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A COMBINATORIAL APPROACH TO THE NUMBER OF

SOLUTIONS OF SYSTEMS OF HOMOGENEOUS POLYNOMIAL

EQUATIONS OVER FINITE FIELDS

PETER BEELEN, MRINMOY DATTA, AND SUDHIR R. GHORPADE

Abstract. We give a complete conjectural formula for the number
er(d, m) of maximum possible Fq-rational points on a projective alge-
braic variety defined by r linearly independent homogeneous polynomial
equations of degree d in m + 1 variables with coefficients in the finite
field Fq with q elements, when d < q. It is shown that this formula holds
in the affirmative for several values of r. In the general case, we give
explicit lower and upper bounds for er(d, m) and show that they are
sometimes attained. Our approach uses a relatively recent result, called
the projective footprint bound, together with results from extremal com-
binatorics such as the Clements–Lindström Theorem and its variants.
Applications to the problem of determining the generalized Hamming
weights of projective Reed–Muller codes are also included.
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1. Introduction

Fix a prime power q and positive integers r, d, m. Let Fq denote the finite
field with q elements and Fq[x0, . . . , xm] the polynomial ring in m + 1 variables
x0, x1, . . . , xm with coefficients in Fq. For any homogeneous polynomials F1, . . . , Fr
in Fq[x0, . . . , xm], let V (F1, . . . , Fr) denote the closed subvariety of the projective
m-space Pm (over an algebraic closure of Fq) given by the vanishing of F1, . . . , Fr,
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and let V (F1, . . . , Fr)(Fq) be the set of its Fq-rational points, i.e., the set of all
Fq-rational common zeros in Pm of F1, . . . , Fr. Define

er(d, m) := max
F1,...,Fr

|V (F1, . . . , Fr)(Fq)| , (1)

where the maximum is over all possible families {F1, . . . , Fr} of r linearly inde-
pendent homogeneous polynomials of degree d in Fq[x0, . . . , xm]. Note that the

condition on linear independence implies that r can be at most
(
m+d
d

)
. Note also

that an obvious upper bound for er(d, m) is pm, where for j ∈ Z, by pj we denote
|Pj(Fq)|, i.e., pj := qj + qj−1 + · · ·+ q + 1 if j > 0, and pj := 0 if j < 0.

Explicit determination of er(d, m) is an open problem, in general, and it has been
of some interest for about two decades. While it is easy to see that er(1, m) = pm−r
for r 6 m+ 1 and er(d, 1) = d− r+ 1 for r 6 d+ 1 6 q (see for example [9, § 2.1]),
the case of r = 1 is rather nontrivial. Here it was conjectured by M. Tsfasman that

e1(d, m) = dqm−1 + pm−2 for d 6 q. (2)

This was subsequently proved by Serre [18] and, independently, by Sørensen [19]
in 1991. In the general case, an intricate formula for er(d, m) for d < q − 1 was
conjectured by Tsfasman and Boguslavsky (cf. [6], [10]), and this was proved in
the affirmative by Boguslavsky [6] in 1997 for r = 2. The case of r > 2 remained
open for a considerable time. Eventually, it was proved in [9] and [10] that the
conjectural formula of Tsfasman and Boguslavsky is true if r 6 m + 1, and it can
be false if r > m + 1. In [9], a new conjectural formula for er(d, m) was proposed

for many (but not all) values of r, namely for r 6
(
m+d−1
d−1

)
. We will refer to this as

the incomplete conjecture. To state it, let us first define an important combinatorial
quantity whose genesis lies in the work of Heijnen and Pellikaan [12] related to an

affine counterpart of the problem of finding er(d, m). For 1 6 r 6
(
m+d
d

)
, we define

Hr(d, m) :=

m∑
i=1

αiq
m−i, where (α1, . . . , αm) is the rth element of Qm6d,

and where Qm6d denotes the collection, ordered in descending lexicographic order,

of all m-tuples (β1, . . . , βm) of integers satisfying 0 6 βi < q for i = 1, . . . , m
and β1 + · · · + βm 6 d. For example, if d < q, then H1(d, m) = dqm−1 and
H(m+d

d )(d, m) = 0, since (d, 0, . . . , 0) and (0, 0, . . . , 0) are clearly the first and the

last m-tuples of Qm6d in descending lexicographic order. As a convention, we set

H0(d, m) := qm for d, m > 0 and H1(d, m) := 0 if d = 0 or m = 0. (3)

In this way, Hr(d, m) is defined for all nonnegative integers r, d, m with r 6
(
m+d
d

)
.

The “incomplete conjecture” of [9] can now be stated as follows.

er(d, m) = Hr(d− 1, m) + pm−1 for 1 6 r 6

(
m+ d− 1

d− 1

)
and 1 6 d < q. (4)

For example, if r = 1, then this says that e1(d, m) = (d − 1)qm−1 + pm−1, which
agrees with the Serre–Sørensen formula (2). Note also that (4) holds trivially when
d = 1 or m = 1. Results of [9] prove (4) in the affirmative if r 6 m+1 and d < q−1.
The validity of (4) was extended further in [4] to r 6

(
m+2
2

)
and 1 < d < q. This,
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then, is currently the best known general result as far as an explicit determination
of er(d, m) is concerned. Apart from this, the last few values of er(d, m) were
determined in [8] using the connection with coding theory (explained in Section 7)
and the work of Sørensen [19]; more precisely, it was shown in [8, Thm. 4.7] that

e(m+d
d )−t(d, m) = t for t = 0, 1, . . . , d. (5)

We are now ready to describe the main results of this paper. First, we extend
(4) to a conjectural formula for er(d, m) for all permissible values of r, d, m with
d < q. To state this “complete conjecture”, let us first observe that(

m+ d

d

)
=

(
m+ d− 1

d− 1

)
+

(
m+ d− 2

d− 1

)
+ · · ·+

(
d− 1

d− 1

)
(6)

and that for any positive integer r <
(
m+d
d

)
, there are unique integers i, j such that

r =

(
m+ d− 1

d− 1

)
+· · ·+

(
m+ d− i
d− 1

)
+j, 0 6 i 6 m, and 0 6 j <

(
m+ d− i− 1

d− 1

)
.

By convention, and in accordance with (6), we set i := m and j :=
(
m+d−i−1

d−1
)

= 1

when r =
(
m+d
d

)
. With i and j thus defined (for a given value of r), the “complete

conjecture” states that

er(d, m) = Hj(d− 1, m− i) + pm−i−1 for 1 6 r 6

(
m+ d

d

)
and 1 6 d < q. (7)

Note that if r <
(
m+d−1
d−1

)
, then i = 0 and j = r, whereas if r =

(
m+d−1
d−1

)
, then

i = 1 and j = 0. Thus (7) reduces to (4) in this case, thanks to our conventions. In
particular, from [4, Thm. 5.3], we see that (7) holds in the affirmative if r 6

(
m+2
2

)
.

We provide further evidence for the “complete conjecture” in this paper by showing
that it holds in the affirmative for an additional md values of r, namely for

r =

(
m+ d− 1

d− 1

)
+ · · ·+

(
m+ d− i
d− 1

)
− t, where 1 6 i 6 m and 0 6 t 6 d− 1;

in fact, for r as above, we obtain er(d, m) = pm−i + t. These results are also valid
when i = m + 1, but in view of (6), this case is already covered by (5). In the
general case, we show that the conjectural formula is always a lower bound even
when d = q, that is,

er(d, m) > Hj(d− 1, m− i) + pm−i−1 for 1 6 r 6

(
m+ d

d

)
and 1 6 d 6 q. (8)

The conjectural formula (7) as well as the lower bound (8) for er(d, m) can be
described by the alternative formula

psd−d + bqsd−1−d+1c+ bqsd−2−d+2c+ · · ·+ bqs1−1c,

where s1, . . . , sd are unique integers satisfying the d-binomial expansion(
m+ d

d

)
− r =

(
sd
d

)
+

(
sd−1
d− 1

)
+ · · ·+

(
s1
1

)
and sd > sd−1 > · · · > s1 > 0.
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We also find in this paper an explicit upper bound for er(d, m) using methods
from extremal combinatorics and a projective counterpart of Hr(d, m), which we

denote by Kr(d, m). More precisely, we show that for 1 6 r 6
(
m+d
d

)
and 1 6 d 6 q,

er(d, m) 6 Kr(d, m), where Kr(d, m) :=

m∑
i=0

aipm−i−1, (9)

and where (a0, a1, . . . , am) is the r-th element, in descending lexicographic order,
of the set of all (m + 1)-tuples (b0, b1, . . . , bm) of nonnegative integers satisfying
b0 + b1 + · · ·+ bm = d. It is also shown that this upper bound is attained for several
values of r. In turn, this plays a crucial role in ascertaining the validity of (7) for
the additional md values of r mentioned earlier.

The determination of er(d, m) is directly related to the determination of the gen-
eralized Hamming weights (also known as higher weights) of the projective Reed–
Muller codes PRMq(d, m), which go back to Lachaud [15]. This connection was
explained in [8, § 4] when d 6 q. We elucidate it further in Section 7 by noting that
in general (when d can be larger than q), it is more natural to consider a variant
of er(d, m), called er(d, m), wherein one takes into account the vanishing ideal of
Pm(Fq). This also brings to the fore a basic notion of projective reduction, which
was enunciated in [5]. We remark that the affine counterpart of the problem of de-
termining er(d, m) corresponds to determining the generalized Hamming weights
of Reed–Muller codes RMq(d, m), and this has been solved by V. Wei [20] when
q = 2, and by Heijnen and Pellikaan [12], in general. (See also [3].)

The methods used in proving the main results of this paper differ significantly
from those in our earlier works such as [9] and [4]. Here we adopt a combinatorial
approach and the groundwork for this has been laid in [5], where a projective foot-
print bound for the number of Fq-rational points of arbitrary projective algebraic
varieties defined over Fq was obtained. This groundwork is combined in this paper
with methods from extremal combinatorics and a culmination of ideas such as the
Kruskal–Katona Theorem, a lemma of Wei [20, Lem. 6], the Clements–Lindström
Theorem, and a theorem of Heijnen [13, Appendix A] (see also [12, Thm. 5.7] and
[3, Thm. 3.8]). These feed into the results in Sections 4, 5 and 6, which form the
technical core of this paper. For a leisurely introduction to extremal combinatorics
and some of the classical results mentioned above, one may refer to the book of
Anderson [1].

2. A Lower Bound and a Conjecture

In this section, we shall prove the lower bound (8) and formally state our “com-
plete conjecture” concerning er(d, m). Recall that er(d, m) is defined by (1) for

positive numbers r, d, m with r 6
(
m+d
d

)
. One can extend the definition to include

the trivial cases when r or d or m is zero, or simply, set the following convention.

e0(d, m) := pm for d, m > 0 and e1(d, m) := 0 if d = 0 or m = 0. (10)

Thus er(d, m) is defined for all nonnegative integers r, d, m satisfying r 6
(
m+d
d

)
.

In the remainder of this section, m denotes a positive integer and, as usual, Fq
denotes the finite field with q elements.
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2.1. Zeros of affine varieties over finite fields. Let r, d be any nonnegative
integers. Given any polynomials f1, . . . , fr ∈ Fq[x1, . . . , xm], we shall denote by
Z(f1, . . . , fr)(Fq) the set of all Fq-rational points of the affine algebraic variety in
Am (over an algebraic closure of Fq) defined by f1, . . . , fr; in other words,

Z(f1, . . . , fr)(Fq) = {(a1, . . . , am) ∈ Fmq : fj(a1, . . . , am) = 0 for all j = 1, . . . , r}.

