $0 \& 1$.
(28) Suppose $q \geq 2$ and $0<\theta<1-\frac{1}{q}$. Use Stirling's Formula to show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{q}\binom{n}{\lfloor\theta n\rfloor}=-\theta \log _{q} \theta-(1-\theta) \log _{q}(1-\theta)
$$

(Stirling's formula or approximation for factorials: $\log n!\approx n \log n-n+\frac{1}{2} \log (2 \pi n)$, where $f(n) \approx g(n)$ means the ratio $f(n) / g(n)$ tends to 1 as n tends to $\infty)$
(29) Show that $\binom{n}{j}(q-1)^{j}$ is increasing in j for $\frac{j}{n} \leq \frac{q-1}{q}$.
(30) (Spoiling a code) Suppose there exists a $[n, k, d]_{q}$-code C with $k \geq 2, d \geq 2 \& n>d$. Then show that there exists q-ary linear codes with the following parameters:
(i) $[n+1, k, d]$
(ii) $[n, k, d-1]$
(iii) $[n-1, k, d-1]$
(iv) $[n, k-1, d]$
(v) $[n-1, k-1, d]$.
(31) Consider the binary Hamming code $C=\mathscr{H}_{3}(2)$ of length 7 and dimension 4. Show that a generator matrix of this code is given by

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Use this to show that C is not cyclic. On the other hand, if C^{\prime} is the binary [7, 4]-code with generator matrix given by

$$
G^{\prime}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

then show that C^{\prime} is cyclc and C^{\prime} is (permutation) equivalent to C. Further, consider the ring $R_{7}:=\mathbb{F}_{2}[x]=\mathbb{F}_{2}[X] /\left\langle X^{7}-1\right\rangle$ and the natural map $\pi: \mathbb{F}_{2}^{7} \rightarrow R_{7}$ given by $\pi\left(c_{0}, c_{1}, \ldots, c_{6}\right)=$ $c_{0}+c_{1} x+\cdots+c_{6} x^{6}$ for $\left(c_{0}, c_{1}, \ldots, c_{6}\right) \in \mathbb{F}_{2}^{7}$. Compare the ideals generated by the elements of $\pi\left(C^{\prime}\right)$ corresponding to the rows of C^{\prime}. Also find the generator polynomial for the cyclc code C^{\prime}. Is this polynomial irreducible? Is it primitive?
(32) Suppose C is a q-ary cyclic code of length n and $g(X)$ is the generator polynomial of C. Suppose $c(X)$ is a polynomial in $\mathbb{F}_{q}[X]$ such that $c(x)$ generates the ideal $\pi(C)$ under the natural map $\pi: \mathbb{F}_{q}^{n} \rightarrow R_{n}$, where $R_{n}=\mathbb{F}_{q}[x]=\mathbb{F}_{q}[X] /\left\langle X^{n}-1\right\rangle$. Show that

$$
g(X)=\operatorname{GCD}\left(c(X), X^{n}-1\right)
$$

Deduce that if G ia a generator matrix of C and if $g_{1}(X), \ldots, g_{k}(X)$ denote polynomials of degree $<n$ corresponding to the k rows of G, then the generator polynomial of C is given by

$$
g(X)=\operatorname{GCD}\left(g_{1}(X), \ldots, g_{k}(X), X^{n}-1\right)
$$

(33) Let C be a $[n, k]_{q}$ cyclic code, where $1 \leq k \leq n$, and let G be any generator matrix of C. Show that the $k \times k$ submatrix formed by the first k columns of G is nonsingular. Deduce that the reduced row echelon form (rref) of G is a matrix of the form $\left[I_{k} \mid A\right]$, i.e., in standard form. Further show that if the last row of the rref of G is $\left[0, \ldots, 0,1, a_{1}, \ldots, a_{n-k}\right]$, then $a_{n-k} \neq 0$ and the generator polynomial of C is given by

$$
\frac{1}{a_{n-k}}\left(1+a_{1} X+a_{z} X^{2}+\cdots+a_{n-k} X^{n-k}\right)
$$

(34) Consider the $[6,3]$-code over \mathbb{F}_{7} with generator matrix G defined by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5 \\
1 & 2 & 4 & 1 & 2 & 4
\end{array}\right)
$$

Show that C is cyclic and determine the generator polynomial of C.
(35) Suppose C is a q-ary code of length n. Recall that the reversed code $\rho(C)$ is defined by

$$
\rho(C):=\{\rho(c): c \in C\}, \quad \text { where } \quad \rho\left(c_{0}, c_{1}, \ldots, c_{n-1}\right):=\left(c_{n-1}, c_{n-2}, \ldots, c_{1}, c_{0}\right) .
$$

