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We consider the minimal free resolutions of Stanley-Reisner rings associated to linear 
codes and give an intrinsic characterization of linear codes having a pure resolution. 
We use this characterization to quickly deduce the minimal free resolutions of 
Stanley-Reisner rings associated to MDS codes as well as constant weight codes. We 
also deduce that the minimal free resolutions of Stanley-Reisner rings of first order 
Reed-Muller codes are pure, and explicitly describe the Betti numbers. Further, we 
show that in the case of higher order Reed-Muller codes, the minimal free resolutions 
are almost always not pure. The nature of the minimal free resolution of Stanley-
Reisner rings corresponding to several classes of two-weight codes, besides the first 
order Reed-Muller codes, is also determined.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the interesting developments in algebraic coding theory in the recent past is the association 
of a fine set of invariants, called Betti numbers, to linear error correcting codes. This is due to Johnsen 
and Verdure [16] and their idea is as follows. Some basic terminology used below is reviewed in the next 
section.

Let C be a q-ary linear code of length n and dimension k and let H be a parity check matrix of C. The 
vector matroid corresponding to H is a pure simplicial complex, say Δ, and its Stanley-Reisner ring RΔ
over Fq is a finitely generated standard graded Fq-algebra of dimension n − k. As such it has a minimal 
graded free resolution. Moreover, Δ is shellable, thanks to a classical result that goes back to Provan [22]
(see also Björner [4, §7.3]). Hence RΔ is Cohen-Macaulay. (See, for example, [13, Ch. 6, §2].) So by the 
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Auslander-Buchsbaum formula, the length of any minimal free resolution of RΔ is n − (n − k) = k, and it 
looks like

Fk−→Fk−1 −→ · · · −→ F1 −→ F0 −→ RΔ −→ 0 (1)

where F0 = R := Fq[X1, . . . , Xn] and each Fi is a graded free R-module of the form

Fi =
⊕
j∈Z

R(−j)βi,j for i = 0, 1, . . . , k. (2)

The nonnegative integers βi,j thus obtained depend only on C (and not on the choice of H or the minimal 
free resolution of RΔ), and are the Betti numbers of C. Thus we may refer to (1) as a (graded minimal free) 
resolution of C. Such a resolution is said to be pure of type (d0, d1, . . . , dk) if for each i = 0, 1, . . . , k, the 
Betti number βi,j is nonzero if and only if j = di. If, in addition, d0, d1, . . . , dk are consecutive, then the 
resolution is said to be linear. Johnsen and Verdure [16] showed that the Betti numbers of a code C contain 
information about all the generalized Hamming weights di(C) of C. In fact, they showed that

di(C) = min{j : βi,j �= 0} for i = 1, . . . , k. (3)

More recent work of Johnsen, Roksvold and Verdure [18] shows that the Betti numbers of C and its 
elongations determine the so-called generalized weight polynomial of C. Thus, if we combine this with 
the results of Jurrius and Pellikaan [19], then we obtain a direct relation between the generalized weight 
enumerator of C and the Betti numbers of C and of its elongations.

It is clear therefore that explicit determination of Betti numbers of codes would be useful and interesting. 
On the other hand, it is usually a hard problem, except in some special cases. The simplest class of codes 
for which Betti numbers are completely determined is that of MDS codes where the minimal free resolution 
is linear. The next case is that of simplex codes or dual Hamming codes, which are essentially the prototype 
of constant weight codes (indeed, by a classical result of Bonisoli [6], every constant weight code is a 
concatenation of simplex codes, possibly with added 0-coordinates). For such codes, the Betti numbers were 
explicitly determined by Johnsen and Verdure in another paper [17]. In this case, it turns out that the 
resolution is pure, although not necessarily linear.

In general, Betti numbers of pure resolutions are relatively easy to determine, thanks to a formula of 
Herzog and Kühl [14], which in the case of linear codes provides an expression for the Betti numbers in 
terms of the generalized Hamming weights. So the result for simplex codes can be deduced from it if one 
knows that their (minimal free) resolutions are necessarily pure. Partly with this in view, we consider the 
question of obtaining an intrinsic characterization for a linear code to have a pure resolution. A complete 
characterization is given in Theorem 3.6. This is then applied to show that the first order Reed-Muller codes 
have a pure resolution and all their Betti numbers can be described explicitly. On the other hand, we show 
that Reed-Muller codes of order 2 or more do not, in general, have a pure resolution. As a corollary, it is 
seen that the property of admitting a pure resolution is not preserved when passing to the dual.