Note that if r = 0, then Z(f1, . . . , fr)(Fq) = Fmq . We shall now define a natural

affine analogue of er(d, m). For 0 6 r 6
(
m+d
d

)
, we define

eAr (d, m) := max
f1,...,fr

|Z(f1, . . . , fr)(Fq)|,

where the maximum is taken over families of r linearly independent polynomials
f1, . . . , fr of degree 6 d in Fq[x1, . . . , xm].

As explained in [4, §2.1], the result of Heijnen and Pellikaan [12, Thm. 5.10]
in the case d < q can be stated as follows. Here Hr(d, m) is as defined in the
introduction, including the conventions given in (3).

Theorem 2.1 (Heijnen–Pellikaan). If 0 6 d < q and 0 6 r 6
(
m+d
d

)
, then

eAr (d, m) = Hr(d, m).

A more general version of this result will be discussed later (in § 6.1).

2.2. A lower bound for er(d, m). We begin by noting a simple and well-known
fact whose proof is outlined for the sake of completeness.

Lemma 2.2. Let d be a positive integer. Then(
m+ d

d

)
=

m+1∑
a=1

(
m+ d− a
d− 1

)
. (11)

Moreover, for any nonnegative integer r <
(
m+d
d

)
, there are unique integers i, j

with

r = j +

i∑
a=1

(
m+ d− a
d− 1

)
, 0 6 i 6 m, and 0 6 j <

(
m+ d− i− 1

d− 1

)
. (12)

Proof. The identity in (11) follows easily from induction on m. If 0 6 r <
(
m+d
d

)
,

then the largest nonnegative integer i such that
∑i
a=1

(
m+d−a
d−1

)
6 r clearly satisfies

0 6 i 6 m, thanks to (11). Thus (12) holds with j := r −
∑i
a=1

(
m+d−a
d−1

)
. �

We remark that although m is assumed to be a fixed positive integer, the identity
in (11) holds trivially also when m = 0, and this fact may be tacitly assumed in
the sequel. Our next result is a general lower bound for er(d, m) when d 6 q.

Theorem 2.3. Let d, r be positive integers with d 6 q and r 6
(
m+d
d

)
, and let i, j

be as in (12) if r <
(
m+d
d

)
, while i := m and j :=

(
m+d−i−1

d−1
)

= 1 if r =
(
m+d
d

)
.

Then

er(d, m) > Hj(d− 1, m− i) + pm−i−1.
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Proof. If r =
(
m+d
d

)
, then clearly, er(d, m) = 0 and H1(d−1, m−m)+pm−m−1 = 0,

as per the conventions in equation (3). Now assume that r <
(
m+d
d

)
, and let

i, j be as in (12). We shall prove the desired inequality by producing a set B
of r linearly independent polynomials in Fq[x0, . . . , xm]d with the property that
|V (B)(Fq)| = Hj(d− 1, m− i) + pm−i−1.

First, for each positive integer a 6 i, let Ba be a basis of the Fq-vector space
xm−a+1Fq[x0, . . . , xm−a+1]d−1; for instance, Ba can be the set of monomials of
degree d in x0, . . . , xm−a+1 that are divisible by xm−a+1. Clearly, the sets Ba are

disjoint and |Ba| =
(
m+d−a
d−1

)
for 1 6 a 6 i. Note that

V
( i⋃
a=1
Ba
)

(Fq) = {[a0 : · · · : am] ∈ Pm(Fq) : am = · · · = am−i+1 = 0},

Next, since d−1 < q, by Theorem 2.1, we obtain j linearly independent polynomi-
als f1, . . . , fj each of degree at most d−1 in the polynomial ring Fq[x0, . . . , xm−i−1]
such that |Zm−i(f1, . . . , fj)(Fq)| = Hj(d− 1, m− i), where Zm−i(f1, . . . , fj) de-
notes the set of common zeroes of f1, . . . , fj in the (m − i) dimensional affine
subspace of Pm given by {[a0 : · · · : am] : am−i = 1, as = 0 for m− i < s 6 m}. Let
F1, . . . , Fj be the polynomials obtained, respectively, by homogenizing f1, . . . , fj
to degree d with respect to the variable xm−i. Clearly, the polynomials F1, . . . , Fj
lie in Fq[x0, . . . , xm−i]d and they are linearly independent. Also, it is clear that
Fq[x0, . . . , xm−i]∩Ba is empty for each a = 1, . . . , i. Consequently, B is a linearly
independent subset of Fq[x0, . . . , xm]d and

|B| = j +

i∑
a=1

(
m+ d− a
d− 1

)
= r, where B := {F1, . . . , Fj} ∪

( i⋃
a=1
Ba
)
,

with the convention that the relevant sets are empty if j = 0 or i = 0. Further, by

intersecting V (B) = V (F1, . . . , Fj)∩V (
⋃i
a=1 Ba) with the affine patch {xm−i = 1}

and the hyperplane {xm−i = 0} of Pm, we see that |V (B)(Fq)| equals

|Zm−i(f1, . . . , fj)(Fq)|+ |{[a0 : · · · : am] ∈ Pm(Fq) : am = · · · = am−i = 0}| ,

which is Hj(d− 1, m− i) + pm−i−1, as desired. �

We remark that when d = q, the lower bound in Theorem 2.3 is not attained, in
general. This is shown in [4, § 6], where the exact values of er(q, m) are obtained
for 1 6 r 6 m+ 1.

2.3. The “complete conjecture”. It appears plausible that the lower bound in
Theorem 2.3 is attained when d < q. More precisely, we conjecture the following.

Conjecture 2.4. Let d, r be integers with 1 6 d < q and 1 6 r 6
(
m+d
d

)
, and let

i, j be as in (12) if r <
(
m+d
d

)
, while i := m and j :=

(
m+d−i−1

d−1
)

if r =
(
m+d
d

)
.

Then

er(d, m) = Hj(d− 1, m− i) + pm−i−1.

As noted in the introduction, if 1 6 r 6
(
m+d−1
d−1

)
, then Conjecture 2.4 reduces

to [9, Conjecture 6.6]. The case d = 1 of Conjecture 2.4 holds trivially, while the
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case d = 2 follows from the work of Zanella [21]. Further, it was shown in [4] that
Conjecture 2.4 holds when 2 6 d < q and r 6

(
m+2
2

)
.

We will now describe an alternative formulation of Conjecture 2.4 deduced from
the alternative description of Hr(d, m) given in [2]. Before stating it, let us recall
that given any positive integer d, we can express every nonnegative integer N as

N =

d∑
a=1

(
sa
a

)
for unique sa ∈ Z with sd > sd−1 > · · · > s1 > 0.

This is called the d-binomial representation of N or the d-th Macaulay representa-
tion of N . We will find it convenient to consider ma := sa − a for 1 6 a 6 d so as
to write the above expansion for N as

N =

d∑
a=1

(
ma + a

a

)
for unique ma ∈ Z with md > md−1 > · · · > m1 > −1. (13)

We may refer to (md, . . . , m1) as the Macaulay d-tuple corresponding to N . Ob-
serve that if M is any nonnegative integer, then

0 6 N <

(
M + d

d

)
⇒ M − 1 > md > md−1 > · · · > m1 > −1. (14)

The following result is a direct consequence of the proof of [2, Thm. 3.1] and we
remark that its proof does not use the theorem of Heijnen–Pellikaan (Theorem 6.4).

Lemma 2.5. Assume that 1 6 d < q and 0 6 r 6
(
m+d
d

)
. Suppose the Macaulay

d-tuple corresponding to
(
m+d
d

)
− r is (md, . . . , m1). Then

Hr(d, m) =

d∑
a=1

bqmac.

Proof. If r = 0, then Hr(d, m) = qm, in accordance with our convention (3). On the

other hand, the Macaulay d-tuple corresponding to
(
m+d
d

)
is clearly (m,−1, . . . ,−1).

So the desired equality holds when r = 0. For 1 6 r 6
(
m+d
d

)
, the desired equality is

a special case of [2, Thm. 3.1] and its proof, since for d < q, the dimension ρq(d, m)

of the Reed–Muller code RMq(d, m) is
(
m+d
d

)
. �

Corollary 2.6. Assume that 1 6 d 6 q and 1 6 r 6
(
m+d
d

)
. Let i, j be as in (12) if

r <
(
m+d
d

)
, while i := m and j :=

(
m+d−i−1

d−1
)

if r =
(
m+d
d

)
. Also let (md, . . . , m1)

be the Macaulay d-tuple corresponding to
(
m+d
d

)
− r. Then

Hj(d− 1, m− i) + pm−i−1 = pmd +

d−1∑
a=1

bqmac.

Proof. First, note that if d = 1, then i = r and j = 0, and so in view of (3),
Hj(d− 1, m− i) + pm−i−1 = qm−r + pm−r−1 = pm−r. Also, the Macaulay 1-tuple
corresponding to m+ 1− r is clearly (m− r). Thus the desired equality holds when

d = 1. Likewise, if i = m, then clearly j is 0 or 1 and
(
m+d
d

)
− r is 1 or 0, thanks



572 P. BEELEN, M. DATTA, AND S. R. GHORPADE

to (11); in this case, ma = −1 for 1 6 a < d, whereas md is 0 or −1 according as j
is 0 or 1. Hence, in view of (3), the desired equality also holds when i = m.

Now suppose d > 1 and 0 6 i < m. Then 1 6 d − 1 < q and 1 6 r <
(
m+d
d

)
.

Using the equality in (12) together with (11), we can write(
m+ d

d

)
− r =

(
m+ d− i− 1

d− 1

)
− j +

m−i∑
a=1

(
m+ d− i− a− 1

d− 1

)
=

(
m+ d− i− 1

d

)
+

(
m+ d− i− 1

d− 1

)
− j,

where the last equality follows from (11) with m replaced by m − i − 1. In case

j = 0, the last expression is simply
(
m+d−i

d

)
, and in this case md = m − i while

ma = −1 for 1 6 a < d. Thus, in view of (3), we see that when j = 0,

Hj(d− 1, m− i) + pm−i−1 = qm−i + pm−i−1 = pm−i = pmd +

d−1∑
a=1

bqmac,

as desired. Now suppose 0 < j <
(
m+d−i−1

d−1
)
. By (14) and Lemma 2.5, it follows

that if (µd−1, . . . , µ1) is the Macaulay (d−1)-tuple corresponding to
(
m+d−i−1

d−1
)
−j,

then m− i− 1 > µd−1 > · · · > µ1, and further,(
m+ d− i− 1

d− 1

)
− j =

d−1∑
a=1

(
µa + a

a

)
and Hj(d− 1, m− i) =

d−1∑
a=1

bqµac. (15)

Substituting this in the expression obtained earlier for
(
m+d
d

)
− r, we see that(

m+ d

d

)
− r =

(
m+ d− i− 1

d

)
+

d−1∑
a=1

bqµac.