Show that $\rho(C)$ is also a q-ary code of length n, and the codes C and $\rho(C)$ are (permutation) equivalent. Further show that if C is cyclic and $g(X)$ is the generator polynomial of C, then $\rho(C)$ is cyclic with the monic reciprocal of $g(X)$ as its generator polynomial. Deduce that if C is reversible, i.e., $\rho(C)=C$, and also C is cyclic, then the generator polynomial of C is equal to its monic reciprocal.
(36) Show that a cyclic code C is reversible iff it is complementary dual, i.e., $C \cap C^{\perp}=\{0\}$.
(37) Suppose C is a binary cyclic code of length 7 such that the ideal $\pi(C)$ is generated by $1+x+x^{5}$. Determine the generator polynomial of C.
(38) Show that if q is a power of a prime p, then the binomial coefficient $\binom{q}{i}$ is divisible by p for $1 \leq i<q$. Deduce that $(a+b)^{q}=a^{q}+b^{q}$ for all $a, b \in \mathbb{F}_{q}$.
(39) Use the formula

$$
I_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(n / d) q^{d}
$$

for the number $I_{q}(n)$ of irreducible polynomials of degree n in $\mathbb{F}_{q}[X]$ to show that for every positive integer n, there exists at least one irreducible polynomial of degree n in $\mathbb{F}_{q}[X]$.
(40) Show that if q is a prime power and n a positive integer such that $\operatorname{GCD}(q, n)=1$, then there exists a positive integer e such that $q^{e} \equiv 1(\bmod n)$. Further show that $\mathbb{F}_{q^{e}}^{*}$ has exactly $\varphi(n)$ elements of order n. Find the least positive integer e such that the extension $\mathbb{F}_{3 e}$ of \mathbb{F}_{3} has an element of order 11.
(41) Let q be a prime power and n a positive integer such that $\operatorname{GCD}(q, n)=1$. Also let e be the least positive integer such that $q^{e} \equiv 1(\bmod n)$, and $\alpha \in \mathbb{F}_{q^{e}}$ be an element of order n in $\mathbb{F}_{q^{e}}^{*}$. For $i \in \mathbb{Z} / n \mathbb{Z}$, let $m_{i}(X)$ be the minimal polynomial of α^{i}. Show that the monic reciprocal of $m_{i}(X)$ is $m_{-i}(X)$. Further
(42) With notations as in the previous question, compute the following. Suppose $q=7, n=6$, and $\alpha=3$. Show that α is an element of order 6 in \mathbb{F}_{7}. Compute $m_{i}(X)$ for each $i \in \mathbb{Z} / 6 Z$.
(43) Let q, n, α and $m_{i}(X)$ be as in Q. (??). For $i \in \mathbb{Z} / n \mathbb{Z}$, let $C_{q}(i)$ denote the q-cyclotomy subset of $\mathbb{Z} / n \mathbb{Z}$ corresponding to i. Prove that

$$
m_{i}(X)=\prod_{j \in C_{q}(i)}\left(X-\alpha^{j}\right)
$$

(44) Let q be a prime power and n a positive integer such that $\operatorname{GCD}(q, n)=1$. If $i_{1}, i_{2} \in \mathbb{Z} / n \mathbb{Z}$ are such that $\operatorname{GCD}\left(i_{1}, n\right)=1$ and $\operatorname{GCD}\left(i_{1}, n\right)=1$. Show that the q-cyclotomy subsets $C_{q}\left(i_{1}\right)$ and $C_{q}\left(i_{2}\right)$ have the same cardinality. Deduce that the number of monic irreducible factors of the cyclotomic polynomial $\Phi_{n}(X)$ over \mathbb{F}_{q} is equal to $\varphi(n) /\left|C_{q}(1)\right|$.
(45) Determine the number of monic irreducible factors and their degrees for the cyclotomic polynomials (i) $\Phi_{11}(X)$ in $\mathbb{F}_{3}[X]$, and (ii) $\Phi_{23}(X)$ in $\mathbb{F}_{2}[X]$.
(46) Consider the $[6,3]_{7}$-cyclic code C of Q . (??). Take $\alpha=3$ as the fixed element of order 6 in \mathbb{F}_{7}. Determine the zero-set $Z(C)$ of C and also the zero-set $Z\left(C^{\perp}\right)$ of its dual.
(47) Show that if a $[n, k]_{q}$-code C is r-MDS for some $r \in\{1, \ldots, k\}$, then it is s-MDS for each $s \in \mathbb{Z}$ with $r \leq s \leq k$. Deduce that a MDS code is r-MDS for each $r \in\{1, \ldots, k\}$, and in particular, it is nondegenerate.
(48) Let r be a positive integer and let $n=\frac{q^{r}-1}{q-1}$. Determine all the generalized Hamming weights of the q-ary simplex code $\mathscr{S}_{r}(q)$ of length n and dimension r.
(49) Show that the generalized Hamming weights $d_{r}=d_{r}(C)$ of a $[n, k]_{q}$-code C satisfy the Griesmer-Wei bound:

$$
d_{r} \geq \sum_{i=0}^{r-1}\left\lceil\frac{d_{1}}{q^{i}}\right\rceil \quad \text { for each } r=1, \ldots, k
$$

(Hint: Use the Griesmer bound for a r-dimensional subcode D of C such that $\mathrm{w}_{H}(D)=d_{r}(C)$.)
(50) Let $C=\mathrm{RM}_{2}(1, m)$ be the binary first order Reed-Muller code of order m. Determine all the generalized Hamming weights of C.

