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Abstract Following Johnsen andVerdure (2013),we can associate to any linear code
C an abstract simplicial complex and in turn, a Stanley-Reisner ring RC . The ring RC

is a standard graded algebra over a field and its projective dimension is precisely the
dimension of C . Thus RC admits a graded minimal free resolution and the resulting
graded Betti numbers are known to determine the generalized Hamming weights
of C . The question of purity of the minimal free resolution of RC was considered
by Ghorpade and Singh (2020) when C is the generalized Reed-Muller code. They
showed that the resolution is pure in some cases and it is not pure in many other
cases. Here we give a complete characterization of the purity of graded minimal free
resolutions of Stanley-Reisner rings associated with generalized Reed-Muller codes
of an arbitrary order.

Keywords Ring theory · Coding theory

1 Introduction

This article concerns a topic that is at the interface of homological aspects of commu-
tative algebra and the theory of linear error-correcting codes. Our motivation comes
from the work of Johnsen and Verdure [11] and the more recent work [8]. In [11],
the notion of Betti numbers of a linear code is introduced. The Betti numbers of
a linear code C of length n are, in fact, the graded Betti numbers of the Stanley-
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Reisner ring RC of the simplicial complex �C on [n] := {1, . . . , n} whose faces
are precisely the subsets {i1, . . . , it } of [n] for which the columns Hi1 , . . . , Hit of a
parity check matrix H of C are linearly independent. In [11], it was shown that the
Betti numbers of a linear code determine its generalized Hamming weights. Further,
Johnsen, Roksvold and Verdure [13] showed that the Betti numbers of a linear code
(and its elongations) determine its generalized weight polynomials and hence the
extended weight enumerators. On the other hand, the work of Jurrius and Pellikaan
[14] shows that the extended weight enumerators of a linear code determine its gen-
eralized weight enumerator. So it is clear that the Betti numbers of a linear code
(and its elongations) are also closely related to several classical parameters of that
code. Thus it is useful to know them explicitly. Computation of these Betti numbers
is in general, a difficult problem, but it becomes easy, by a formula of Herzog and
Kühl [10], when the corresponding minimal free resolutions are pure. An intrinsic
characterization of purity of the graded minimal free resolutions of Stanley-Reisner
rings associated with arbitrary linear codes was obtained in [8]. As a consequence,
known results about the Betti numbers of MDS codes (cf. [11]) and constant weight
codes (cf. [12]) were easily deduced.

One of the most important and widely studied classes of linear codes is that of
Reed-Muller codes. These codes were introduced by Reed [18] in the binary case
and several of their properties were established by Muller [17]; see also [4, pp.
20–38]. We shall consider Reed-Muller codes in the most general sense, as given
by Kasami, Lin and Peterson [15] and by Delsarte, Goethals and MacWilliams [6].
Generalized Hamming weights of (generalized) Reed-Muller codes are explicitly
known, thanks to the work of Heijnen and Pellikaan [9] (see also [2] and [3]). It is,
therefore, natural to ask for an explicit determination of the Betti numbers of Reed-
Muller codes. The problem would be tractable if we know when the graded minimal
free resolutions of Stanley-Reisner rings of simplicial complexes corresponding to
Reed-Muller codes are pure. This question about purity was considered in [8] and
an answer was provided in many, but not all, cases. In this article we build upon the
work in [8] and complete it to give a characterization of purity of gradedminimal free
resolutions of Stanley-Reisner rings associated with arbitrary Reed-Muller codes.

This paper is organized as follows. In Sect. 2, we review (generalized) Reed-
Muller codes and discuss their properties that are relevant to us. Next, in Sect. 3,
the notion of purity of a minimal free resolution is recalled and some key results
in [8], such as the intrinsic characterization mentioned above and results about the
purity or nonpurity of resolutions corresponding to Reed-Muller codes, are stated.
Our main result on a characterization of purity of free resolutions of Stanley-Reisner
rings associated with Reed-Muller codes is also proved here. As a corollary, we give
a characterization of Reed-Muller codes that are MDS codes.
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2 Reed-Muller Codes

Standard references for (generalized) Reed-Muller codes are the book of Assmus
and Key [1] (especially Chap.5) and the seminal paper of Delsarte, Goethals and
MacWilliams [6]. Let us begin by setting some basic notation and terminology.