This together with the uniqueness of Macaulay d-tuples implies that md = m−i−1
and ma = µa for 1 6 a < d. Consequently, (15) yields the desired equality �

In view of Corollary 2.6, the lower bound in Theorem 2.3 and the conjectural
formula for er(d, m) in Conjecture 2.4 can be written as

pmd +

d−1∑
a=1

bqmac,

where (md, . . . , m1) is the Macaulay d-tuple corresponding to
(
m+d
d

)
− r.

3. Projective Reduction, Shadows and Footprints

In this section, we review some preliminary notions and results, which will be
useful to us in the remainder of the paper. Throughout this section, m denotes a
positive integer and Fq the finite field with q elements.
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3.1. Projective reduction. Recall that a monomial µ ∈ Fq[x1, . . . , xm] given
by µ = xα1

1 · · ·xαmm is said to be reduced if 0 6 αi 6 q − 1 for all i = 1, . . . , m
and a polynomial F ∈ Fq[x1, . . . , xm] is said to be reduced if it is an Fq-linear
combination of reduced monomials. It is well-known (see for example [14, Ch. 2] or
[11]) that the set of all reduced monomials gives rise to a basis of the Fq-vector
space Fq[x1, . . . , xm]/I(Am(Fq)), where I(Am(Fq)) denotes the ideal consisting
of all polynomials in Fq[x1, . . . , xm] vanishing at every point of Am(Fq). More
precisely, any element of Fq[x1, . . . , xm]/I(Am(Fq)) can be written uniquely as

f̃ + I(Am(Fq)) for some reduced polynomial f̃ .
A projective analogue of the above notion and result is given in [5, § 2]. We recall

this below. Here, and hereafter, we denote by M the set of all monomials in the
m+ 1 variables x0, . . . , xm.

Definition 3.1. For a nonnegative integer a, let a be the unique integer satisfying

0 6 a < q and a =

{
0 if a = 0,

ã if a > 0 and ã ≡ a (mod q − 1), where 0 < ã 6 q − 1.

Let µ ∈ M. If µ 6= 1, then we may write µ = xa00 · · ·x
a`
` , where 0 6 ` 6 m and

a0, . . . , a` are nonnegative integers with a` > 0. Define

µ := xa00 · · ·x
a`−1

`−1 x
a`+

∑`−1
j=0(aj−aj)

` .

If µ = 1, then we define µ = 1. Note that µ ∈ M with degµ = degµ. We call µ
the projective reduction of µ. Any polynomial F ∈ Fq[x0, . . . , xm] can be written

uniquely as F =
∑n
i=1 ciµi, where ci ∈ Fq \ {0} and µi ∈ M. We define F , the

projective reduction of F , as F =
∑n
i=1 ciµi. A monomial µ ∈M (resp. polynomial

F ∈ Fq[x0, . . . , xm]) is said to be projectively reduced if µ = µ (resp. F = F ).

It is easy to see from the definition that a reduced polynomial is projectively
reduced. In particular, a polynomial of degree d 6 q− 1 is necessarily reduced and
hence projectively reduced. A polynomial of degree q is not necessarily reduced but
is always projectively reduced. Clearly, a polynomial of degree d > q may not even
be projectively reduced. It is easy to see that if F ∈ Fq[x0, . . . , xm], then

F (c0, . . . , cm) = F (c0, . . . , cm) for all (c0, . . . , cm) ∈ Fm+1
q . (16)

For further properties of projective reduction and projectively reduced polynomials
we refer to [5, Proposition 2.2].

Throughout this article, we denote by M the set of projectively reduced monomi-
als in m+1 variables x0, . . . , xm. Further, for any nonnegative integer e, we denote
by Me the set of all projectively reduced monomials in M of degree e. Clearly, M
equals the disjoint union

∐
e>0 Me.

Let I(Pm(Fq)) denote the ideal of Fq[x0, . . . , xm] generated by the homogeneous
polynomials that vanish at all points of Pm(Fq). It was shown by Mercier and
Rolland [16] that this ideal is equal to the ideal Γq(Fq) of Fq[x0, . . . , xm] generated
by {xqixj−xix

q
j : 0 6 i < j 6 m}. It was further proved in [5, Theorem 2.8] that the

set {xqixj − xix
q
j : 0 6 i < j 6 m} forms a universal Gröbner basis for Γq(Fq). To

conclude this subsection, we note that the projectively reduced monomials give rise
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to a basis of the Fq-vector space Fq[x0, . . . , xm]/I(Pm(Fq)). More precisely, any
element of Fq[x0, . . . , xm]/I(Pm(Fq)) can be written uniquely as f + I(Pm(Fq)),
where f is a projectively reduced polynomial. For a proof, see [5, Corollary 2.10].

3.2. Shadows and footprints. Given S ⊆M and a nonnegative integer e, define

∇e(S) := {µ ∈Me : ν |µ for some ν ∈ S} and ∆e(S) := Me \ ∇e(S).

The set ∇e(S) is called the shadow of S in Me, while the set ∆e(S) is known as
the footprint of S in Me.

Recall that by a term order on M, one means a total order ≺ on the set M of
all monomials in x0, . . . , xm such that (i) 1 4 µ for all µ ∈ M, and (ii) µν 4 µ′ν
whenever µ, µ′, ν ∈ M are such that µ 4 µ′. Let ≺ be any term order on M for
which x0 � x1 � . . . � xm. For example, we can take ≺ to be the lexicographic
order ≺lex defined by

xa00 · · ·xamm ≺lex x
b0
0 · · ·xbmm ⇔ the first nonzero entry of b− a is positive, (17)

where b − a denotes the difference tuple (b0 − a0, . . . , bm − am). Other examples
of such term orders are also possible. For now, we just fix a term order ≺ on M
for which x0 � x1 � . . . � xm. For a nonzero polynomial F ∈ Fq[x0, . . . , xm], we
denote by lm≺(F ) or simply lm(F ), the leading monomial of F , i.e., the largest
monomial (w.r.t ≺) appearing in F with a nonzero coefficient. For any set S of
nonzero polynomials in Fq[x0, . . . , xm] and any nonnegative integer e, we define

lm(S) := {lm(F ) : F ∈ S}, ∇e(S) := ∇e(lm(S)) and ∆e(S) := ∆e(lm(S)).

The following important result from [5] relates footprints in Me to the number
of Fq-rational points of projective algebraic varieties defined over Fq. Here, and
hereafter, for an assertion depending on a nonnegative integer e, the expression
“for all e� 0” means that the assertion holds for all large enough values of e, i.e.,
there is a nonnegative integer e0 such that the assertion holds for all e > e0.

Theorem 3.2 (projective Fq-footprint bound). Let S = {F1, . . . , Fr} be a set of
nonzero, projectively reduced homogeneous polynomials in Fq[x0, . . . , xm]. Write
X = V (S) for the corresponding algebraic variety in Pm. Then

|X (Fq)| 6 |∆e(S)| for all e� 0.

Proof. Since F1, . . . , Fr are projectively reduced, lm(S) ⊆ M. Thus the notion of
footprint ∆e(S) defined above coincides with that of projective Fq-footprint ∆e(S)
defined in [5, Def. 3.10]. So the desired result follows from [5, Thm. 3.12]. �

We can decompose M into disjoint subsets by considering the last variable ap-
pearing in a given monomial. Thus, following [5], we define

M(0) = {xa0 : a > 0} and for 1 6 ` 6 m, M(`) := {xa00 · · ·x
a`
` ∈M : a` > 0}.

Further, for any integers e, ` with e > 0 and 0 6 ` 6 m, define M(`)
e := M(`) ∩Me.

Evidently, M =
∐m
`=0 M(`) and Me =

∐m
`=0 M

(`)
e . It is easy to see that

|M(`)
e | = q` for e > `(q − 1) + 1 and hence |Me| = pm for e > m(q − 1) + 1.

We refer to [5, Section 2.1] for more details.
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The sets M(`)
e help us in decomposing the shadows or footprints into several

disjoint components. To this end, we define

∇(`)
e (S) := ∇e(S) ∩M(`)

e and ∆(`)
e (S) := ∆e(S) ∩M(`)

e . (18)

For any S ⊆M and any nonnegative integer e, it is clear that

|∇e(S)| =
m∑
`=0

|∇(`)
e (S)| and |∆e(S)| =

m∑
`=0

|∆(`)
e (S)|. (19)

Given a nonnegative integer ` 6 m, by specializing the variables x`+1, . . . , xm
to 1, we can associate to a subset of M, a set of projectively reduced monomials in
x0, . . . , x` as follows.

Definition 3.3. Let S ⊂M. For 0 6 ` 6 m, we define

S〈`〉 := {xa00 · · ·x
a`
` ∈ S : 0 6 aj < q for all j < `}.

Note that if 0 6 ` 6 m and if µ ∈ S \ S〈`〉, then either (i) xi |µ for some i > `,
or (ii) µ = xa00 · · ·x

aj
j with aj > q for some j < `. In either case, it is easily seen

that ∇(`)
e (µ) = ∅. This shows that

∇(`)
e (S) = ∇(`)

e (S〈`〉) and hence ∆(`)
e (S) = ∆(`)

e (S〈`〉) for any e > 0. (20)

The following reformulation of Theorem 3.2 will be useful to us later.

Corollary 3.4. Let F1, . . . , Fr be any nonzero projectively reduced homogeneous
polynomials in Fq[x0, . . . , xm], and let X = V (F1, . . . , Fr) be the corresponding
projective variety in Pm. Also, let S = {lm(F1), . . . , lm(Fr)}. Then

|X (Fq)| 6
m∑
`=0

|∆(`)
e (S〈`〉)| for all e� 0.

Proof. From equation (20) and the second part of equation (19), we see that

|∆e(S)| =
m∑
`=0

|∆(`)
e (S〈`〉)|. (21)

Thus the desired result follows from Theorem 3.2. �

4. Affine Combinatorics

In this section, we will consider some results from extremal combinatorics to-
gether with their generalizations and variants that will be useful for us later. These
results are mainly concerned with sets of monomials in ` variables that are reduced
in the usual (or the affine) sense. Throughout this section, m will be a fixed positive
integer and `, d as well as ai, bi denote nonnegative integers with ` 6 m.
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4.1. Shadows and footprints in the hypercube. For 0 6 ` 6 m, define

H(`) := {xa00 · · ·x
a`−1

`−1 : 0 6 aj 6 q − 1 for all j = 0, . . . `− 1}.

Note that the “exponent map” given by xa00 · · ·x
a`−1

`−1 7→ (a0, . . . , a`−1) lets us

identify the set H(`) with Q`, where Q := {0, 1, . . . , q − 1}, and thus we may refer
to H(`) as the (`-dimensional) hypercube. We remark that when q = 2, elements of
H(`) can be identified with subsets of {0, . . . , `− 1}, whereas in general, they may
be viewed as multisets formed by the elements of {0, . . . , `− 1}. We will, however,
stick to viewing H(`) as the set of reduced monomials in ` variables x0, . . . , x`−1.

Divisibility of monomials gives a natural partial order on H(`), which corre-
sponds, via the exponent map, to the “product order” 6P on Q` defined by
(a0, . . . , a`−1) 6P (b0, . . . , b`−1) if and only if ai 6 bi for all i = 0, . . . , ` − 1.
On the other hand, the usual lexicographic order on Q` corresponds to the total
order on H(`), which we denote, as in (17), by ≺lex. Note that if µ, ν ∈ H(`) are
such that ν |µ, i.e., ν divides µ, then ν 4lex µ.