The first order Reed-Muller codes are examples of two-weight codes, and it is natural to ask if a similar 
result holds for every two-weight code. However, unlike constant weight codes, the structure of two-weight 
codes is far more complicated and it is a topic of considerable research in coding theory and finite projective 
geometry. We refer to the survey of Calderbank and Kantor [8] and the references therein for a variety of 
examples of two-weight codes. We also take up the question of determining the Betti numbers of many of 
these codes. It is seen that the resolution is not always pure and thus we can not appeal to the Herzog-Kühl 
formula. Nonetheless, we succeed in determining the Betti numbers of many two-weight codes, partly by 
using a set of equations due to Boij and Söderberg [5]. It appears that the technique of Boij-Söderberg 
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equations used here could be fruitful in the determination of Betti numbers of many important classes of 
linear codes.

We remark that although our results on the Betti numbers of simplex and first order Reed-Muller codes 
using the Herzog-Kühl formula were obtained independently in early 2015, Trygve Johnsen [15] has informed 
us that similar formulas are obtained in the Ph.D. thesis of Armenoff [1] and the Master’s thesis of Karpova 
[21]. In any case, our emphasis here is on the general characterization of purity, applications to Reed-Muller 
codes that are not only of first order, but also of higher order, and the determination of Betti numbers of 
many two-weight codes.

2. Preliminaries

Fix, throughout this paper, positive integers n, k with k ≤ n and a finite field Fq with q elements. We 
denote by [n] the set {1, . . . , n} of first n positive integers. Also, 2[n] denotes the set of all subsets of [n]. 
For any finite set σ, we denote by |σ| the cardinality of σ. By a [n, k]q-code, we shall mean a q-ary linear 
code of length n and dimension k, i.e., a k-dimensional subspace of Fn

q .

2.1. Codes and matroids

Let C be a [n, k]q-code and let H be a parity check matrix of C. For i ∈ [n], let Hi denote the i-th column 
of H. Define

Δ := {σ ∈ 2[n] : {Hi : i ∈ σ} is linearly independent over Fq}.

The ordered pair ([n], Δ) is a matroid, and we call it the matroid associated to the code C. Elements of 
Δ are called independent sets of this matroid. A maximal independent set in Δ is called a basis of the 
matroid. It is well-known that every basis of a matroid has the same cardinality and this number is called 
the rank of the matroid. If σ ⊆ [n] and if we let Δ|σ := {τ ∈ Δ : τ ⊆ σ}, then (σ, Δ|σ) is a matroid, called 
the restriction of the matroid ([n], Δ) to σ; the rank of this restricted matroid is called the rank of σ and 
denoted by r(σ); the difference |σ| − r(σ) is denoted by η(σ) and called the nullity of σ. Evidently, the rank 
of the matroid ([n], Δ) is the rank of H, which is n − k, and so the nullity of any σ ⊆ [n] ranges from 0 to 
k. For 0 ≤ i ≤ k, we define

Ni := {σ ⊆ [n] : η(σ) = i}.

2.2. Stanley-Reisner rings and Betti numbers

Suppose ([n], Δ) is as in the previous subsection. Then Δ is a simplicial complex. We denote by IΔ the 
ideal of the polynomial ring R := Fq[X1, . . . , Xn] generated by all monomials of the form 

∏
i∈τ Xi, where 

τ ∈ 2[n] \ Δ. The quotient RΔ = R/IΔ is called the Stanley-Reisner ring or the face ring associated to Δ. 
As noted in the Introduction, RΔ has a minimal free resolution of the form (1). Furthermore, since IΔ is a 
monomial ideal generated by squarefree monomials, we can choose the free R-modules Fi in (1) to be not 
only Z-graded as in (2), but also Zn-graded so as to write

Fi =
⊕
σ∈Zn

R(−σ)βi,σ for i = 1, . . . , k. (4)

In fact, the Zn-graded Betti numbers βi,σ have the property that βi,σ = 0 unless the n-tuple σ = (σ1, . . . , σn)
has all its coordinates in {0, 1}. Such n-tuples in {0, 1}n can be naturally identified with subsets of [n] where 
(σ1, . . . , σn) corresponds to the subset {i ∈ [n] : σi = 1} of [n] that we shall also denote by σ. Thus, we may 
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index the direct sum in (4) by σ ∈ 2[n]. The relation between the Z-graded and Zn-graded Betti numbers 
is simply that

βi,j =
∑
|σ|=j

βi,σ for i = 1, . . . , k. (5)

Johnsen and Verdure [16] proved an important relationship between the Zn-graded Betti numbers and 
subsets of a given nullity. Namely, for 1 ≤ i ≤ k and σ ⊆ [n],

βi,σ �= 0 ⇐⇒ σ ∈ Ni and σ is a minimal element of Ni. (6)

