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The Ramanujam Mathematical Society (RMS) is happy to announce the DST sponsored
RMS Lecture Notes Series in Mathematics. This Series will publish monographs and
proceedings of conferences which report on important developments in mathematics.
The Monographs/Proceedings submitted for possible publication in this series must
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an outlet for publication of vast amount of important material that is generated from
conferences, seminars and courses held in different parts of the world.
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(1) for monographs – a full text if ready or a synopsis of the monograph along with
a list of contents

(2) for Proceeding of Conferences – a complete list of all the authors along with the
titles and abstract of their talk
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published in this series.
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The authors of Monographs and Organisers of Workshops/Conferences are required
to provide the details of funds set apart or received from any funding agency for the
specific purpose of publication of the Monograph/Proceedings.

The Lecture Notes Series is sponsored by the Department of Science and
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Preface

This volume contains the lecture notes prepared for the participants of the Instruc-
tional Conference on Combinatorial Topology and Algebra (ICCTA-93) held at IIT
Bombay during December 5–24, 1993. These notes include a complete solution, due
to R. Stanley, of the Upper Bound Conjecture, and an exposition of topics in combina-
torial topology such as triangulations of compact surfaces and minimal triangulation
of manifolds. A key feature of these notes is that all the relevant background material
from commutative algebra, combinatorics, and topology is developed from scratch.
The table of contents should give a more detailed idea of the topics covered in these
notes and the interdependence of topics is indicated in the leitfaden appearing after
the table of contents. We have also included the text of an introductory talk by one of
us, which may provide an overall perspective on the contents of these notes. Finally,
there are two appendices at the end that correspond to two of the special talks given
at ICCTA-93 and an epilogue by the editors that attempts to briefly provide an update
on some of the developments that have occurred since the writing of these notes and
their publication here.

We take this opportunity to thank the National Board of Higher Mathematics of the
Government of India for sponsoring ICCTA-93, and the Department of Mathematics
at IIT Bombay for providing excellent facilities and support not only for ICCTA-93,
but also for the year long ACT (=Algebra-Combinatorics-Topology) seminar that
preceded ICCTA-93. We are also grateful to the Ramanujan Mathematical Society for
its interest in publishing these notes in its Lecture Notes Series even though they are
about two decades old.

— SRG, ARS, MKS & JKV
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Leitfaden

V − E + F = 2.

— L. Euler



Opening Remarks1

The formula v − e + f = 2 for a graph drawn on a sheet of paper was apparently
implicit in the works of Descartes in the 17th century. His work was lost and it was
Euler who discovered this formula independently a century later in 1752. Following
the work of Riemann and Betti, the desire to have such a formula for arbitrary sur-
faces was felt by many mathematicians of 19th century. The credit here goes to Jordan
who found and proved the formula v − e + f = 3 − P1. Here P1 denotes the “order
of connectivity” of the surface on which the graph is drawn; this notion was intro-
duced by Betti. The name Betti number was given by Lefschetz to P1 − 1. Around
the mid 19th century, Schläfli formulated the following problem for convex poly-
topes of higher dimensions: show that the alternate sum of the face numbers is equal
to 1. Schläfli published a ‘proof’ of this only around 1905. But meanwhile, this result
had captured the imagination of several contemporary mathematicians and as many
“proofs” of this result appeared (all these “proofs” implicitly assumed in some form
or the other, the so called shellability property of convex polytopes, which was proved
much later in 1971). Finally, this problem caught the attention of the indomitable
Poincaré. He realized that the problem is really topological in nature, and hence needs
to be reformulated in the more general setting of a smooth manifold. In the process,
Poincaré laid down the foundations of a branch of topology that we now call PL-
topology. (See the last section of his classic work Analysis Situs of 1895.) The creation
of PL-topology was a gem of an idea that was directly motivated by the combinatorial
problem of Schläfli. For a vivid account of the history of algebraic topology, see the
book of Dieudonné [D].

Alternating sum of numbers of chains of different lengths occur in the study of
Möbius inversion formula. Rota (1964) pointed out that instead of counting merely the
numbers, one should look at the homology groups of the order-complexes. He conjec-
tured that geometric lattices have the “Cohen-Macaulay property”. This was proved
by Folkman (1966) and the proof is rather complicated. Shellability seems to be an
important passage between various combinatorial questions. Here again, motivated by
MacMahon’s work (1916) on permutation enumerations and Stanley’s work (1972) on
R-labelling, Björner (1980) introduced the notion of EL-labelling and CL-labelling.
These notions give effective methods of determining shellability. On the other hand,
inspired possibly by Macaulay’s work on the study of Hilbert polynomial of order-
complexes, Hochster and Stanley independently introduced the powerful notion of
the “face ring” of a simplicial complex. Reisner (1974) gave a brilliant combina-
torial characterization of Cohen-Macaulay property of the face ring of a simplicial
complex. This led Baclawsky (1976) and Stanley (1977) to introduce the notion of
Cohen-Macaulayness in a purely combinatorial setting. Once we have the result that
a shellable complex is Cohen-Macaulay in this combinatorial sense, the result of
Folkman quoted above becomes transparent.



xii Opening Remarks

Another important achievement of the notion of face ring is the solution of the
Upper Bound Conjecture by Stanley (1975). This will be dealt with in full detail in
this conference. And I believe that this seems to justify allotting as much time as is
done here to the study of commutative algebra per se.

It is the aim of this instructional conference to bring out some of the aspects outlined
above to potential researchers interested in working in this area. We have preferred
to concentrate on a few central themes than to discuss a large number of topics peri-
pherally. One of the obvious reasons is the time constraint. Upon specific instructions
from the sponsors, we have tried to keep the level as elementary as these concepts
permit.

Exactly an year ago, I was attending a conference on Novikov conjecture at the
Indian Statistical Institute (ISI) Calcutta. Due to the prevalent disturbed atmosphere in
the city, we were forced to stay within the ISI campus and enjoy the natural surround-
ings it offered. Parameswaran Sankaran of Madras was my constant companion during
several hours of walks that we took around many beautiful ponds therein. The germ of
the idea to do something like the present conference was born during these walks. It
got ready support from some of the other participants there such as Basudev Datta and
Himadri Mukherjee. Back home at Bombay, I met M. S. Raghunathan at the Tata Insti-
tute of Fundamental Research (TIFR) and was discussing some other matters. As if
reading my mind, he suggested that I should organize an instructional conference on
some theme related to PL-topology. The present form of the conference is a result of
the detailed discussion with colleagues in the department, friends at Bombay Univer-
sity and TIFR.

It gives me great pleasure to place these pre-lecture notes in your hand on the very
first day of the conference. From the point of view of the organizers, preparation of
such notes has many advantages, the details of which I need not go into at present.
We believe that it would also be welcomed by the participants. The notes contain
almost everything that is going to be presented to you during the conference. The
material is the outcome of the year long weekly seminars we had in the department.
Though the notes are generally written by the respective speakers, it would be more
appropriate to call the entire notes a single piece of team-work involving many others
apart from the speakers. I am confident that these notes will prove to be useful to you
during as well as after the conference.

I conclude with some of the key words for this conference: Eulerian Property,
Shallability, Cohen-Macaulayness. During the course of this conference and through
these notes, you will learn what these words mean and much more. We hope that you
will enjoy this journey.

December 5, 1993 Anant R. Shastri