As before, for a nonnegative integer d, we define

H(`)
d := {µ ∈ H(`) : deg µ = d} and H(`)

6d := {µ ∈ H(`) : deg µ 6 d}.

The sets H(`)
<d, H(`)

>d and H(`)
>d are defined analogously.

We will now define shadow and footprint in the context of the hypercube H(`).
To avoid confusion with the notions defined in Section 3.2, we will use a different
notation.

For any T ⊆ H(`), the shadow and footprint of T in H(`) are denoted by SH(`)(T )

and FP(`)(T ), respectively, and defined by

SH(`)(T ) := {µ ∈ H(`) : ν |µ for some ν ∈ T } and FP(`)(T ) := H(`) \ SH(`)(T ).

For a nonnegative integer d, we also define,

FP
(`)
d (T ) := FP(`)(T ) ∩H(`)

d and FP
(`)
6d(T ) := FP(`)(T ) ∩H(`)

6d.

The sets FP
(`)
<d(T ), FP

(`)
>d(T ) and FP

(`)
>d(T ) are defined analogously. Moreover, the

corresponding subsets of SH(`)(T ) are also defined in a similar manner.

Definition 4.1. Let `, d, ρ, ρ′ be integers satisfying 0 6 d 6 `(q − 1), 0 6 ` 6 m,

0 6 ρ 6 |H(`)
6d|, and 0 6 ρ′ 6 |H(`)

d |. Define

M(`)
d (ρ) := the set of first ρ elements of H(`)

6d in descending lexicographic order,

L(`)
d (ρ′) := the set of first ρ′ elements of H(`)

d in descending lexicographic order.

Note that if `, ρ, ρ′ are positive and d < q, then both M(`)
d (ρ) and L(`)

d (ρ′)

contain xd0, which is the largest element of H(`)
6d as well as H(`)

d in lexicographic

order. Also, for a fixed d > 0, the set H(`)
6d is finite and ≺lex is a total order on

it. Consequently, a set of the form M(`)
d (ρ) can be characterized as a subset T of

H(`)
6d that is upwards closed, which means that µ ∈ T whenever µ, µ′ ∈ H(`)

6d with
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µ′ ≺lex µ and µ′ ∈ T . Similarly, sets of the form L(`)
d (ρ′) can be characterized as

upwards closed subsets of H(`)
d .

4.2. Extremal combinatorics. We will now discuss some combinatorial results
that help us determine the subsets of H(`)

d (resp. H(`)
6d) of a given cardinality that

have footprint of the maximum possible size. We begin with a result due to Heijnen
and Pellikaan [12, Prop. 5.9]. Its formulation below is as in [3, Lem. 4.2], where
the result is proved in a more general setting.

Proposition 4.2. Let `, d, ρ be integers satisfying 1 6 ` 6 m, 0 6 d 6 `(q − 1),

and 1 6 ρ 6 |H(`)
6d|. Also, let α be the ρth element of H(`)

6d, i.e., the smallest element

of M(`)
d (ρ) in lexicographic order. Then

SH(`)(M(`)
d (ρ)) = {µ ∈ H(`) : α 4lex µ}.

Consequently, SH(`)(M(`)
d (ρ)) ∩H(`)

6d =M(`)
d (ρ).

Corollary 4.3. Let `, d, ρ be integers satisfying 1 6 ` 6 m, 1 6 d 6 `(q − 1), and

0 6 ρ 6 |H(`)
6d|. Then SH

(`)
d (M(`)

d−1(ρ)) = L(`)
d (ρ′) for some nonnegative integer ρ′.

Moreover, if ρ is positive, then so is ρ′.

Proof. If ρ = 0, thenM(`)
d−1(ρ) is empty, and hence so is its shadow in H(`). Thus we

can take ρ′ = 0 in this case. Now suppose ρ > 1. First, note that SH
(`)
d (M(`)

d−1(ρ))
is nonempty. Indeed, d − 1 < `(q − 1) and so we can write d − 1 = j(q − 1) + aj
for unique integers j, aj with 0 6 j 6 ` − 1 and 0 6 aj < q − 1. Since ρ > 1, the

setM(`)
d−1(ρ) contains ν := xq−10 · · ·xq−1j−1x

aj
j , being the largest element of this set in

lexicographic order. Now µ := νx`−1 is clearly in SH
(`)
d (M(`)

d−1(ρ)).

To complete the proof, it suffices to show that SH
(`)
d (M(`)

d−1(ρ)) is upwards closed.

Assume the contrary. Then there exist µ, µ′ ∈ H(`)
d such that µ′ ∈ SH

(`)
d (M(`)

d−1(ρ))

and µ′ ≺lex µ, but µ 6∈ SH
(`)
d (M(`)

d−1(ρ)). Let ν ∈ M(`)
d−1(ρ) be such that ν |µ′.

Then ν 4lex µ
′. Also, let ν′ be the least element ofM(`)

d−1(ρ) in lexicographic order.
Then ν′ 4lex ν and ν 4lex µ

′, since ν |µ′. Consequently, ν′ ≺lex µ. By the previous

proposition, µ ∈ SH
(`)
d (M(`)

d−1(ρ)), which is a contradiction. �

The following result is due to Clements and Lindström [7, Cor. 1] (see also [3,
Thm. 3.1]). The case q = 2 of it is equivalent to the Kruskal–Katona theorem.

Theorem 4.4 (Clements–Lindström). Let T ⊆ H(`)
d with |T | = ρ′. Then

SH
(`)
d+1(L(`)

d (ρ′)) ⊆ L(`)
d+1(|SH(`)

d+1(T )|) and hence |FP(`)
d+1(T )| 6 |FP(`)

d+1(L(`)
d (ρ′))|.

As in [3, Cor. 3.2], the following corollary can be deduced easily from the above
theorem by using induction on e.

Corollary 4.5. Let T ⊆ H(`)
d with |T | = ρ′, and let e be an integer > d. Then

SH(`)
e (L(`)

d (ρ′)) ⊆ L(`)
e (|SH(`)

e (T )|); in particular, |SH(`)
e (L(`)

d (ρ′))| 6 |SH(`)
e (T )|.

Consequently, |FP(`)
e (T )|6 |FP(`)

e (L(`)
d (ρ′))| and hence |FP(`)(T )|6 |FP(`)(L(`)

d (ρ′))|.
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The following theorem can be traced back to Wei [20, Lemma 6] and it gives an

analogue of the last inequality for subsets of H(`)
6d.

Theorem 4.6 (Wei). Let T ⊂ H(`)
6d be a subset with |T | = ρ. Then

|FP(`)(T )| 6 |FP(`)(M(`)
d (ρ))|.

Strictly speaking, Lemma 6 of Wei [20] proves the above theorem for the special
case when q = 2. A general version is stated in Heijnen and Pellikaan [12, Thm. 5.7],
although in a slightly different way. A detailed proof appears in Appendix A of
Heijnen’s thesis [13]. We refer to [3, Thm. 3.8] for a similar result in a more
general setting. We conclude this subsection by proving the following common
generalization of the results of Clements–Lindström (Corollary 4.5) and of Wei and
Heijnen–Pellikaan (Theorem 4.6). Indeed, Corollary 4.5 corresponds to the case
ρ′ = ρ, while Theorem 4.6 corresponds to the case ρ′ = 0.

Theorem 4.7. Assume that `, d, ρ are positive integers with ` 6 m, d 6 `(q − 1),

and ρ 6 |H(`)
6d|. Let T ⊆ H(`)

6d with |T | = ρ. If ρ′ := |T ∩H(`)
d |, then

|FP(`)(T )| 6 |FP(`)(U)|, where U := L(`)
d (ρ′) ∪M(`)

d−1(ρ− ρ′).

Proof. Let ρ′ := |T ∩ H(`)
d | and U := L(`)

d (ρ′) ∪M(`)
d−1(ρ − ρ′). It suffices to show

that |SH(`)(U)| 6 |SH(`)(T )|. We will do this by distinguishing two cases.

Case 1: L(`)
d (ρ′) ⊆ SH

(`)
d (M(`)

d−1(ρ− ρ′)).
Let µ ∈ SH(`)(U). Then there is ν ∈ U such that ν |µ. Suppose ν ∈ L(`)

d (ρ′).

Since L(`)
d (ρ′) ⊆ SH

(`)
d (M(`)

d−1(ρ − ρ′)), there is ν′ ∈ M(`)
d−1(ρ − ρ′) such that ν′ | ν,

and hence ν′ |µ. This shows that SH(`)(U) = SH(`)(M(`)
d−1(ρ− ρ′)). Consequently,

|SH(`)(U)
∣∣ =

∣∣SH(`)(M(`)
d−1(ρ− ρ′))

∣∣ 6 ∣∣SH(`)(T ∩H(`)
6d−1)

∣∣ 6 |SH(`)(T )|,

where the penultimate inequality is a consequence of Theorem 4.6 (applied to shad-

ows instead of footprints), while the last inequality follows since T ∩H(`)
6d−1 ⊆ T .

Case 2: L(`)
d (ρ′) 6⊆ SH

(`)
d (M(`)

d−1(ρ− ρ′)).

By Corollary 4.3, SH
(`)
d (M(`)

d−1(ρ− ρ′)) = L(`)
d (ρ′′) for some nonnegative integer

ρ′′. Hence L(`)
d (ρ′) 6⊆ L(`)

d (ρ′′) and this implies that ρ′ 66 ρ′′, i.e., ρ′′ < ρ′. It follows

that SH
(`)
d (M(`)

d−1(ρ− ρ′)) ⊆ L(`)
d (ρ′). Consequently,

SH
(`)
>d(U) = SH

(`)
>d(L

(`)
d (ρ′)) ∪ SH

(`)
>d(M

(`)
d−1(ρ− ρ′)) = SH

(`)
>d(L

(`)
d (ρ′)). (22)

On the other hand, SH
(`)
<d(U) = SH

(`)
<d(M

(`)
d−1(ρ−ρ′)) = SH(`)(M(`)

d−1(ρ−ρ′))∩H(`)
<d,

and so by Proposition 4.2. we see that

SH
(`)
<d(U) =M(`)

d−1(ρ− ρ′). (23)

Using equations (22) and (23), we obtain

|SH(`)(U)| = ρ− ρ′ + |SH(`)
>d(L

(`)
d (ρ′))| 6 ρ− ρ′ + |SH(`)

>d(T ∩H(`)
d )|,
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where the last inequality follows from Corollary 4.5. Now since |T ∩H(`)
<d| = ρ− ρ′,∣∣SH(`)(U)

∣∣ 6 ∣∣SH(`)
<d(T ∩H(`)

<d)
∣∣+
∣∣SH(`)

>d(T ∩H(`)
d )
∣∣.

Hence |SH(`)(U)| 6 |SH(`)
<d(T )|+ |SH(`)

>d(T )| = |SH(`)(T )|, as desired. �

5. Specializations and Expanders

In order to effectively relate the two notions ∆e and FP of footprint considered
in the previous two sections, we will introduce two maps, denoted σ(`) and φ, on
the space of projectively reduced monomials in x0, . . . , xm and prove some of their
properties. Throughout this section, m is a fixed positive integer, while `, d, e
denote nonnegative integers satisfying ` 6 m.