Fix throughout this paper a prime power q and a finite field Fq with q elements.
Let n, k be integers with 1 ≤ k ≤ n. We write [n, k]q -code to mean a q-ary linear
code of length n and dimension k, i.e., a k-dimensional Fq -linear subspace of Fn

q .
Recall that the Hamming weight of an element c = (c1, . . . , cn) ∈ Fn

q is defined by

wt(c) := |{i ∈ {1, . . . , n} : ci �= 0}|.

The minimum distance of an [n, k]q -code C can be defined by

d(C) := min{wt(c) : c ∈ C}

and if d(C) = d, then C may be referred to as an [n, k, d]q -code. In this case, the
elements of C of Hamming weight d will be referred to as the minimum weight
codewords of C . An [n, k]q -code is said to be nondegenerate if it is not contained in
a coordinate hyperplane of Fn

q . We denote by N the set of nonnegative integers.
Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Define

Vq (r,m) := { f ∈ Fq [X1, . . . , Xm ] : deg( f ) ≤ r and degXi
( f ) < q for i = 1, . . . ,m}.

Note that Vq(r,m) is a Fq -linear subspace of the polynomial ring Fq [X1, . . . , Xm].
Fix an ordering P1, . . . ,Pqm of the elements of Fm

q and consider the evaluation map

Ev : Vq(r,m) → Fqm

q defined by f �→ c f := ( f (P1), . . . , f (Pqm )). (1)

Clearly, Ev is a linear map and its image is a nondegenerate linear code of length qm ;
this code is called the (generalized) Reed-Muller code of order r , and it is denoted
by RMq(r,m). The dimension of RMq(r,m) is given by the following formula that
can be found in Assmus and Key [1, Theorem 5.4.1]:

dim RMq(r,m) =
r∑

s=0

m∑

i=0

(−1)i
(
m

i

)(
s − iq + m − 1

s − iq

)
. (2)

In [8, Eq. (13)], a somewhat simpler formula for the dimension is stated (without
proof). It is not difficult to derive it from (2). However, we give an independent and
direct proof of the simpler formula below.

Lemma 1 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then

http://dx.doi.org/10.1007/978-981-19-3898-6_5
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dimRMq(r,m) =
m∑

i=0

(−1)i
(
m

i

)(
m + r − iq

m

)
. (3)

Proof It is well known that the map Ev given by (1) is injective. This follows, for
instance, from [7, Lemma 2.1]. Also, if E := {(v1, . . . , vm) ∈ Nm : v1 + · · · + vm ≤
r}, then it is easily seen that a basis of Vq(r,m) is given by

B := {Xv1
1 · · · Xvm

m : (v1, . . . , vm) ∈ E and 0 ≤ v j < q for 1 ≤ j ≤ m}.

Let E j := {(v1, . . . , vm) ∈ E : v j ≥ q} for 1 ≤ j ≤ m. The set B is clearly in bijec-
tion with E \ (E1 ∪ · · · ∪ Em). It is elementary and well known that |E | = (m+r

m

)
.

By changing v j to v′
j = v j − q, we also see that |E j | = (m+r−q

m

)
for 1 ≤ j ≤ m, and

more generally, |E j1 ∩ · · · ∩ E ji | = (m+r−iq
m

)
for 1 ≤ j1 < · · · < ji ≤ m. It follows

that dim RMq(r,m) = dim Vq(r,m) = |B|, and this is equal to

|E | − |E1 ∪ · · · ∪ Em | =
(
m + r

m

)
−

m∑

i=1

(−1)i−1
∑

1≤ j1<···< ji≤m

|E j1 ∩ · · · ∩ E ji |

=
(
m + r

m

)
−

m∑

i=1

(−1)i−1

(
m

i

)(
m + r − iq

m

)
.

