
MA 5105 Coding Theory, IITB
Exercises and Problems

Prof. Sudhir Ghorpade

(1) Exercise. Let Q be a finite set, n a positive integer, and let dH denote the Hamming distance
on Qn. Show that dH satisfies the triangle inequality. Deduce that (Qn, dH) is a metric space.

(2) Exercise. Let n, k ∈ Z+, k ≤ n and q be a prime power. Find a formula for the number of
[n, k]q codes.

(3) Problem. Let n, k ∈ Z+, k ≤ n and q be a prime power. Find a formula for the number of
[n, k]q MDS codes.

(4) Exercise. Solve Problem (??) for k = 1, 2.

(5) Exercise. Let F be a field. Define when a m × n matrix with entries in F is said to be
in (i) row echelon form, (ii) reduced row echelon form. Given any A ∈ Mm×n(F), show that
A is row-equivalent to a unique B ∈ Mm×n(F) such that B is in reduced row echelon form.
[Optional Question: Can you find an explicit formula for the entries of B in terms of the entries
of A?]

(6) Exercise. Let F be a field and let n, k ∈ Z+, k ≤ n. Define a relation ∼ on Mk×n(F) by

A ∼ B ⇐⇒ B = EA for some E ∈ GLk(F).

Show that ∼ is an equivalence relation on Mk×n(F) as well as on the subset M0
k×n(F) of

Mk×n(F) defined by M0
k×n(F) = {A ∈ Mk×n(F) : rank(A) = k}. Further, suppose F = Fq and

let C0 = M0
k×n(Fq)/ ∼ and C = Mk×n(Fq)/ ∼ denote the set of equivalence classes in M0

k×n(Fq)
and Mk×n(Fq) with respect to the above equivalence relation. Determine the cardinalities |C0|
and |C|. Compare the former with Exercise (??).

(7) Exercise. Let F be a field and let n, k ∈ Z+, k ≤ n. Let A,B ∈Mk×n(F). When will A and
B have the same nullspace?

(8) Exercise. Let n, k ∈ Z+, k ≤ n and q be a prime power. Let C be an [n, k]q code. Show
that C⊥ is an [n, n− k]q code.

(9) Let C be an [n, k]q code. Show that

(a) dimC⊥ = n− k.

(b) (C⊥)⊥ = C.

(10) Let C be an [n, k]q code. Show that a matrix H ∈Mk×n(Fq) is a parity check matrix for C if
and only if H is a generator matrix for C⊥.
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(11) Let C be an [n, k]q code. Show that C is self-dual (i.e., C = C⊥) if and only if C is self-
orthogonal (i.e., C ⊆ C⊥) and n = 2k.

(12) Let C be an [n, k]q code. Show that C is MDS if and only if C⊥ is MDS.

(13) Let n, k ∈ Z+, k ≤ n and q be a prime power. Show that the q-binomial coefficient (or
Gaussian binomial coefficient) defined by[

n

k

]
q

:=
(qn − 1) · · · (qn − qk−1)
(qk − 1) · · · (qk − qk−1)

is a polynomial in q of degree k(n− k).

(14) Let n, k ∈ Z+, k ≤ n. Consider the Gaussian binomial coefficient
[
n
k

]
q

as a function from

(−∞, 1) ∪ (1,∞) to [0,∞) defined by

q 7−→ (qn − 1) · · · (qn − qk−1)
(qk − 1) · · · (qk − qk−1)

.

Find lim
q→1

[
n

k

]
q

.

(15) r be a positive integre and let n := (qr − 1)/(q − 1) be the number of “lines” in Frq, i.e., the
number of 1-dimensional subspaces of Frq. Let Hr(q) be a r×n matrix with entries in Fq such
that any two columns of Hr(q) are linearly independent. Define Hr(q) to be [n, n − r]-code
with Hr(q) as its parity check matrix and Sr(q) to be [n, r]-code with Hr(q) as its generator
matrix. These are called Hamming code and simplex code, respectively. Find the minimum
distance of Sr(q) and Hr(q).