5.1. Specialization. For any nonnegative integer ` 6 m, we define

σ(`) : M →M ∪ {0} by σ(`)(µ) :=

{
xa00 · · ·x

a`−1

`−1 if µ = xa00 · · ·x
a`−1

`−1 x
a`
` ,

0 if µ 6∈ Fq[x0, . . . , x`],

with the usual convention that an empty product equals 1. We may refer to σ(`) as
the specialization map at level `, since it corresponds to specializing the variables
(x`, x`+1, . . . , xm) to (1, 0, . . . , 0).

Proposition 5.1. Let `, d, e be nonnegative integers such that e > d + m(q − 1)

and ` 6 m. Suppose µ ∈Md ∩ Fq[x0, . . . , x`] and ν ∈M(`)
e . Then

µ | ν ⇔ σ(`)(µ) |σ(`)(ν).

Proof. We can write µ = xa00 · · ·x
a`
` and ν = xb00 · · ·x

b`−1

`−1 x
b`
` for some nonnegative

integers aj , bj for 0 6 j 6 ` such that bj 6 q − 1 for all j 6 `− 1 and b` > 0. Note

that σ(`)(µ) = xa00 · · ·x
a`−1

`−1 and σ(`)(ν) = xb00 · · ·x
b`−1

`−1 .

If µ | ν, then ai 6 bi for 0 6 i 6 `, and this readily implies that σ(`)(µ) |σ(`)(ν).
To prove the converse, suppose σ(`)(µ) |σ(`)(ν). Then ai 6 bi 6 q − 1 for 0 6 i 6
`− 1. Since

∑`
i=0 ai = d and

∑`
i=0 bi = e, we obtain

b` − a` = e− d+

`−1∑
i=0

(ai − bi) > m(q − 1)− `(q − 1) > 0.

This shows that µ | ν. �

Remark 5.2. Suppose 0 6 d < q. Then σ(m) gives a bijection of Md = Md onto

H(m)
6d . Indeed, if µ = xa00 · · ·xamm ∈ Md, then clearly, 0 6 ai 6 d 6 q − 1 for

0 6 i 6 m; also a0 + · · · + am−1 6 d. Moreover, am = d − a0 − · · · − am−1,

and so µ is determined by σ(m)(µ) = xa00 · · ·x
am−1

m−1 ∈ H(m)
6d . A similar reasoning

shows that σ(m) preserves lexicographic order, i.e., for any µ, ν ∈ Md, we have
µ ≺lex ν ⇔ σ(m)(µ) ≺lex σ

(m)(ν).

The following result gives a useful relation between the two notions of footprint.
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Theorem 5.3. Let d, e be any nonnegative integers such that e > d+m(q−1) and
let S ⊂Md. Then

|∆(`)
e (S〈`〉)| = |FP(`)(σ(`)(S〈`〉))| for all nonnegative integers ` 6 m,

and consequently,

|∆e(S)| =
m∑
`=0

|FP(`)(σ(`)(S〈`〉))|.

Proof. Fix a nonnegative integer ` 6 m. It is clear from Definition 3.3 that
σ(`)(S〈`〉) ⊆ H(`). From Proposition 5.1, we see that the map

∆(`)
e (S〈`〉)→ FP(`)(σ(`)(S〈`〉)) defined by µ 7→ σ(`)(µ)

is well-defined. Moreover, since e > d + m(q − 1), this map is easily seen to be a
bijection. This yields the first assertion in the theorem. Consequently, we obtain
the last assertion from equation (21). �

5.2. Footprint expander. In this subsection, we consider a degree-preserving
map φ on sets of projectively reduced monomials in x0, . . . , xm such that φ is
injective and has the property that |∆e(S)| 6 |∆e(φ(S))| for any S ⊆ M and
e� 0. For this reason, φ may be referred to as an expander map.

Definition 5.4. Let S ⊆M. If µ = xi00 · · ·ximm ∈ S, then define

φ(µ) :=

{
µxm−1

xm
if xi00 · · ·x

im−2

m−2x
im−1+im
m−1 6∈ S and im−1 + 1 < q,

µ otherwise.

Note that if im = 0, then xi00 · · ·x
im−2

m−2x
im−1+im
m−1 = µ ∈ S. Hence, in the first case

of the definition, we must have im > 0. In particular, φ(µ) is always a monomial,
and we obtain a well-defined map φ : S →M which preserves degrees.

Proposition 5.5. Let S ⊆M. Then the map φ : S →M is injective and it satisfies

S〈m−1〉 = φ(S〈m−1〉) ⊆ φ(S)〈m−1〉 and φ(S〈m〉) = φ(S)〈m〉.

Proof. It is easy to see that φ is injective. Also, as noted earlier, φ(µ) = µ in case
µ ∈ S〈m−1〉. This implies that S〈m−1〉 = φ(S〈m−1〉) ⊆ φ(S)〈m−1〉. To prove that

φ(S〈m〉) = φ(S)〈m〉, suppose µ = xi00 · · ·ximm ∈ S〈m〉. Then ij < q for 0 6 j 6 m−1.

In case φ(µ) = µ, then clearly, φ(µ) ∈ φ(S)〈m〉. In particular, if im−1 = q− 1, then
φ(µ) ∈ φ(S)〈m〉 because in this case, im−1 + 1 = q and so φ(µ) = µ. On the other

hand, if im−1 < q − 1 and φ(µ) 6= µ, then φ(µ) = xi00 · · ·x
im−1+1
m−1 xim−1m . Since

im−1 + 1 < q, we obtain φ(µ) ∈ φ(S)〈m〉. This shows that φ(S〈m〉) ⊆ φ(S)〈m〉. In
order to prove the reverse inclusion, we take µ ∈ φ(S)〈m〉. Since µ ∈ φ(S), there
exists µ′ ∈ S such that φ(µ′) = µ. It is trivial to see that µ′ ∈ S〈m〉. �

We now give a series of lemmas and a proposition leading to the result that φ
does not decrease footprints in Me for all large enough e.

Lemma 5.6. Let S be a finite subset of M. Then ∆
(m)
e (S) ⊆ ∆

(m)
e (φ(S)) for all

e� 0.
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Proof. It suffices to show that ∇(m)
e (φ(S)) ⊆ ∇(m)

e (S) for all e� 0. To this end, let

ν ∈ ∇(m)
e (φ(S)). Then ν ∈M(m)

e and there exists µ ∈ φ(S) such that µ | ν. If µ ∈ S,

then ν ∈ ∇(m)
e (S). Suppose µ 6∈ S. Since µ ∈ φ(S), it follows from Definition 5.4

that µxm/xm−1 ∈ S. In particular, xm−1 |µ and (µ/xm−1) | ν. Further, since ν ∈
M(m)
e , we see that degxm ν � 0 for all e� 0, whereas degxm µ is bounded since S

is finite. Consequently, (µxm/xm−1) | ν, and so ν ∈ ∇(m)
e (S) for e� 0. �

Lemma 5.7. Let S ⊆M. Then ∆
(m−1)
e (φ(S)) ⊆ ∆

(m−1)
e (S) for all e > 0.

Proof. Fix a nonnegative integer e. We will show that ∇(m−1)
e (S) ⊆ ∇(m−1)

e (φ(S)).

Let ν ∈ ∇(m−1)
e (S). Then ν ∈ M(m−1)

e and there exists µ ∈ S such that µ | ν. In
particular, degxm µ 6 degxm ν = 0, and so φ(µ) = µ. It follows that µ ∈ φ(S) and

so ν ∈ ∇(m−1)
e (φ(S)). �

Lemma 5.8. Let S ⊆M and let e be a nonnegative integer. Suppose ν ∈ ∆
(m−1)
e (S)

and µ ∈M satisfy µ | ν. Then µ 6∈ S〈m−1〉.

Proof. Since ∆
(m−1)
e (S) = ∆

(m−1)
e (S〈m−1〉), this follows directly. �

Lemma 5.9. Let S ⊆ M and let e be a nonnegative integer. Suppose there exists

ν ∈ ∆
(m−1)
e (S) \∆

(m−1)
e (φ(S)), i.e., ν ∈ ∇(m−1)

e (φ(S)) \ ∇(m−1)
e (S). Then the set

{µ ∈ S : degxm−1
µ < q and µ | (νxm)} is nonempty.

Proof. Since ν ∈ ∇(m−1)
e (φ(S)) = ∇(m−1)

e (φ(S)〈m−1〉), there exists µ̃ ∈ φ(S)〈m−1〉

such that µ̃ | ν. Moreover, ν 6∈ ∇(m−1)
e (S) implies µ̃ 6∈ S. Hence xm−1 | µ̃ and

µ̃xm/xm−1 ∈ S. Let µ := µ̃xm/xm−1. Note that µ is projectively reduced since
µ ∈ S. Further, degxm µ > 0 since φ(µ) 6= µ. This implies that degxm−1

µ < q.

Also, since µ̃ | ν, we see that µ̃/xm−1 divides ν and so µ | (νxm). �

Proposition 5.10. Let S ⊂M be a finite set. Then∣∣∆(m−1)
e (S) \∆(m−1)

e (φ(S))
∣∣ 6 ∣∣∆(m)

e (φ(S)) \∆(m)
e (S)

∣∣ for all e� 0.

Proof. For a nonnegative integer e and ν ∈ ∆
(m−1)
e (S) \∆

(m−1)
e (φ(S)), define

Sν := {µ ∈ S : degxm−1
µ < q and µ | (νxjm) for some j > 0}.

By Lemma 5.9, the set Sν is nonempty. Moreover, since S is a finite set, we see
that

kν := min{degxm−1
µ : µ ∈ Sν} and E := max{degxm µ : µ ∈ S}

are well-defined, and

Sν = {µ ∈ S : degxm−1
µ < q and µ | (νxEm)}.

For e > 0, consider the map ψ : ∆
(m−1)
e (S) \∆

(m−1)
e (φ(S))→Me given by

ν = xi00 · · ·x
im−1

m−1 7→ xi00 · · ·x
im−2

m−2x
kν
m−1x

im−1−kν
m .

Clearly, the map ψ is injective and to prove the proposition, it is enough to show

that the image of ψ is contained in ∆
(m)
e (φ(S)) \∆

(m)
e (S), provided e� 0.
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Let us fix e > 0 and ν = xi00 · · ·x
im−1

m−1 ∈ ∆
(m−1)
e (S) \ ∆

(m−1)
e (φ(S)). Also, for

simplicity, let us write k = kν . From Lemma 5.9, we see that k < q. By the
definition of k, there exists µ∗ ∈ S with degxm−1

µ∗ = k such that µ∗ | (νxEm). Now

since ν ∈M(m−1)
e , we see that ij < q for 0 6 j < m−1, whereas im−1 � 0 if e� 0.

Hence E 6 im−1 − k if e � 0. This implies that µ∗ |ψ(ν) whenever e � 0. Since

µ∗ ∈ S, we conclude that ψ(ν) 6∈ ∆
(m)
e (S). We now prove that ψ(ν) ∈ ∆

(m)
e (φ(S))

for e� 0 by distinguishing two cases.

Case 1: k = q − 1.

Since ν ∈ ∇(m−1)
e (φ(S)), there exists µ ∈ φ(S) such that µ | ν. Let µ̃ ∈ S be

such that µ = φ(µ̃). Then either µ̃ = µ or µ̃ = µxm/xm−1. If µ̃ = µ, then

ν ∈ ∇(m−1)
e (S), which is a contradiction. Thus µ̃ = µxm/xm−1. Since µ | ν, clearly

µ̃ | (νxm). Hence µ̃ ∈ Sν . From the assumption that k = q − 1, we conclude
that degxm−1

(µ̃) = q − 1. But then µ = φ(µ̃) = µ̃, which is again a contradiction.
Therefore, the case k = q − 1 can not occur.