This result, which can perhaps be traced back to Stanley [23, p. 59], will be very useful for us in the sequel. 
Note also that if μ1, . . . , μt are squarefree monomials in R which constitute a minimal set of generators of 
IΔ and if σj ∈ 2[n] denotes the support of μj (so that μj =

∏
i∈σj

Xi) for 1 ≤ j ≤ t, then without loss of 
generality, we can take the first free R-module in (4) to be

F1 =
t⊕

j=1
R(−σj). (7)

Finally, we recall the following general result, which was alluded to in the Introduction. A proof can be 
found in [5]. We note that a graded module M over a polynomial ring R having projective dimension k
will have a minimal free resolution such as (1) with RΔ replaced by M , except in this case F0 may not 
be equal to R. In general, we let βi := rankR(Fi) =

∑
j βi,j . Note that if M has a pure resolution of type 

(d0, d1, . . . , dk), then βi := βi,di
for i = 0, 1, . . . , k.

Theorem 2.1 (Boij-Söderberg). Let R be the polynomial ring over a field and let M be a graded R-module 
of finite projective dimension k. Then M is Cohen-Macaulay if and only if its graded Betti numbers satisfy 
the equations

k∑
i=0

∑
j∈Z

(−1)ij�βi,j = 0 for � = 0, . . . , k − 1. (8)

In particular, if the minimal free resolution of M is pure of type (d0, d1, . . . , dk), then (8) implies the 
Herzog-Kühl formula [14]:

βi = β0

∣∣∣∣∣∣
∏
j �=i

dj
(dj − di)

∣∣∣∣∣∣ for i = 1, . . . , k, (9)

As noted in the Introduction, Stanley-Reisner rings associated to linear codes (or more generally, simpli-
cial complexes corresponding to matroids) are Cohen-Macaulay, and hence the above theorem is applicable; 
moreover, in this case, β0 = 1. If a [n, k]q-code C has a pure resolution of type (d0, . . . , dk), then d0 = 0
and for 1 ≤ i ≤ k, di is precisely the i-th generalized Hamming weight of C, thanks to (3); we will refer to 
βi = βi,di

as the Betti numbers of C in this case.

3. Pure resolution of linear codes

In this section we will give a characterization of the purity of the resolution of the Stanley-Reisner ring 
associated to a linear code in terms of the support weight of certain subcodes of the code. We will then 
outline some simple applications.



S.R. Ghorpade, P. Singh / Journal of Pure and Applied Algebra 224 (2020) 106385 5
Let C be a [n, k]q-code and let H = [H1 . . . Hn] be a parity check matrix of C, where, as before, Hi

denotes the ith column of H. For any subset σ of [n], define S(σ) to be the subspace 〈Hi : i ∈ σ〉 of Fn−k
q

spanned by the columns of H indexed by σ. Note that r(σ) = dimS(σ). Let us also define a related subspace 
of Fn

q by

Ŝ(σ) := {x = (x1, . . . , xn) ∈ Fn
q : xi = 0 for i /∈ σ and

∑
i∈σ

xiHi = 0}.

Recall that for any subcode D of C, i.e., a subspace D of C, the support of D is the set Supp(D) of all 
i ∈ [n] for which there is x = (x1, . . . , xn) ∈ D with xi �= 0; further, we let wt(D) := |Supp(D)|, and call 
this the weight of D.

Lemma 3.1. Let σ ⊆ [n]. Then Ŝ(σ) is a subcode of C and Supp(Ŝ(σ)) ⊆ σ.

Proof. Since C = {x = (x1, . . . , xn) ∈ Fn
q :

∑n
i=1 xiHi = 0}, it is clear that Ŝ(σ) is a subcode of C. The 

inclusion Supp(Ŝ(σ)) ⊆ σ is obvious. �
For any σ ⊆ [n], let Fσ

q denote the set of all ordered |σ|-tuples (xi)i∈σ of elements of Fq indexed by σ. 
Consider the map

φσ : Fσ
q → S(σ) defined by φσ(x) =

∑
i∈σ

xiHi. (10)

Clearly φσ is a surjective Fq-linear map.

Lemma 3.2. Let σ ⊆ [n] and let φσ be as in (10). Then kerφσ is isomorphic (as a Fq-vector space) to Ŝ(σ). 
Consequently,

dimS(σ) = |σ| − dim Ŝ(σ). (11)

Proof. Consider the map ψ : Fσ
q −→ Fn

q given by ψ(x) = (v1, v2, . . . , vn), where

vi =
{
xi if i ∈ σ,

0 otherwise.