(16) Determine the spectrum of the simplex code Sr(q) defined above.

(17) Let n, k be positive integers with n ≥ k and q be a prime power with q ≥ n. Fix distinct
elements a1, · · · , an ∈ Fq[x] and let

C := {cf = (f(a1), f(a2), · · · , f(an)) : f(x) ∈ Fq[X] with deg f(x) < k}.

This code C is known as Reed-Solomon code.

Find a parity check matrix for this code C.

(18) Letm, ν be integers withm ≥ 1 and v ≥ 0, and let q be a prime power. Also let Fq[X1, X2, . . . , Xm]≤ν
denote the set of all polynomials in m variables X1, . . . , Xm of deg ≤ ν with coefficients in
Fq. Show that Fq[X1, X2, . . . , Xm]≤ν is a finite dimensional vector space over Fq and find a
formula for dimFq Fq[X1, X2, . . . , Xm]≤ν .

(19) Let P1, . . . , Pqm be a fixed ordering of the qm points in Fqm . Consider the evaluation map

Ev : Fq[X1, X2, . . . , Xm]≤ν −→ Fqm

defined by Ev(f) = (f(P1), . . . , f(Pqm)). Show that if ν < q, then the map Ev is injective.
Note: The image of this map Ev is called generalized Reed-Muller code of order ν and length
qm, denoted by RMq(ν,m).

2



(20) Show that if f ∈ Fq[X1, X2, . . . , Xm] is a nonzero polynomial of degree d, then f has at most
dqm−1 zeroes in Fmq . Deduce that if ν < q, then d(RMq(ν,m)) = (q − ν)qm−1. (Optional
Question: Find a formula for dimFq RMq(ν,m) for any ν ≤ m(q − 1).)

(21) Let C be a [n, k]q-code. Use the MacWilliams Identity:

WC⊥(X, Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y )

to show that, the spectrum {Ai : 0 ≤ i ≤ n} of C and {Bi : 0 ≤ i ≤ n} of C⊥ are related by

Bj =
1

|C|

n∑
i=0

Kj(i)Ai for j = 0, 1, . . . , n,

where Kj=K
n,q
j (X) is the jth Krawtchouk polynomial defined by:

Kj(X) :=

j∑
r=0

(−1)r
(
X

r

)(
n−X
j − r

)
(q − 1)j−r.

where for any r ∈ Z, and variable X,(
X

r

)
:=


X(X − 1) · · · (X − r + 1)

r!
if r ≥ 0,

0 if r < 0.

(22) Let C be a [n, k]q-code and let Aj, Bj be as in Q. ??. Show that

n∑
j=0

(
j

ν

)
Aj = qk

ν∑
j=0

(−1)j
(
n− j
n− ν

)
(q − 1)ν−jBj for ν = 0, 1, . . . , n.

(23) Show that {Xj : j ≥ 0} and {
(
X
j

)
: j ≥ 0} form two bases of the polynomial ring over a field

in one variable.

(24) Show that every [n, k]q-code C is permutation equlvalent to a code whose generator matrix is
in standard form.

(25) Show that the Hamming code Hr(q) is perfect for any prime power q.

(26) Let C is a (n,M) code over an alphabet set Q of size q and if d = d(C) and qd > (q−1)n, then

M ≤
⌊

qd

qd− (q − 1)n

⌋
. This bound on size of C is called Plotkin Bound. Show that the

equality holds if and only if C is an equidistant code with d(C)= d and M(q−1)n = (M−1)qd.

(27) The q-ary entropy function is the function Hq : [0, 1] −→ R defined by

Hq(x) := x logq(q − 1)− x logq x− (1− x) logq(1− x) for 0 < x < 1.

Show that

(i) Hq(1− x)−Hq(x) = (1− 2x) logq(q − 1) for all x ∈ [0, 1].
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(ii) Hq is continuous on [0,1], differentiable on (0,1) increasing on

[
0,
q − 1

q

]
and decreasing

on

[
q − 1

q
, 1

]
. It has absolute maximum at

q − 1

q
with value 1 and local minima at 0

and 1 with values 0 and logq(q − 1), respectively.