The last expression is clearly equal to the desired formula in (3).

Remark 1 In case 0 ≤ r < q, formula (3) simplifies to dimRMq(r,m) = (m+r
m

)
.

This can also be seen by noting that the set E j in the proof above is empty for each
j = 1, . . . ,m when r < q. On the other hand, if r = m(q − 1), then the map Ev
given by (1) is also surjective. To see this, write Pν = (aν1, . . . , aνm) and consider

Fν(X1, . . . , Xm) :=
m∏

j=1

(
1 − (X j − aν j )

q−1
)

for ν = 1, . . . , qm . (4)

Note that for any ν ∈ {1, . . . , qm}, the polynomial Fν is in Vq(m(q − 1),m) and
it has the property that Fν(Pν) = 1 and Fν(Pμ) = 0 for any μ ∈ {1, . . . , qm} with
μ �= ν. Hence any λ = (λ1, . . . ,λqm ) ∈ Fqm

q can be written as λ = Ev(F), where
F = λ1F1 + · · · + λqm Fqm . It follows that RMq(m(q − 1),m) = Fqm

q . In particular,
Lemma 1 yields the following curious identity:

m∑

i=0

(−1)i
(
m

i

)(
(m − i)q

m

)
= qm or equivalently,

m∑

i=0

(−1)i
(
m

i

)(
iq

m

)
= (−q)m .

It may be interesting to obtain a direct proof of the above identity.

We now recall the following important result about the minimum distance and the
minimum weight codewords of Reed-Muller codes.
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Proposition 1 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then
there are unique t, s ∈ N such that

r = t (q − 1) + s and 0 ≤ s ≤ q − 2. (5)

With t, s as above, the minimum distance of RMq(r,m) is given by

d = (q − s)qm−t−1. (6)

Further, if f ∈ Vq(r,m) is given by

f (X1, . . . , Xm) = ω0

t∏

i=1

(
1 − (Xi − ωi )

q−1
) s∏

j=1

(Xt+1 − ω′
j ) (7)

where ω0,ω1, . . . ,ωt ∈ Fq with ω0 �= 0 and ω′
1, . . . ,ω

′
s are any distinct elements

of Fq , then Ev( f ) is a minimum weight codeword of RMq(r,m). Moreover, every
minimum weight codeword of RMq(r,m) is of the form Ev(g), where g is obtained
from a polynomial of the form (7) by substituting for X1, . . . , Xt+1 any (t + 1)
linearly independent linear forms in Fq [X1, . . . , Xm].
Proof The formula in (6) follows from [6, Theorem 2.6.1] and [15, Theorem 5]. The
assertion about the minimum weight codewords is proved in [6, Theorem 2.6.3] (see
also [16, Theorem 1]).

We end this section by observing that the Reed-Muller code RMq(r,m) is a
particularly nice code when m is small or when r is either very small or very large.

Lemma 2 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then
RMq(r,m) is an MDS code in each of the following cases: (i) m = 1, (ii) r = 0,
(iii) r = m(q − 1), and (iv) r = m(q − 1) − 1.

Proof (i) If 0 ≤ r < q, then in view of Remark 1 and Proposition 1, we see that
RMq(r, 1) is a [q, r + 1, q − r ]q -code, and hence it is an MDS code.

(ii) Clearly, RMq(0,m) is the one-dimensional code of length qm spanned by the
all-1 vector, and this is evidently an MDS code.