Case 2: k < q − 1.

Suppose, if possible, ψ(ν) ∈ ∇(m)
e (φ(S)). Then there exists µ ∈ φ(S) such that

µ |ψ(ν). Write µ = xj00 · · ·xjmm . Then j0 6 i0, . . . , jm−2 6 im−2 and jm−1 6
k < q − 1. Note that xj00 · · ·x

jm−2

m−2 x
jm−1+jm
m−1 | ν whenever e � 0. This implies that

xj00 · · ·x
jm−2

m−2 x
jm−1+jm
m−1 6∈ S, since ν ∈ ∆

(m−1)
e (S). Choose µ̃ ∈ S such that φ(µ̃) = µ.

If µ̃ = µ, then by the definition of φ and the fact that xj00 · · ·x
jm−2

m−2 x
jm−1+jm
m−1 6∈ S, we

conclude that jm−1 > q−1, which is a contradiction. Therefore µ̃ 6= µ. This implies

that µ̃ = xj00 · · ·x
jm−1−1
m−1 xjm+1

m ∈ S. Furthermore, µ̃ | νxjm whenever j > jm + 1 and
e � 0. Thus µ̃ ∈ Sν . But then degxm−1

µ̃ = jm−1 − 1 < jm−1 6 k, and this

contradicts the minimality of k if e� 0. Hence ψ(ν) ∈ ∆
(m)
e (φ(S)) for e� 0. �

Theorem 5.11. Let S ⊂M be a finite set. Then |∆e(S)| 6 |∆e(φ(S))| for e� 0.

Proof. Since φ(µ) = µ for all µ ∈ S with degxm µ = 0 and since degxm−1
φ(µ) > 0

if φ(µ) 6= µ, it is clear that S〈j〉 = φ(S)〈j〉 for j = 0, . . . , m− 2. Hence

∆(j)
e (S) = ∆(j)

e (S〈j〉) = ∆(j)
e (φ(S)〈j〉) = ∆(j)

e (φ(S)) for all j = 0, . . . , m− 2.

Thus it is enough to show that

|∆(m)
e (S)|+ |∆(m−1)

e (S)| 6 |∆(m)
e (φ(S))|+ |∆(m−1)

e (φ(S))|.

This follows directly from Proposition 5.10 in view of Lemmas 5.6 and 5.7. �

6. Number of Solutions of Equations over Finite Fields

Throughout this section, m denotes a fixed positive integer, while d, r are non-
negative integers. Recall that er(d, m) has been defined by (1) and the conventions

(10) whenever r 6
(
m+d
d

)
. In this section, we shall prove our main results concern-

ing er(d, m) and a related quantity, called er(d, m), that we shall define shortly.
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6.1. Projectively reduced equations. As in Section 3.1, let Γq(Fq) denote the
ideal of Fq[x0, . . . , xm] generated by {xqixj − xix

q
j : 0 6 i < j 6 m}. Evidently,

Γq(Fq) is a homogeneous ideal and if we let Γq(Fq)d denote its dth homogeneous
component, then its vector space dimension is known, e.g., from [16, Thm. 5.2],
namely

rd := dimFq Γq(Fq)d =

m+1∑
j=2

(−1)j
(
m+ 1

j

) j−2∑
i=0

(
d+ (i+ 1)(q − 1)− jq +m

d+ (i+ 1)(q − 1)− jq

)
(24)

for any d > 0. As noted in Section 3.1, the space of projectively reduced polynomi-
als in Fq[x0, . . . , xm] can be identified with Fq[x0, . . . , xm]/Γq(Fq). In particular,

rd 6
(
m+d
d

)
and the dimension of this space of projectively reduced polynomials in

Fq[x0, . . . , xm]d is
(
m+d
d

)
− rd for any nonnegative integer d. This also shows that

|Md| =
(
m+ d

d

)
− rd for any d > 0. (25)

Using this or otherwise (see for example [16, p. 237]), we readily see that

rd = 0 if d 6 q, rq+1 =

(
m+ 1

2

)
, and rd =

(
m+ d

d

)
−pm if d > m(q−1). (26)

Definition 6.1. For any d > 0 and 1 6 r 6
(
m+d
d

)
− rd, we define

er(d, m) := max
G1,...,Gr

|V (G1, . . . , Gr)(Fq)|, (27)

where the maximum is taken over all possible sets {G1, . . . , Gr} of r linearly inde-
pendent, projectively reduced polynomials in Fq[x0, . . . , xm]d. As a natural con-
vention, we set e0(d, m) := 0.

It is clear that er(d, m) 6 er(d, m) for all d > 0 and 1 6 r 6
(
m+d
d

)
− rd. A

more precise relationship is given by the following.

Theorem 6.2. Let d, r be nonnegative integers such that r 6
(
m+d
d

)
− rd. Then

er+rd(d, m) = er(d, m).

In particular, er(d, m) = er(d, m) if d 6 q.

Proof. Fix a basis {Φ1, . . . , Φrd} of the Fq-vector space Γq(Fq)d. We will show that
er+rd(d, m) > er(d, m) and er+rd(d, m) 6 er(d, m).

Let G1, . . . , Gr ∈ Fq[x0, . . . , xm]d be linearly independent and projectively re-
duced polynomials such that |V (G1, . . . , Gr)(Fq)| = er(d, m). Then every nontriv-
ial linear combination of G1, . . . , Gr is projectively reduced and therefore it does
not belong to Γq(Fq)d. Consequently, the polynomials G1, . . . , Gr, Φ1, . . . , Φrd are
linearly independent. Since Φ1, . . . , Φrd vanish everywhere on Pm(Fq), we see that
V (G1, . . . , Gr)(Fq) = V (G1, . . . , Gr, Φ1, . . . , Φrd)(Fq). It follows that

er+rd(d, m) > |V (G1, . . . , Gr, Φ1, . . . , Φrd)(Fq)|
= |V (G1, . . . , Gr)(Fq)|
= er(d, m).
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To prove the other inequality, suppose F1, . . . , Fr+rd are linearly independent
polynomials in Fq[x0, . . . , xm]d such that |V (F1, . . . , Fr+rd)(Fq)| = er+rd(d, m).
Let Vr+rd denote the Fq-linear span of F1, . . . , Fr+rd . Then

dimFq
Vr+rd + Γq(Fq)d

Γq(Fq)d
> dimFq Vr+rd − dimFq Γq(Fq)d = (r + rd)− rd = r.

So we can find F ′1, . . . , F
′
r ∈ Vr+rd + Γq(Fq)d that are linearly independent (mod

Γq(Fq)d). Let G′i = F ′i denote the projective reduction of F ′i . Then G′1, . . . , G
′
r

are linearly independent and projectively reduced polynomials in Fq[x0, . . . , xm]d.
Hence as in the previous paragraph, we see that G′1, . . . , G

′
r, Φ1, . . . , Φrd are lin-

early independent. Also, F ′i −G′i ∈ Γq(Fq) for all i = 1, . . . , r. It follows that

er+rd(d, m) > |V (G′1, . . . , G
′
r, Φ1, . . . , Φrd)(Fq)|

= |V (G′1, . . . , G
′
r)(Fq)|

= |V (F ′1, . . . , F
′
r)(Fq)|

> |V (F1, . . . , Fr+rd)(Fq)|
= er+rd(d, m).

Consequently, equality holds throughout, and in particular,

er(d, m) > |V (G′1, . . . , G
′
r)(Fq)| = er+rd(d, m).

This proves that er+rd(d, m) = er(d, m). Finally, if d 6 q, then rd = 0, and
therefore er(d, m) = er(d, m) in this case. �

Remark 6.3. As noted in [9, Rem. 6.2], one has er(d, m) = pm if 0 6 r 6 rd.
Indeed, it is clear that for any r > 0 one has er(d, m) 6 |Pm(Fq)| = pm, while for
r 6 rd, one may choose linearly independent polynomials G1, . . . , Gr ∈ Γq(Fq)d
and deduce that er(d, m) > |V (G1, . . . , Gr)(Fq)| = pm.

The vanishing ideal of Am(Fq) is easy to determine; it is precisely the ideal of
Fq[x1, . . . , xm] generated by {xqi − xi : 1 6 i 6 m}. It is not difficult to see (using,
e.g., the principle of inclusion-exclusion) that the dimension of the Fq-vector space
of polynomials of degree 6 d in this vanishing ideal is given by

ρd :=

m∑
j=1

(−1)j−1
(
m

j

)(
m+ d− jq
d− jq

)
for all d > 0.

In case d < q, one can directly see that ρd = 0. Since the dimension of the Fq-vector

space of polynomials of degree 6 d in Fq[x1, . . . , xm] is clearly
(
m+d
d

)
, we see that

ρd 6
(
m+d
d

)
for all d > 0.

We have seen in Section 2.1 an affine analogue of er(d, m), namely, eAr (d, m).

Here is a natural affine analogue of er(d, m). For 0 6 r 6
(
m+d
d

)
− ρd, we define

eAr (d, m) := max
g1,...,gr

|Z(g1, . . . , gr)(Fq)|,

where the maximum is taken over r linearly independent and reduced polynomials
g1, . . . , gr of degree 6 d in Fq[x1, . . . , xm]. Arguing similarly as in the proof of
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Theorem 6.2, we see that

eAr+ρd(d, m) = eAr (d, m) for 1 6 r 6

(
m+ d

d

)
− ρd.

Moreover, eAr (d, m) = eAr (d, m) if d < q, whereas eAr (d, m) = qm if r 6 ρd.
The result of Heijnen and Pellikaan [12] that was alluded to in the introduction

solves the problem of determining eAr (d, m). A special case of this (when d < q)
was stated earlier (Theorem 2.1). Here is the general version.

Theorem 6.4 (Heijnen–Pellikaan). Let d be a nonnegative integer. Then

eAr (d, m) = Hr(d, m) for 1 6 r 6

(
m+ d

d

)
− ρd.

6.2. An upper bound. In this subsection we will use the combinatorial results
in Sections 4 and 5 to obtain an upper bound for er(d, m) when d < q. As we
have seen in the last subsection, when d 6 q, the quantities er(d, m) and er(d, m)
coincide. Thus, we will work with er(d, m), and we begin by relating it with the
“maximal footprint” defined as follows.

Definition 6.5. Given any nonnegative integers d, r and e with 1 6 r 6 |Md|, i.e.,

1 6 r 6
(
m+d
d

)
− rd, define

Ar(d, m; e) := max{|∆e(S)| : S ⊆Md with |S| = r}.

The relation between Ar(d, m; e) and er(d, m) is given by the lemma below. In
the remainder of this section, we consider the lexicographic order ≺lex on the set M
of all monomials in x0, . . . , xm. For 0 6= F ∈ Fq[x0, . . . , xm], the largest monomial
(w.r.t. ≺lex) appearing in F (with a nonzero coefficient) will be denoted by lm(F ).