(iii) Draw the graph of Hq for q = 2, q = 3, show that Hq has vertical tangent at 0 & 1.

(28) Suppose q ≥ 2 and 0 < θ < 1− 1

q
. Use Stirling’s Formula to show that

lim
n→∞

1

n
logq

(
n

bθnc

)
= −θ logq θ − (1− θ) logq(1− θ).

(Stirling’s formula or approximation for factorials: log n! ≈ n log n − n +
1

2
log(2πn), where

f(n) ≈ g(n) means the ratio f(n)/g(n) tends to 1 as n tends to ∞ )

(29) Show that
(
n
j

)
(q − 1)j is increasing in j for

j

n
≤ q − 1

q
.

(30) (Spoiling a code) Suppose there exists a [n, k, d]q-code C with k ≥ 2, d ≥ 2 & n > d. Then
show that there exists q-ary linear codes with the following parameters:

(i) [n+ 1, k, d]

(ii) [n, k, d− 1]

(iii) [n− 1, k, d− 1]

(iv) [n, k − 1, d]

(v) [n− 1, k − 1, d].

(31) Consider the binary Hamming code C = H3(2) of length 7 and dimension 4. Show that a
generator matrix of this code is given by

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


Use this to show that C is not cyclic. On the other hand, if C ′ is the binary [7, 4]-code with
generator matrix given by

G′ =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 ,

then show that C ′ is cyclc and C ′ is (permutation) equivalent to C. Further, consider the ring
R7 := F2[x] = F2[X]/〈X7 − 1〉 and the natural map π : F7

2 → R7 given by π(c0, c1, . . . , c6) =
c0 + c1x+ · · ·+ c6x

6 for (c0, c1, . . . , c6) ∈ F7
2. Compare the ideals generated by the elements of

π(C ′) corresponding to the rows of C ′. Also find the generator polynomial for the cyclc code
C ′. Is this polynomial irreducible? Is it primitive?

4



(32) Suppose C is a q-ary cyclic code of length n and g(X) is the generator polynomial of C.
Suppose c(X) is a polynomial in Fq[X] such that c(x) generates the ideal π(C) under the
natural map π : Fnq → Rn, where Rn = Fq[x] = Fq[X]/〈Xn − 1〉. Show that

g(X) = GCD(c(X), Xn − 1).

Deduce that if G ia a generator matrix of C and if g1(X), . . . , gk(X) denote polynomials of
degree < n corresponding to the k rows of G, then the generator polynomial of C is given by

g(X) = GCD(g1(X), . . . , gk(X), Xn − 1).

(33) Let C be a [n, k]q cyclic code, where 1 ≤ k ≤ n, and let G be any generator matrix of C. Show
that the k × k submatrix formed by the first k columns of G is nonsingular. Deduce that the
reduced row echelon form (rref) of G is a matrix of the form [Ik|A], i.e., in standard form.
Further show that if the last row of the rref of G is [0, . . . , 0, 1, a1, . . . , an−k], then an−k 6= 0
and the generator polynomial of C is given by

1

an−k

(
1 + a1X + azX

2 + · · ·+ an−kX
n−k) .

(34) Consider the [6, 3]-code over F7 with generator matrix G defined by

G =

1 1 1 1 1 1
1 3 2 6 4 5
1 2 4 1 2 4

 ,

Show that C is cyclic and determine the generator polynomial of C.

(35) Suppose C is a q-ary code of length n. Recall that the reversed code ρ(C) is defined by

ρ(C) := {ρ(c) : c ∈ C}, where ρ(c0, c1, . . . , cn−1) := (cn−1, cn−2, . . . , c1, c0).