It is easily seen that the restriction of ψ to kerφσ gives an isomorphism of kerφσ onto Ŝ(σ). The second 
assertion follows from the Rank-Nullity theorem. �

For 0 ≤ i ≤ k, let Gi(C) denote the Grassmannian of all i-dimensional subspaces of C. We call D ∈ Gi(C)
an i-minimal subcode of C if Supp(D) is minimal among the supports of all i-dimensional subcodes of C, 
i.e., Supp(D′) � Supp(D) for any D′ ∈ Gi(C) with D′ �= D. We let

Di = the set of all i-minimal subcodes of C.

Note that if i = 0, then the only element of Gi(C) is {0}, and its support is ∅, which is clearly i-minimal. 
Moreover, r(∅) = 0 = |∅|, and thus Supp({0}) ∈ N0. In fact, a more general result holds. Recall (from § 2.1) 
that Ni denotes the set of all subsets of [n] of nullity i.

Proposition 3.3. Suppose 0 ≤ i ≤ k and D ∈ Di. Then Supp(D) ∈ Ni.
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Proof. Let σ := Supp(D). Then for any x ∈ D, clearly xi = 0 for all i ∈ [n] with i /∈ σ. Also, since D ⊆ C, 
we see that 

∑
xiHi = 0 for each x = (x1, . . . , xn) ∈ D. It follows that D ⊆ Ŝ(σ). In particular, dim Ŝ(σ) ≥ i. 

Further, by Lemma 3.1,

σ = supp(D) ⊆ supp(Ŝ(σ)) ⊆ σ.

Therefore supp(Ŝ(σ)) = σ. In case dim(Ŝ(σ)) > i, we can choose some j ∈ σ and observe that {x ∈ Ŝ(σ) :
xj = 0} is a subspace of dimension dim Ŝ(σ) −1, and its support is contained in σ \{j}. This can be used to 
construct an i-dimensional subcode D′ of Ŝ(σ) with support a proper subset of σ. But then the minimality 
of the support of D is contradicted. It follows that dim Ŝ(σ) = i, and hence D = Ŝ(σ). Now equation (11)
shows that r(σ) = |σ| − i, that is, σ ∈ Ni. �

It turns out that a partial converse of the above proposition is also true.

Proposition 3.4. Suppose 0 ≤ i ≤ k and σ is a minimal element of Ni (with respect to inclusion). Then 
there exists D ∈ Di such that σ = Supp(D).

Proof. Since σ ∈ Ni, we see that dimS(σ) = r(σ) = |σ| − i. Hence, equation (11) implies that dim Ŝ(σ) = i. 
Let D := Ŝ(σ) and σ′ := Supp(D). Then D is an i-dimensional subcode of C and by Lemma 3.1, σ′ ⊆ σ. 
We claim that D ∈ Di. To see this, assume the contrary. Then there exists D′ ∈ Gi(C) with D′ �= D such 
that Supp(D′) � σ′. Replacing D′ by an i-dimensional subcode with smaller support, if necessary, we may 
assume that D′ is i-minimal. But then by Proposition 3.3, Supp(D′) ∈ Ni, which contradicts the minimality 
of σ in Ni. Thus, D ∈ Di. �
Corollary 3.5. Suppose 0 ≤ i ≤ k and σ ⊆ [n]. Then σ is a minimal element of Ni if and only if there exists 
an i-minimal subcode D of C with Supp(D) = σ.

Proof. Follows from Propositions 3.3 and 3.4. �
Theorem 3.6. Let C be an [n, k]q code and d1 < · · · < dk its generalized Hamming weights. Then any N-
graded minimal free resolution of C is pure if and only if for each i = 1, . . . , k, all the i-minimal subcodes 
of C have support weight di.

Proof. From (6) and Corollary 3.5, we see that for 1 ≤ i ≤ k and σ ⊆ [n],

βi,σ �= 0 ⇐⇒ σ = Supp(D) for some D ∈ Di. (12)

Thus, the desired result follows from (3) and (5). �
Corollary 3.7. The Betti numbers at the first step of a [n, k]q-code C are given by

β1,j = |{D ∈ D1 : wt(D) = j}| for any nonnegative integer j.

Proof. Follows from (7) and (12). �
Remark 3.8. Let C be an [n, k]q code and h a positive integer ≤ k. Given a resolution of C, say (1), by its 
left part after h steps, we mean the exact sequence

Fk −→ Fk−1 −→ · · · −→ Fh
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which is a minimal free resolution of the cokernel of the last map Fh+1 −→ Fh. Now let d1 < · · · < dk be 
the generalized Hamming weights of C. It is clear that the proof of Theorem 3.6 also shows that the left 
part after h steps of any N-graded minimal free resolution of C is pure if and only if for each i = h, . . . , k, 
all the i-minimal subcodes of C have support weight di.