(iii) FromRemark1,RMq(m(q − 1),m) = Fqm

q ,which is obviously anMDScode.
(iv) Suppose r = m(q − 1) − 1. We will show that

RMq(r,m) = �, where � := {
(λ1, . . . ,λqm ) ∈ Fqm

q : λ1 + · · · + λqm = 0
}
. (8)

This would imply that RMq(r,m) is a [qm, qm − 1, 2]q -code, and hence an MDS
code. To prove (8), first note that themonomial Xq−1

1 · · · Xq−1
m is in Vq(m(q − 1),m),

but not in the subspace Vq(r,m). Since we have seen in Remark 1 that Ev gives an
isomorphism of Vq(m(q − 1),m) ontoFqm

q , it follows that dimFq Vq(r,m) ≤ qm − 1.
Hence it suffices to show that � ⊆ RMq(r,m). To this end, we assume without loss
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of generality that the ordering P1, . . . ,Pqm of points of Fm
q is such that P1 is the

origin. For 1 ≤ ν ≤ qm , consider the polynomial Fν given by (4), and write

Fν = F1 + Gν, where F1 =
m∏

j=1

(
1 − Xq−1

j

)
and Gν := Fν − F1.

Note that Gν ∈ Vq(r,m) for each ν = 1, . . . , qm . Also, F1(P1) = 1 and F1(Pμ) = 0
for 2 ≤ μ ≤ qm . So in view of the properties of Fν noted in Remark 1, we see that
G1(P1) = 0 while Gν(P1) = −1 and Gν(Pν) = 1 for 2 ≤ ν ≤ qm , and moreover,
Gν(Pμ) = 0 for 2 ≤ ν,μ ≤ qm with ν �= μ. Thus given anyλ = (λ1, . . . ,λqm ) ∈ �,
the polynomial G := ∑qm

ν=1 λνGν ∈ Vq(r,m) and Ev(G) = λ. This proves (8).

Remark 2 In [8, pp. 8–9], the results in Lemma 2, especially (iv), were deduced
by appealing to the structure of duals of Reed-Muller codes. Here we have chosen
to give a more direct and elementary proof. We remark also that the converse of the
result in Lemma 2 is true. An indirect proof of this is given later; see Corollary 1.

3 Characterizations of Purity

Let n, k ∈ N with 1 ≤ k ≤ n and let C be an [n, k]q -code. We have explained in the
introduction how one can associate an abstract simplicial complex �C to C . Note
that this complex is independent of the choice of a parity check matrix of C . Let
R := Fq [x1, . . . , xn] denote the polynomial ring in n variables over Fq and let IC
denote the ideal of R generated by the monomials xi1 · · · xit where {i1, . . . , it } vary
over nonfaces, i.e., over subsets of [n] := {1, . . . , n} that are not in�C . The Stanley-
Reisner ring RC corresponding to �C (with the base field1 Fq ) is, by definition, the
quotient R/IC . We call RC the Stanley-Reisner ring associated to C . Clearly, RC is
a finitely generated standard graded Fq -algebra and as noted in [8, Sect. 1], RC is
Cohen-Macaulay and it admits an N-graded minimal free resolution of the form

Fk −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ R� −→ 0 (9)

where F0 = R and each Fi is a graded free R-module of the form

Fi =
⊕

j∈Z
R(− j)βi, j for i = 0, 1, . . . , k. (10)

1 It is only for the sake of definitiveness that we take the base field to be Fq . We could in fact
replace Fq by an arbitrary field. Indeed, it is known that for Stanely-Reisner rings associated with
linear codes, and more generally, matroids, the Betti numbers are independent of the choice of a
base field; see, e.g., [11, Remark 1]. On the other hand, there are examples of simplicial complexes
for which the Betti numbers of their Stanely-Reisner rings do depend on the choice of the base
field even when the complex is shellable (see, e.g., [19, Examples 3.3, 3.4]) or stronger still, vertex
decomposable (see, e.g., [5, p. 567]).
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The nonnegative integers βi, j thus obtained are called the Betti numbers of C . The
resolution (9) is said to be pure of type (d0, d1, . . . , dk) if for each i = 0, 1, . . . , k,
the Betti number βi, j is nonzero if and only if j = di . If, in addition, d1, . . . , dk are
consecutive, then the resolution is said to be linear. We remark that the Betti numbers
βi, j as well as the properties of purity and linearity depend only on C and they are
independent of the choice of a minimal free resolution of RC .

The result below is due to Johnsen and Verdure [11]; see also [8, Corollary 3.9].