Show that ρ(C) is also a q-ary code of length n, and the codes C and ρ(C) are (permutation)
equivalent. Further show that if C is cyclic and g(X) is the generator polynomial of C, then
ρ(C) is cyclic with the monic reciprocal of g(X) as its generator polynomial. Deduce that if
C is reversible, i.e., ρ(C) = C, and also C is cyclic, then the generator polynomial of C is
equal to its monic reciprocal.

(36) Show that a cyclic code C is reversible iff it is complementary dual, i.e., C ∩ C⊥ = {0}.

(37) Suppose C is a binary cyclic code of length 7 such that the ideal π(C) is generated by 1+x+x5.
Determine the generator polynomial of C.

(38) Show that if q is a power of a prime p, then the binomial coefficient
(
q
i

)
is divisible by p for

1 ≤ i < q. Deduce that (a+ b)q = aq + bq for all a, b ∈ Fq.

(39) Use the formula

Iq(n) =
1

n

∑
d|n

µ(n/d)qd

for the number Iq(n) of irreducible polynomials of degree n in Fq[X] to show that for every
positive integer n, there exists at least one irreducible polynomial of degree n in Fq[X].
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(40) Show that if q is a prime power and n a positive integer such that GCD(q, n) = 1, then there
exists a positive integer e such that qe ≡ 1 (mod n). Further show that F∗qe has exactly ϕ(n)
elements of order n. Find the least positive integer e such that the extension F3e of F3 has an
element of order 11.

(41) Let q be a prime power and n a positive integer such that GCD(q, n) = 1. Also let e be the
least positive integer such that qe ≡ 1 (mod n), and α ∈ Fqe be an element of order n in F∗qe .
For i ∈ Z/nZ, let mi(X) be the minimal polynomial of αi. Show that the monic reciprocal of
mi(X) is m−i(X). Further

(42) With notations as in the previous question, compute the following. Suppose q = 7, n = 6,
and α = 3. Show that α is an element of order 6 in F7. Compute mi(X) for each i ∈ Z/6Z.

(43) Let q, n, α and mi(X) be as in Q. (??). For i ∈ Z/nZ, let Cq(i) denote the q-cyclotomy subset
of Z/nZ corresponding to i. Prove that

mi(X) =
∏

j∈Cq(i)

(X − αj).

(44) Let q be a prime power and n a positive integer such that GCD(q, n) = 1. If i1, i2 ∈ Z/nZ
are such that GCD(i1, n) = 1 and GCD(i1, n) = 1. Show that the q-cyclotomy subsets Cq(i1)
and Cq(i2) have the same cardinality. Deduce that the number of monic irreducible factors of
the cyclotomic polynomial Φn(X) over Fq is equal to ϕ(n)/|Cq(1)|.

(45) Determine the number of monic irreducible factors and their degrees for the cyclotomic poly-
nomials (i) Φ11(X) in F3[X], and (ii) Φ23(X) in F2[X].

(46) Consider the [6, 3]7-cyclic code C of Q. (??). Take α = 3 as the fixed element of order 6 in
F7. Determine the zero-set Z(C) of C and also the zero-set Z(C⊥) of its dual.

(47) Show that if a [n, k]q-code C is r-MDS for some r ∈ {1, . . . , k}, then it is s-MDS for each
s ∈ Z with r ≤ s ≤ k. Deduce that a MDS code is r-MDS for each r ∈ {1, . . . , k}, and in
particular, it is nondegenerate.

(48) Let r be a positive integer and let n = qr−1
q−1 . Determine all the generalized Hamming weights

of the q-ary simplex code Sr(q) of length n and dimension r.

(49) Show that the generalized Hamming weights dr = dr(C) of a [n, k]q-code C satisfy the
Griesmer-Wei bound:

dr ≥
r−1∑
i=0

dd1
qi
e for each r = 1, . . . , k.

(Hint: Use the Griesmer bound for a r-dimensional subcodeD of C such that wH(D) = dr(C).)

(50) Let C = RM2(1,m) be the binary first order Reed-Muller code of order m. Determine all the
generalized Hamming weights of C.
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