Lemma 6.6. Let d, r be nonnegative integers with 1 6 r 6
(
m+d
d

)
− rd. Then

er(d, m) = max
F1,...,Fr

|V (F1, . . . , Fr)(Fq)|,

where the maximum is over all possible sets {F1, . . . , Fr} of linearly independent
and projectively reduced polynomials in Fq[x0, . . . , xm]d such that their leading mon-
imials lm(F1), . . . , lm(Fr) are distinct. Consequently,

er(d, m) 6 Ar(d, m; e) for all e� 0.

Proof. If G1, . . . , Gr ∈ Fq[x0, . . . , xm]d are linearly independent and projectively
reduced, then we can easily obtain F1, . . . , Fr ∈ Fq[x0, . . . , xm]d that are linearly
independent and projectively reduced such that lm(F1), . . . , lm(Fr) are distinct and
V (F1, . . . , Fr) = V (G1, . . . , Gr). For example, we can obtain them recursively by
taking F1 := G1 and for 1 < i 6 r, taking Fi := Gi − c1F1 − · · · − ci−1Fi−1, where
c1, . . . , ci−1 ∈ Fq are chosen in such a way that none among lm(F1), . . . , lm(Fi−1)
appear in Fi. This proves the first assertion. The second assertion follows from the
first using the projective Fq-footprint bound (Theorem 3.2). �

The following result could be viewed as a projective analogue of Theorem 4.6,
which in turn arose from the works of Clements–Lindström [7], Wei [20] and
Heijnen–Pellikaan [12], [13]. For any integers d, r with d > 0 and 1 6 r 6
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m+d
d

)
− rd, we denote by Md(r) the set of first r elements of Md in descend-

ing lexicographic order, and for any d > 0, we set Md(r) to be the empty set if
r = 0.

Theorem 6.7. Let d, r be integers with 1 6 d < q and 1 6 r 6
(
m+d
d

)
− rd. Then

|∆e(S)| 6
∣∣∆e(Md(r))

∣∣ for all e� 0 and S ⊆Md with |S| = r. (28)

Consequently, Ar(d, m; e) = |∆e(Md(r))| and er(d, m) 6 |∆e(Md(r))| for e� 0.

Proof. We prove (28) by induction on m. Suppose m = 1 and S = {µ1, . . . , µr} ⊆
Md. We may assume, without loss of generality, that µ1 �lex . . . �lex µr. Since
the set Md consists of xd0 �lex x

d−1
0 x1 �lex . . . �lex x

d
1, we obtain degx0

µr < · · · <
degx0

µ1.

Now observe that if e� 0, then ∆
(0)
e (S) = ∅ if xd0 ∈ S, whereas ∆

(0)
e (S) = {xe0}

if xd0 6∈ S. Also, if i := degx0
µr and e > i−1, then ∆

(1)
e (S) = {xi−10 xe−i+1

1 , . . . , xe1},
and so |∆(1)

e (S)| = degx0
µr. Consequently, if xd0 ∈ S, then degx0

µr 6 d− r+ 1 and

|∆e(S)| = |∆(0)
e (S)|+ |∆(1)

e (S)| = 0 + degx0
µr 6 d− r + 1 for all e� 0,

whereas if xd0 6∈ S, then degx0
µr 6 d− r and

|∆e(S)| = |∆(0)
e (S)|+ |∆(1)

e (S)| = 1 + degx0
µr 6 d− r + 1 for all e� 0.

On the other hand, Md(r) = {xd0, xd−10 x1, . . . , x
d−r+1
0 xr−11 } and a similar reason-

ing shows that |∆e(Md(r))| = d− r + 1 for all e� 0.
Next suppose m > 1 and (28) holds for all values of m smaller than the given

one. Consider any S ⊆Md with |S| = r and let r′ := |S〈m−1〉|. By Theorem 5.3,

|∆e(S)| =
m∑
`=0

|∆(`)
e (S)| =

m∑
`=0

|FP(`)(σ(`)(S〈`〉))|.

Moreover S〈m〉 = S, since d < q. This implies that |S| = |σ(m)(S〈m〉)| = r and

σ(m)(S〈m〉) ⊂ H(m)
6d . Hence by Theorem 4.7,

|∆(m)
e (S)| = |FP(m)(σ(m)(S〈m〉))| 6 |FP(m)(T )|,

where T = L(m)
d (r′) ∪M(m)

d−1(r − r′). Now define

T := L(m)
d (r′) ∪ xmMd−1(r − r′),

where xmMd−1(r − r′) = {xmµ : µ ∈ Md−1(r − r′)}. Since d < q, we readily see
that T ⊂Md, |T | = r, and σ(m)(T ) = T . Therefore by Theorem 5.3,

|∆(m)
e (S)| 6 |FP(m)(σ(m)(T ))| = |∆(m)

e (T )|.

On the other hand, by the induction hypothesis,

m−1∑
`=0

|∆(`)
e (S)| 6

m−1∑
`=0

|∆(`)
e (T )|.
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Consequently, from equation (19) and the definition of T , it follows that

|∆e(S)| =
m∑
`=0

|∆(`)
e (S)| 6

m∑
`=0

|∆(`)
e (T )| = |∆e(L(m)

d (r′) ∪ xmMd−1(r − r′))|. (29)

With this in view, we can replace S by L(m)
d (r′)∪xmMd−1(r− r′). Thus, to prove

(28), it suffices to show that |∆e(S)| 6 |∆e(T )| for all e� 0, where we now take

S := L(m)
d (r′) ∪ xmMd−1(r − r′) and T :=Md(r).

In view of Remark 5.2, σ(m)(T ) =M(m)
d (r). Also clearly, T 〈m−1〉 = L(m)

d (s′) and

T \ T 〈m−1〉 = xmMd−1(r − s′) for some s′ > 0. Now we distinguish two cases.

Case 1: r′ < s′.
Let α be the (r′ + 1)th element of H(m)

d . Since r′ < s′, we see that α ∈ L(m)
d (s′)

and α 6∈ L(m)
d (r′). In particular, α ∈ T \ S. We claim that there exists β ∈ S

such that β ≺lex α. Suppose, if possible, the claim is false. Then α 4lex β for every
β ∈ S. Since α ∈ T and T = Md(r), this will imply that β ∈ T for all β ∈ S.
Thus, S ⊂ T . Further, the fact that |S| = |T | = r implies that S = T . But this is a
contradiction since α ∈ T \S. Hence the claim is true. Note that if β ∈ S is such that

β ≺lex α, then α 6∈ L(m)
d (r′) implies that β 6∈ L(m)

d (r′), and so β ∈ xmMd−1(r−r′).
Now choose γ = xi00 · · ·ximm to be the largest (in lexicographical order) element of
S such that γ ≺lex α. Then, as noted above, γ ∈ xmMd−1(r − r′). Consider
µ := γxm−1/xm. Since γ ∈ xmMd−1(r − r′) and d < q, we see that µ ∈ Md.
Moreover, µ �lex γ and in fact, µ is the immediate successor of γ in Md in the
lexicographic order. Hence γ ≺lex α implies that µ 4lex α. In case xm |µ, then
µ ∈ xmMd−1(r − r′) because µ �lex γ and xmMd−1(r − r′) is upwards closed in
xmMd−1. But then µ ∈ S, and this contradicts the maximality of γ. Thus xm - µ,
i.e., im = 1 and µ 6∈ S. In particular, since d < q, we see that im−1 + 1 < q and

xi00 · · ·x
im−2

m−2x
im−1+im
m−1 = µ 6∈ S. Hence by Definition 5.4, µ = φ(γ) ∈ φ(S)〈m−1〉,

even though γ 6∈ S〈m−1〉. On the other hand, if ν ∈ S〈m−1〉, then clearly, φ(ν) = ν,
and so ν ∈ φ(S)〈m−1〉. This shows that r′′ := |φ(S)〈m−1〉| > |S〈m−1〉| = r′.
Moreover, by Theorem 5.11, |∆e(S)| 6 |∆e(φ(S))|. Now, if r′′ < s′, then we iterate
the procedure by replacing S with φ(S). Else we proceed to the next case.

Case 2: r′ > s′.
In this case, for ` = 0, . . . , m− 1,

∆(`)
e (S) = ∆(`)

e (L(m)
d (r′)) ⊆ ∆(`)

e (L(m)
d (s′)) = ∆(`)

e (T ) for all e� 0.

Moreover, σ(m)(T ) =M(m)
d (r) and so by Theorem 4.6,

|∆(m)
e (S)| = |FP(m)(σ(m)(S〈m〉))| 6 |FP(m)(σ(m)(T ))| = |∆(m)

e (T )| for all e� 0.

Hence from equation (19), we obtain |∆e(S)| 6 |∆e(T )| for all e� 0, as desired. �
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We are now ready to obtain an upper bound for er(d, m) mentioned in the

introduction. For any integers d, r with d > 0 and 1 6 r 6
(
m+d
d

)
−rd, let us define

Kr(d, m) :=

m−1∑
j=0

ajpm−1−j ,

where (a0, . . . , am) denotes the rth element, in lexicographic order, of the set of
(m+ 1)-tuple (b0, . . . , bm) of nonnegative integers such that b0 + · · ·+ bm = d, or
in other words, a0, . . . , am are unique nonnegative integers such that xa00 · · ·xamm is
the smallest monomial in Md(r) in lexicographic order.

Theorem 6.8. Let d, r be integers such that 1 6 d < q and 1 6 r 6
(
m+d
d

)
. Then

Ar(d, m; e) = Kr(d, m) for all e� 0. Consequently,

er(d, m) 6 Kr(d, m).

Proof. Let xa00 · · ·xamm be the smallest monomial in Md(r) in lexicographic order.
In view of Theorem 6.7, it suffices to show that

|∆e(Md(r))| =
m−1∑
j=0

ajpm−1−j for all e� 0.

We will prove this by induction on m. The case m = 1 is easy, since we have already
noted in the proof of Theorem 6.7 that |∆e(Md(r))| = d−r+1 = (d−r+1)p0 and

xd−r+1
0 xr−11 is the smallest monomial in Md(r) in lexicographic order if m = 1.

Now suppose that m > 1 and the result holds for all values of m smaller than

the given one. In view of Remark 5.2, σ(m)(Md(r)) =M(m)
d (r) and therefore from

equation (20) and Theorem 5.3, we see that

|∆(m)
e (Md(r))| = |FP(m)(M(m)

d (r))| =
m−1∑
j=0

ajq
m−1−j for all e� 0,

where the last equality follows from [12, Prop. 5.9] (see also [3, Lem. 4.2]). On the
other hand, from equations (19) and (20), we see that

|∆e(Md(r))| = |∆(m)
e (Md(r))|+

m−1∑
j=0

|∆(j)
e (Md(r)

〈j〉)|

= |∆(m)
e (Md(r))|+ |∆e(Md(r)

〈m−1〉)| for all e > 0,

Note that the smallest monomial in Md(r)
〈m−1〉 equals xa00 · · ·x

am−2

m−2 x
am−1+am
m−1 .

Hence using the induction hypothesis, we obtain

|∆e(Md(r))| =
m−1∑
j=0

ajq
m−1−j +

m−2∑
j=0

ajpm−2−j =

m−1∑
j=0

ajpm−1−j for all e� 0.

This completes the proof. �

As an application of Theorem 6.8, we show below that Conjecture 2.4 holds (in
the affirmative) for some “large” values of r.
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Lemma 6.9. Let d be a positive integer with d < q and let r =
∑i
a=1

(
m+d−a
d−1

)
for

some positive integer i 6 m+ 1. Then Conjecture 2.4 holds and

er(d, m) = pm−i.