We now show how a characterization due to Johnsen and Verdure [16] of MDS codes can be deduced 
from our characterization of purity, and moreover, how the minimal free resolution of an MDS code can 
then be readily determined using the Herzog-Kühl formula.

Corollary 3.9. Let C be a nondegenerate [n, k]q-code and h a positive integer ≤ k. Then C is h-MDS if and 
only if the left part of its resolution after h steps is linear. In particular, C is an MDS code if and only if 
its resolution is linear. Moreover, if C is MDS, then its Betti numbers are given by

βi =
(
n− k + i− 1

i− 1

)(
n

k − i

)
for i = 1, . . . , k.

Proof. Suppose the left part after h steps of a resolution of C is linear. Since C is nondegenerate, dk = n, 
and so from the linearity together with equation (3), we obtain di = n − k + i for h ≤ i ≤ k. Taking i = h, 
we see that C is h-MDS.

Conversely, suppose C is h-MDS. Then from the strict monotonicity of generalized Hamming weights 
[25, Thm. 1], we see that di = n − k + i for h ≤ i ≤ k. Now fix i ∈ {h, . . . , k} and let D be an i-minimal 
subcode of C. Let σ := Supp(D). By Proposition 3.3, σ ∈ Ni. Also, n − k + i = di ≤ |σ|. Consequently, 
n − k ≤ |σ| − i = r(σ) ≤ n − k. It follows that |Supp(D)| = di. Thus, in view of Remark 3.8, we conclude 
that the left part after h steps of any resolution of C is linear.

Now assume that C is MDS. Then, in view of (9), we see that for 1 ≤ i ≤ k,

βi =
∏
j �=i

dj
|dj − di|

=
∏
j �=i

n− k + j

|j − i| =
( i−1∏

j=1

n− k + j

i− j

)( k∏
j=i+1

n− k + j

j − i

)
,

and an easy calculation shows that this is equal to 
(
n−k+i−1

i−1
)(

n
k−i

)
. �

Let us also show how the result of Johnsen and Verdure [17] about the minimal free resolution of constant 
weight codes can be deduced from Theorem 3.6.

Corollary 3.10. Let C be an [n, k]q-code in which each nonzero codeword has constant weight d. Then the 
N-graded resolution of C is pure. Moreover, the generalized Hamming weights (or the shifts) and the Betti 
numbers of C are given by

di = qk−1(qi − 1)
qi−1(q − 1) and βi =

[
k

i

]
q

q
i(i−1)

2 , for i = 1, . . . , k,

where 
[
k
i

]
q

denotes the Gaussian binomial coefficient.

Proof. It is well-known (see, e.g., [20, Thm. 1]) that every j-dimensional subcode of the constant weight 
code C has support weight dj , where

dj = d(qj − 1)
j−1 for j = 1, . . . , k.

q (q − 1)
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Hence, by Theorem 3.6, C has a pure resolution. Evidently, the numbers di defined above are the generalized 
Hamming weights of C. Moreover, for i, j = 1, . . . , k,

di − dj = d(qi−j − 1)
qi−1(q − 1) , if j < i, whereas dj − di = d(qj−i − 1)

qj−1(q − 1) , if j > i.

Hence, the Herzog-Kühl formula (9) implies that for i = 1, . . . , k,

βi =
∏
j �=i

dj
|dj − di|

=
( i−1∏

j=1

qi−j(qj − 1)
qi−j − 1

)( k∏
j=i+1

qj − 1
qj−i − 1

)
= q

i(i−1)
2

[
k

i

]
q

,

where the last equality follows by noting that for i = 1, . . . , k,

[
k

i

]
q

=
[

k

k − i

]
q

= (qk − 1)(qk−1 − 1) · · · (qi+1 − 1)
(qk−i − 1)(qk−i−1 − 1) · · · (q − 1) =

k∏
j=i+1

qj − 1
qj−i − 1 .

This proves the desired result. �
4. Reed-Muller codes

In this section we consider generalized Reed-Muller codes and prove that the resolution of the first order 
Reed-Muller code is pure, whereas for other Reed-Muller codes, it is non-pure. Let us begin by recalling the 
construction of (generalized) Reed-Muller codes. Fix integers r, m such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). 
Define

Vq(r,m) = {f ∈ Fq[X1, . . . , Xm] : deg f ≤ r and degXi
f < q for i = 1, . . . ,m}.

Fix an ordering P1, . . . , Pqm of the elements of Fm
q . Consider the evaluation map

Ev : Vq(r,m) → Fqm

q defined by f → cf := (f(P1), . . . , f(Pqm)) .