Proposition 2 Let C be an [n, k]q -code. Then C is an MDS code if and only if C is
nondegenerate and every N-graded minimal free resolution of RC is linear.

Wewill now recall the intrinsic characterization of purity given in [8] and alluded
to in the Introduction. But first, we review some relevant terminology about codes.

Let n, k and C be as above. By a subcode of C we mean a Fq -linear subspace of
C . Given a subcode D of C , the support of D and the weight of D are defined by

Supp(D) := {i ∈ [n] : ∃(c1, . . . , cn) ∈ D with ci �= 0} and wt(D) := |Supp(D)|.

Given any c ∈ C , we often denote by Supp(c) and wt(c) the support of 〈c〉 and the
weight of 〈c〉, respectively, where 〈c〉 denotes the subcode of C spanned by c. For
1 ≤ i ≤ k, the i th generalized Hamming weight of C is defined by

di (C) := min{wt(D) : D a subcode of C with dim D = i}.

It is obvious that d1(C) = d(C) and it is well known that di (C) < di+1(C) for 1 ≤
i ≤ k − 1; see, e.g., [20, Theorem 1]. Note that C is nondegenerate if and only if
dk(C) = n. An i-dimensional subcode D of C is said to be i -minimal if its support
is minimal among the supports of all i-dimensional subcodes of C , i.e., Supp(D′) �
Supp(D) for any i-dimensional subcode D′ of C , with D′ �= D.

We are now ready to state (an equivalent version of) the intrinsic characterization
of purity given in [8, Theorem 3.6].

Proposition 3 Let C be an [n, k]q -code and let d1 < · · · < dk be its generalized
Hamming weights. Also, let RC be the Stanley-Reisner ring associated to C. Then
every N-graded minimal free resolution of RC is not pure if and only if for some
i ∈ {1, . . . , k}, there exists an i-minimal subcode Di of C such that wt(Di ) > di .

We summarize below the results in [8] about the purity and nonpurity of graded
minimal free resolutions of Stanley-Reisner rings associated to Reed-Muller codes.

Proposition 4 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Also,
let t, s be unique nonnegative integers satisfying (5). Then every N-graded minimal
free resolution of the Stanley-Reisner ring associated to RMq(r,m) is

(i) pure if r = 1,
(ii) not pure if q = 2, m ≥ 4, and 1 < r ≤ m − 2, and
(iii) not pure if m ≥ 2, 1 < r < m(q − 1) − 1, and s �= 1.
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Proof The assertion in (i) is proved in [8, Theorem 4.1], while the assertions in (ii)
and (iii) are proved in [8, Proposition 4.4] and [8, Theorem 4.11], respectively.

The values of q,m, r not covered by (i)–(iv) in Lemma 2 and (i)–(iii) in Propo-
sition 4 are precisely q ≥ 3, m ≥ 2, and r = q, 2q − 1, . . . , (m − 1)q − (m − 2),
except that (m − 1)q − (m − 2) is excluded if q = 3. This is taken care of by the
following.

Lemma 3 Let m, r be integers such that m ≥ 2 and 1 < r < m(q − 1) − 1. Also
let t, s be unique integers satisfying (5). Assume that q ≥ 3 and also that s = 1. Then
every N-graded minimal free resolution of the Stanley-Reisner ring associated to the
Reed-Muller code RMq(r,m) is not pure.

Proof The conditions on m, r and our assumptions imply that 1 ≤ t ≤ m − 1 and
moreover if q = 3, then 1 ≤ t ≤ m − 2. Also note that by Proposition 1, the mini-
mum distance ofRMq(r,m) is given by d = (q − 1)qm−t−1.Wewill divide the proof
into two cases according to q > 3 and q = 3.

Case 1. q > 3.
Write Fq = {ω1, . . . ,ωq}, and let ω′

1,ω
′
2 be two distinct elements of Fq . Define

Q(X1, . . . , Xm) :=
(

t−1∏

i=1

(Xq−1
i − 1)

) ⎛

⎝
q∏

j=3

(Xt − ω j )

⎞

⎠
(

2∏

k=1

(Xt+1 − ω′
k)

)
.