Proof. If i = m + 1, then by equation (11), r =
(
m+d
d

)
, and in this case it is clear

that er(d, m) = 0 = pm−i. Now suppose i 6 m so that r <
(
m+d
d

)
. We claim that

the (r + 1)th monomial of Md in descending lexicographical order is given by xdi .
This is clear if i = m, and the general case follows by decreasing induction on i if
we note that for i < m, the monomials µ ∈ Md that satisfy xdi <lex µ �lex x

d
i+1

are precisely the monomials of degree d in the m− i+ 1 variables xi, . . . , xm that
are divisible by xi, and the number of such monomials is clearly

(
m−i+d−1

d−1
)
, i.e.,(

m+d−(i+1)
d−1

)
. From the above claim, it follows that the rth monomial of Md in

descending lexicographical order is given by xi−1x
d−1
m . Hence Theorem 6.8 implies

that er(d, m) 6 pm−1−(i−1) = pm−i, while Theorem 2.3 shows that

er(d, m) > pm−i−1 +H0(d− 1, m− i) = pm−i−1 + qm−i = pm−i.

This proves the lemma. �

In the next section, we use a little trick from coding theory and results proved
in this section to prove the validity of Conjecture 2.4 for some more values of r.

7. Connection with Projective Reed–Muller Codes

We begin by recalling some basics about linear codes and the notion of general-
ized Hamming weight that is relevant for us. We will then consider the projective
Reed–Muller codes, and show that the determination of their generalized Hamming
weights is intimately related to the problem considered in this paper. As before, m
will denote a fixed positive integer. Moreover, n, k are positive integers with k 6 n.

7.1. Generalized Hamming weights and projective Reed–Muller codes.
Recall that a q-ary [n, k] (error-correcting linear) code is defined as a k-dimensional
Fq-linear subspace of Fnq . If C is a q-ary [n, k] code, then the parameters n and k
are known, respectively, as the length and the dimension of C. For any D ⊆ Fnq ,
we define the support of D to be the subset

Supp(D) = {i ∈ {1, . . . , n} : ci 6= 0 for some (c1, . . . , cn) ∈ D}
and the support weight of D, denoted wH(D), to be the cardinality of Supp(D).

Let C be a q-ary [n, k] code. For 1 6 r 6 k, the rth generalized Hamming weight
(also known as the rth higher weight) of C is defined to be

dr(C) := min{wH(D) : D subspace of C with dimD = r}.
Note that d1(C) is the minimum distance of C. The notion of generalized Hamming
weights was introduced by Wei [20] and he showed that for any q-ary [n, k] code C,

1 6 d1(C) < d2(C) · · · < dk(C) 6 n. (30)

Also, it is clear that dk(C) = n if C is nondegenerate, i.e., C is not contained in a
coordinate hyperplane of Fnq .
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We now recall the projective Reed–Muller codes, introduced by Lachaud [15].
Let P1, . . . , Ppm be some fixed representatives in Fm+1

q for the pm points of Pm(Fq),
e.g., we could represent each point of Pm(Fq) by an (m+1)-tuple of elements of Fq,
not all zero, such that the last nonzero coordinate is 1. Consider the linear map

ev : Fq[x0, . . . , xm]→ Fpm
q given by ev(F ) = (F (P1), . . . , F (Ppm)).

The dth order projective Reed–Muller code, denoted by PRMq(d, m), is defined as
the image of the space of homogeneous polynomials of degree d in x0, . . . , xm with
coefficients in Fq, under the map ev, i.e., PRMq(d, m) := ev(Fq[x0, . . . , xm]d).
Note that PRMq(d, m) is a nondegeneate linear code of length pm. A formula for
the dimension of PRMq(d, m) can be deduced from the observations in Sections 3.1
and 6.1. Indeed, these observations show that the kernel of the map ev restricted
to Fq[x0, . . . , xm]d is precisely Γq(Fq)d; consequently, in view of equations (24) and
(25), and with rd as in (24), we see that

PRMq(d, m) ∼=
Fq[x0, . . . , xm]d

Γq(Fq)d
and dim PRMq(d, m) = |Md| =

(
m+ d

d

)
−rd.

Thus we see that the dimension, say kq(d, m), of PRMq(d, m) is given by

kq(d, m) =

(
m+ d

d

)
−
m+1∑
j=2

(−1)j
(
m+ 1

j

) j−2∑
i=0

(
d+ (i+ 1)(q − 1)− jq +m

d+ (i+ 1)(q − 1)− jq

)
.

In view of (26), this formula simplifies to
(
m+d
d

)
if d 6 q and to pm if d > m(q−1)+1.

In fact, if d > m(q−1)+1, then PRMq(d, m) = Fpm
q . Thus projective Reed–Muller

codes are of interest only when d 6 m(q− 1). The following result of Sørensen [19,
Thm. 1] gives an alternative formula for the dimension and an explicit formula for
the minimum distance of projective Reed–Muller codes of an arbitrary order.

Theorem 7.1 (Sørensen). Suppose 1 6 d 6 m(q − 1). Then the projective Reed–
Muller code PRMq(d, m) is a nondegenerate linear code with

(i) dim PRMq(d, m) =

d∑
t=1

t≡d (mod q−1)

(
m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jq +m

t− jq

))
,

(ii) d1(PRMq(d, m)) = (q − s)qm−t−1, where s and t are unique integers such
that d− 1 = t(q − 1) + s and 0 6 s < q − 1.

7.2. Connection with homogeneous equations over finite fields. It was
noted in [10, § 4.2] that if d 6 q, then dr(PRMq(d, m)) = pm − er(d, m) for each

positive integer r 6
(
m+d
d

)
. We observe that there is a more general relation.

Lemma 7.2. Let d, r be any integers with d > 1 and 1 6 r 6
(
m+d
d

)
− rd. Then

dr(PRMq(d, m)) = pm − er(d, m). (31)

Proof. Clearly, for any r-dimensional subspace D of PRMq(d, m), there exist r lin-
early independent, projectively reduced polynomials F1, . . . , Fr ∈ Fq[x0, . . . , xm]d
such that D is the Fq-linear span of ev(F1), . . . , ev(Fr), and moreover,

wH(D) = pm − |{i : Fj(Pi) = 0 for all 1 6 j 6 r}| = pm − |V (F1, . . . , Fr)(Fq)|.
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This yields the desired equality. �

Corollary 7.3. Let d be an integer satisfying 1 6 d 6 q. Then

e1(d, m) > e2(d, m) > · · · > e(m+d
d )(d, m) = 0.

Proof. By Theorem 6.2, if d 6 q, then er(d, m) = er(d, m) for 1 6 r 6
(
m+d
d

)
.

So the desired inequalities follow from equation (30) and Lemma 7.2. It is obvious
from the definition that e(m+d

d )(d, m) = 0, or alternatively, it follows from noting

that PRMq(d, m) is always a nondegenerate code. �

The following result generalizes Lemma 6.9 as well as [10, Thm. 4.7], and extends
the validity of Conjecture 2.4 for some additional values of r.

Theorem 7.4. Suppose 1 6 d < q and r =
∑i
a=1

(
m+d−a
d−1

)
− t for some positive

integer i 6 m+ 1. and nonnegative integer t < d. Then

er(d, m) = pm−i + t and consequently, dr(PRMq(d, m)) = pm − pm−i − t.

Proof. By Lemma 6.9, er+t(d, m) = pm−i. In particular, the result holds if t = 0.
Now assume that 1 6 t < d. As in the proof of Lemma 6.9, we observe that the rth

monomial of Md in descending lexicographical order is given by xi−1x
t
m−1x

d−1−t
m .

Hence Theorem 6.8 implies that er(d, m) 6 pm−i+ t, whereas Corollary 7.3 implies
that er(d, m) > t+ er+t(d, m) = t+ pm−i. This yields the desired results. �

Example 7.5. Suppose m = 2 and d = 4. Assume that q > 4. First, we know from
[4, Thm. 5.3] that equation (4) is valid for all r 6

(
m+2
2

)
. Thus we know er(d, m)

for 1 6 r 6 6. Next, Lemma 6.9 covers the values r = 10, 14 and 15 =
(
2+4
4

)
, since

10 =
(
5
3

)
, while 14 =

(
5
3

)
+
(
4
3

)
and 15 =

(
5
3

)
+
(
4
3

)
+
(
3
3

)
. The remaining values

are taken care of by Theorem 7.4. Consequently, we can write down the complete
set of generalized Hamming weights of PRMq(4, 2) for q > 5. A similar conclusion
holds when (m, d) = (2, 3) and q > 4.

Finally, we remark that since er(d, m) = er(d, m) when d 6 q, it is clear from
(31) that the results and conjectures about er(d, m) in Section 6 can be easily
reformulated in terms of dr(PRMq(d, m)). As a sampling of one such result, we
give below a reformulation of Theorem 6.8 in the spirit of that in [12, Thm. 5.10].

Proposition 7.6. Let r, d be positive integers with d < q and r 6
(
m+d
d

)
. Further,

let Qmd := {(α0, . . . , αm) ∈ Qm+1 :
∑m
i=0 αi = (m + 1)(q − 1) − d}, where as

in Section 4.1, Q := {0, 1, . . . , q− 1}. If (β0, . . . , βm) is the rth element of Qmd in
ascending lexicographic order, then

dr(PRMq(d, m)) > m+ 1 +

m−1∑
j=0

βjpm−1−j .
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Proof. Let xa00 · · ·xamm be the smallest monomial in Md(r) in lexicographic order.
Then Lemma 7.2 and Theorem 6.8 imply that

dr(PRMq(d, m)) > pm −
m−1∑
j=0

ajpm−1−j

= m+ 1 +

m−1∑
j=0

(q − 1)pm−1−j −
m−1∑
j=0

ajpm−1−j

= m+ 1 +

m−1∑
j=0

(q − 1− aj)pm−1−j .

The result now follows by noting that the (m+1)-tuple (q−1−a0, . . . , q−1−am)
is the rth element of Qmd in ascending lexicographic order. �

Remark 7.7. In a recent work, Ramkumar, Vajha, and Vijay Kumar [17] have
determined all the generalized Hamming weights of what they call the “binary pro-
jective Reed–Muller code”. However, the code they consider is not PRM2(d, m)
as defined above (and studied by Lachaud [15], Sørensen [19], and others), but,
in fact, a puncturing of a subcode of PRM2(d, m). Indeed, they consider eval-
uations at points of Pm(F2) (which, in this case, is just Fm+1

2 \ {(0, . . . , 0)}) of
polynomials in F2[x0, . . . , xm]d that are reduced in the affine sense. The resulting
code is degenerate, in general, and so they puncture it suitably so as to obtain a
nondegenerate code, say C2(d, m) for 1 6 d 6 m. The length of PRM2(d, m) is

2m+1 − 1, while that of C2(d, m) is 2m+1 −
∑d−1
i=0

(
m
i

)
. Likewise, the dimension of

PRM2(d, m) is
(
m+2
2

)
, while that of C2(d, m) is

(
m+1
2

)
. Evidently, the generalized

Hamming weight dr(C2(d, m)), for which a formula is given in [17], provides an
upper bound for dr(PRM2(d, m)) when 1 6 r 6

(
m+1
2

)
, but the equality does not

hold, in general.
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