The image of Ev is called the generalized Reed-Muller code of order r, and we denote it by RMq(r, m). It 
is well-known that RMq(r, m) is an [n, k, d]q-code, with

n = qm, k =
m∑
i=0

(−1)i
(
m

i

)(
m + r − iq

m

)
, and d = (q − s)qm−t−1, (13)

where t, s are unique integers satisfying r = t(q−1) +s and 0 ≤ s ≤ q−2. Further, for any ω0, ω1, . . . , ωt ∈ Fq

with ω0 �= 0 and any distinct ω′
1, . . . , ω

′
s ∈ Fq, the polynomial

f(X1 . . . , Xm) = ω0

t∏
i=1

(1 − (Xi − ωi)q−1)
s∏

j=1
(Xt+1 − ω′

j)

is in Vq(r, m) and Ev(f) is a minimum weight codeword of RMq(r, m). Moreover, up to a (nonhomogeneous) 
linear substitution in X1, . . . , Xm, every minimum weight codeword of RMq(r, m) is of this form; see, e.g., 
Theorems 2.6.2 and 2.6.3 of [10]. It is also well-known (see, e.g., [2, §5.4]) that the dual of RMq(r, m) is 
given by3

3 Strictly speaking, for the formula (14) to be valid, we should note that the definition of RMq(r, m) is meaningful also when 
r = −1 in which case it is the zero code of length qm.
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RMq(r,m)⊥ = RMq(r⊥,m) where r⊥ + r + 1 = m(q − 1). (14)

In particular, if r = m(q − 1) − 1, then RMq(r, m) is a MDS code (being the dual of RMq(0, m), which is 
the 1-dimensional code of length qm generated by the all-1 vector). Also if r = m(q − 1), then RMq(r, m)
is a MDS code, being the full space Fm

q . Finally, if m = 1, then RMq(r, m) is a Reed-Solomon code, and 
in particular, a MDS code. Thus, in all these “trivial cases”, RMq(r, m) has a pure, and in fact, linear, 
resolution. The following result deals with the first nontrivial case of r = 1.

Theorem 4.1. The N-graded minimal free resolution of the first order Reed-Muller code RMq(1, m) is pure 
and is given by

R(−dm+1)βm+1−→R(−dm)βm −→ · · · −→ R(−d1)β1 −→ R

where di = qm − �qm−i� for 1 ≤ i ≤ m + 1, and

βi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q(

i+1
2 )

m−i∏
j=1

qm+1−j − 1
qm+1−i−j − 1 if 1 ≤ i ≤ m,

m∏
j=1

(qj − 1) if i = m + 1.

Proof. First, note that dimRMq(1, m) = m + 1. Let i be a positive integer ≤ m + 1. If i = m + 1, then 
the only i-dimensional subcode of RMq(1, m) is RMq(1, m) itself, and this has support weight qm. Now 
suppose 1 ≤ i ≤ m. Let D be a subcode of RMq(1, m) of dimension i. Then the support weight of D is 
clearly

qm − |Z(f1, . . . , fi)|,

where f1, . . . , fi ∈ Vq(1, m) are linearly independent polynomials whose images under Ev form a basis of 
D, and where Z(f1, . . . , fi) denotes the set of common zeros in Fm

q of f1, . . . , fi. Now f1 = · · · = fi = 0 is 
a system of i linearly independent (not necessarily homogeneous) linear equations in m variables, and thus 
it has either no solutions (when the system is inconsistent) or exactly qm−i solutions (when the system is 
consistent). Accordingly, the support weight of D is either qm or qm − qm−i. Moreover, if the former holds, 
then Supp(D) = {1, . . . , qm}, and so D cannot be an i-minimal subcode of RMq(1, m). It follows that all 
i-minimal subcodes of RMq(1, m) have the same support weight di = qm−�qm−i� for 1 ≤ i ≤ m +1. Thus, 
by Theorem 3.6, RMq(1, m) has a pure resolution. Consequently, the Betti numbers of RMq(1, m) can be 
determined using the Herzog-Kühl formula (9) as follows.

βm+1 =
m∏
j=1

dj
dm+1 − dj

=
m∏
j=1

qm − qm−j

qm−j
=

m∏
j=1

(qj − 1),

whereas for 1 ≤ i ≤ m,

βi = dm+1

dm+1 − di

∏
m+1>j>i

dj
dj − di

∏
j<i

dj
dj − di

= qi
m∏ qm−j(qj − 1)

qm−j(qj−i − 1)

i−1∏ qm−j(qj − 1)
qm−i(qi−j − 1)
j=i+1 j=1



10 S.R. Ghorpade, P. Singh / Journal of Pure and Applied Algebra 224 (2020) 106385
= q
i(i+1)

2

m∏
j=i+1

(qj − 1)
(qj−i − 1) = q(

i+1
2 )

m−i∏
j=1

(qm+1−j − 1)
(qm+1−i−j − 1) .