Then deg(Q) = (t − 1)(q − 1) + (q − 2) + 2 = (t − 1)(q − 1) + q = t (q − 1) +
1 = r , and thus Q ∈ Vq(r,m). For i = 1, 2, let

Ai :=
{
a = (a1, . . . , am) ∈ Fm

q : a1 = · · · = at−1 = 0, at = ωi and at+1 /∈ {ω′
1, ω

′
2}

}
.

Then Supp(cQ) = A1 ∪ A2. Observe that A1 and A2 are disjoint. Consequently,

wt(cQ) = 2(q − 2)qm−t−1 and therefore wt(cQ) > d = (q − 1)qm−t−1,

where the last inequality follows since q > 3. Thus cQ is not aminimumweight code-
word. If the one-dimensional subcode 〈cQ〉 is 1-minimal, then Proposition 3 would
imply the desired result. Suppose 〈cQ〉 is not 1-minimal. Then there is F ∈ Vq(r,m)

such that Supp(cF ) � Supp(cQ) and 〈cF 〉 is 1-minimal. If cF is not a minimum
weight codeword of RMq(d,m), then again Proposition 3 implies the desired result.
Thus, suppose cF is a minimum weight codeword of RMq(d,m). By Proposition 1,
F must be of the form

F(X1, . . . , Xm) = ω0

(
t∏

i=1

(1 − Lq−1
i )

)
(Lt+1 − ω) (11)

for some ω0,ω ∈ Fq with ω0 �= 0 and some linearly independent linear polynomials
L1, . . . , Lt+1 in Fq [X1, . . . , Xm], with Lt+1 homogeneous (while L1, . . . , Lt are not
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necessarily homogeneous). Note that Supp(cF ) = A′, where

A′ := {
a = (a1, . . . , am) ∈ Fm

q : Li (a) = 0 for 1 ≤ i ≤ t and Lt+1(a) �= ω
}
.

(12)
Since Supp(cF ) ⊂ Supp(cQ), we obtain A′ ⊂ A1 ∪ A2. We now assert that A′ is
disjoint from one of the Ai . Indeed, if the assertion is not true, then we can choose
Pi ∈ A′ ∩ Ai for i = 1, 2. Write bi := Lt+1(Pi ) for i = 1, 2. Since Pi ∈ A′, we see
that bi �= ω for i = 1, 2. Now pickλ ∈ Fq such thatλ �= 0, 1 and (1 − λ)b1 + λb2 �=
ω, which is possible because q ≥ 4.2 Define Pλ := (1 − λ)P1 + λP2. Then Pλ ∈ A′,
and this contradicts the inclusion A′ ⊂ A1 ∪ A2 because the t th coordinate of Pλ is
neither ω1 nor ω2. This proves the above assertion. Thus Supp(cF ) = A′ ⊆ Ai for
some i . But then (q − 1)qm−t−1 ≤ (q − 2)qm−t−1, which is a contradiction. This
proves the claim and hence the desired result when q > 3.

Case 2. q = 3.
In this case 1 ≤ t ≤ m − 2, as noted earlier. Write Fq = {ω1,ω2,ω3}. Define

Q(X1, . . . , Xm) :=
( t−1∏

i=1

(Xq−1
i − 1)

)
(Xt − ω3)(Xt+1 − ω3)(Xt+2 − ω3).

Then deg(Q) = (t − 1)(q − 1) + 3 = t (q − 1) + 1 = r , since q = 3, and so Q ∈
Vq(r,m). Let E := {

a = (a1, . . . , am) ∈ Fm
q : a1 = · · · = at−1 = 0

}
, and for i =

1, 2, let

Ai := {a = (a1, . . . , am) ∈ E : at = ωi and at+1, at+2 ∈ {ω1,ω2}} ,

A′
i := {a = (a1, . . . , am) ∈ E : at+1 = ωi and at , at+2 ∈ {ω1,ω2}} , and

A′′
i := {a = (a1, . . . , am) ∈ E : at+2 = ωi and at , at+1 ∈ {ω1,ω2}} .