This proves the theorem. �
Remark 4.2. Observe that the pure resolution of RMq(1, m) in Theorem 4.1 is linear only when either 
m = 1 or m = 2 = q. As noted earlier, RMq(1, m) is a MDS code in this case.

Next, we shall show that the minimal free N-resolutions of many generalized Reed-Muller codes of order 
higher than one are not pure. It will be convenient to consider various cases separately. As usual, we shall 
say that an element c of a linear code C is a minimal codeword if either c = 0, or if c �= 0 and the support 
of the 1-dimensional subspace 〈c〉 of C spanned by c is minimal among the supports of all 1-dimensional 
subcodes of C. Evidently, a codeword of minimum weight is minimal, but the converse may not be true.

4.1. Binary case

In this subsection we consider the binary case, i.e., when q = 2. We will use the following simple, but 
useful, observation. It is stated, for instance, in Ashikhmin and Barg [3, Lemma 2.1]. The proof is obvious 
and is omitted.

Lemma 4.3. Let C be a binary linear code and let d = d(C) be its minimum distance. If c ∈ C is not a 
minimal weight codeword, then c = c1 + c2 for some nonzero c1, c2 ∈ C such that Supp(〈c1〉) and Supp(〈c2〉)
are disjoint and Supp(〈ci〉) � Supp(〈c〉) for i = 1, 2. In particular, if c ∈ C has wt(c) < 2d, then c is a 
minimal codeword of C.

The following result shows that all “nontrivial” binary Reed-Muller codes of order greater than 1 have a 
non-pure resolution.

Proposition 4.4. Assume that m ≥ 4 and 1 < r ≤ m − 2. Then any minimal free N-resolution of the binary 
Reed-Muller code RM2(r, m) is not pure.

Proof. The minimum distance of RM2(r, m) is d := 2m−r and if we let

Q(X1, . . . , Xm) = X1X2 · · ·Xr−2(Xr−1Xr + Xr+1Xr+2),

then clearly, Q ∈ V2(r, m). Moreover, the corresponding codeword cQ = Ev(Q) has weight 6 × 2m−r−2 =
3d/2. Indeed, Q(a1, . . . , am) �= 0 for (a1, . . . , am) ∈ Fm

2 precisely when a1 = · · · = ar−2 = 1, 
(ar−1, ar, ar+1, ar+2) is one among (0, 1, 1, 1), (1, 0, 1, 1), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), and (1, 1, 0, 0), 
while ar+3, . . . , am ∈ F2 are arbitrary. Hence, by Lemma 4.3, cQ is a minimal codeword, but it is clearly 
not of minimum weight. Thus, the desired result follows from Theorem 3.6. �
Remark 4.5. As Alexander Barg has pointed out to one of us, the last assertion in Lemma 4.3 can be 
extended to the q-ary case to show that codewords of weight less than dq/(q − 1) are minimal in C, where 
C is a q-ary linear code with minimum distance d. However, for q > 2, this is often a restrictive hypothesis, 
and in the next subsections, we will deal with q-ary Reed-Muller codes using a different strategy.

4.2. The case of t = 0

Let t, s be as in (13) so that r = t(q− 1) + s and 0 ≤ s < q− 1. We will consider the case of Reed-Muller 
codes of order r > 1 for which t = 0 (so that r = s). Note that such codes are necessarily non-binary, and 
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in fact, q ≥ 4. We shall also exclude the case when m = 1, since RMq(r, 1) is a Reed-Solomon (and hence 
MDS) code for 1 ≤ r ≤ (q − 1).

Proposition 4.6. Assume that m ≥ 2 and 1 < r < q − 1. Then any minimal free N-resolution of the 
Reed-Muller code RMq(r, m) is not pure.

Proof. Choose distinct elements ω1, . . . , ωr−1 ∈ Fq and an arbitrary ω ∈ Fq. Define

Q(X1, . . . , Xm) = (X2 − ω)
r−1∏
i=1

(X1 − ωi).

Clearly, Q ∈ Vq(r, m) and the corresponding codeword cQ = Ev(Q) has weight (q − r + 1)(q − 1)qm−2. On 
the other hand, by (13), the minimum distance of RMq(r, m) is (q − r)qm−1. Observe that

(q − r + 1)(q − 1)qm−2 − (q − r)qm−1 = (r − 1)qm−2 > 0 since r > 1.