Then Supp(cQ) = A1 ∪ A2 = A′
1 ∪ A′

2 = A′′
1 ∪ A′′

2 and wt(cQ) = 23qm−t−2. Note
that wt(cQ) > (q − 1)qm−t−1, since q = 3. Thus, as in Case 1, it suffices to show
that there does not exist any F ∈ Vq(r,m) such that cF is aminimumweight codeword
and Supp(cF ) � Supp(cQ). Suppose, if possible, there is such F . Then it must be of
the form (11), and its support is given by the set A′ in (12). Now write Fq \ {ω} =
{u1, u2}, and for i = 1, 2, let

Bi := {
a = (a1, . . . , am) ∈ Fm

q : Li (a) = 0 for 1 ≤ i ≤ t and Lt+1(a) = ui
}
.

Note that each Bi is an affine space (i.e., a translate of a linear subspace) in Fm
q

and Supp(cF ) = B1 ∪ B2. Thus B1 ∪ B2 ⊂ A1 ∪ A2. We claim that B1 ⊆ Ai for
some i ∈ {1, 2}. Indeed, if this is not true, then we can find Pi ∈ B1 ∩ Ai for each
i = 1, 2. Since q = 3, we can choose λ ∈ Fq such that λ �= 0, 1. Consider Pλ :=
(1 − λ)P1 + λP2. Since B1 is an affine space, Pλ ∈ B1. On the other hand, the t th

2 If b1 = b2, then the only condition on λ is that λ �= 0, 1, whereas if b1 �= b2, then it suffices to
choose λ ∈ Fq such that λ �= 0, 1 and λ �= (ω − b1)/(b2 − b1).
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coordinate of Pλ is neither ω1 nor ω2, and hence Pλ /∈ A1 ∪ A2. This contradicts the
inclusion B1 ⊂ A1 ∪ A2, and so the claim is proved. In a similar manner, we see that
B1 ⊆ A′

j and B1 ⊆ A′′
k for some j, k ∈ {1, 2}. It follows that B1 ⊆ Ai ∩ A′

j ∩ A′′
k .

But clearly, |B1| = qm−t−1 and |Ai ∩ A′
j ∩ A′′

k | = qm−t−2. So we obtain qm−t−1 ≤
qm−t−2, which is a contradiction. This completes the proof.

We are now ready to prove the main result of this article.

Theorem 1 Let m, r ∈ N be such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then every
N-graded minimal free resolution of the Stanley-Reisner ring associated to the Reed-
Muller code RMq(r,m) is pure if and only if m = 1 or r ≤ 1 or r ≥ m(q − 1) − 1.

Proof Follows from Lemma 2, Propositions 2, 4, and Lemma 3.

As an application, we show that the converse of the result in Lemma 2 is true.

Corollary 1 Let m, r ∈ N be such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then the
Reed-Muller code RMq(r,m) is an MDS code if and only if m = 1 or r = 0 or
r ≥ m(q − 1) − 1.

Proof If m = 1 or r = 0 or r ≥ m(q − 1) − 1, then by Lemma 2, RMq(r,m) is an
MDS code. Conversely, supposeRMq(r,m) is anMDS code. Then by Proposition 2,
every N-graded minimal free resolution of its Stanley-Reisner ring is pure. So by
Theorem 1, we must have m = 1 or r ≤ 1 or r ≥ m(q − 1) − 1. If m ≥ 2, then
the case r = 1 is ruled out because by [8, Theorem 4.1], the generalized Hamming
weights (which coincide with the “shifts” in the resolution) of RMq(1,m) are given
by di = qm − �qm−i� for 1 ≤ i ≤ m + 1, and these are clearly nonconsecutive if
m ≥ 2, and so by Proposition 2, RMq(1,m) cannot be an MDS code if m ≥ 2. Thus
we must have m = 1 or r = 0 or r ≥ m(q − 1) − 1.
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