It follows that cQ is not a minimum weight codeword. If cQ is a minimal codeword, then Theorem 3.6
implies the desired result. Now suppose cQ is not a minimal codeword of RMq(r, m). Then we can find 
F ∈ Vq(r, m) such that cF is a minimal codeword of RMq(r, m) and Supp(cF ) ⊂ Supp(cQ). Again, if cF is 
not a minimal codeword of RMq(r, m), then we are done. Otherwise, by the characterization of minimum 
weight codewords of RMq(r, m), we must have

F (X1, . . . , Xm) =
r∏

j=1
(L− ω′

j)

for some distinct elements ω′
1, . . . , ω

′
r ∈ Fq and some nonzero linear polynomial L in Fq[X1, . . . , Xm] that 

we can assume to be homogeneous (by adjusting ω′
j, if necessary). Write L = a1X1 + · · · + amXm. Since 

Supp(cF ) ⊂ Supp(cQ), it follows that L vanishes whenever we substitute X1 = ωi for some i ∈ {1, . . . , r} or 
we substitute X2 = ω. In particular, a1ω1 + a2X2 + · · · + amXm = ω′

j for some j ∈ {1, . . . , r}. Comparing 
the degree in each of the variables X2, . . . , Xm, we obtain a2 = · · · = am = 0 so that L = a1X1. But then L
does not vanish when we substitute X2 = ω, and we obtain a contradiction. This proves the proposition. �
4.3. The case of 0 < t < m − 1 and 1 < s < q − 1

The arguments here will be similar to those in the previous subsection, except that we have to deal with 
an additional factor of degree t(q − 1). Note that 1 < s < q − 1 implies that q ≥ 4.

Proposition 4.7. Assume that 1 < r < m(q − 1) and moreover, r = t(q − 1) + s with 0 < t < m − 1 and 
1 < s < q − 1. Then any minimal free N-resolution of the Reed-Muller code RMq(r, m) is not pure.

Proof. Choose distinct elements ω1, . . . , ωs−1 ∈ Fq and an arbitrary ω ∈ Fq. Define

Q(X1, . . . , Xm) =
(

t∏
(Xq−1

i − 1)
)⎛⎝s−1∏

(Xt+1 − ωj)

⎞⎠ (Xt+2 − ω)

i=1 j=1
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Clearly, Q ∈ Vq(r, m) and the corresponding codeword cQ = Ev(Q) has weight (q − s + 1)(q − 1)qm−t−2. 
On the other hand, by (13), the minimum distance of RMq(r, m) is (q − s)qm−t−1. Observe that

(q − s + 1)(q − 1)qm−t−2 − (q − s)qm−t−1 = (s− 1)qm−t−2 > 0 since s > 1.

Thus, as in the proof of Proposition 4.6, it suffices to show that if there exists F in Vq(r, m) such that cF
is a minimum weight codeword with Supp(cF ) ⊂ Supp(cQ), then we arrive at a contradiction. Again, any 
such F has to be of the form

F (X1, . . . , Xm) =
(

t∏
i=1

(Lq−1
i − 1)

)⎛⎝ s∏
j=1

(Lt+1 − ω′
j)

⎞⎠
for some distinct ω′

1, . . . , ω
′
s ∈ Fq, and linearly independent linear polynomials L1, . . . , Lt+1 ∈ Fq[X1, . . . , Xm]

with Lt+1 homogeneous. Note that Supp(cQ) is contained in the linear space A = {(a1, . . . , am) ∈ Fm
q :

ai = 0 for i = 1, . . . , t}, which can be identified with Am−t, while Supp(cF ) is contained in the affine space 
A′ := {a ∈ Fm

q : Li(a) = 0 for i = 1, . . . , t} of dimension m − t. Further, since Supp(cF ) ⊂ Supp(cQ), we 
obtain Supp(cF ) ⊆ A ∩A′. Now if A �= A′, then dim(A ∩A′) ≤ m − t − 1, and so (q − s)qm−t−1 ≤ qm−t−1, 
which is impossible because s < q − 1. This shows that A = A′. Consequently,

F (0, . . . , 0, Xt+1, . . . , Xm) =
s∏

j=1

(
Lt+1(0, . . . , 0, Xt+1, . . . , Xm) − ω′

j

)
gives a minimum weight codeword in RMq(s, m − t) whose support contains the support of the codeword 
of RMq(s, m − t) associated to Q(0, . . . , 0, Xt+1, . . . , Xm). But then this leads to a contradiction exactly as 
in the proof of Proposition 4.6. �
4.4. The case of s = 0

Since the binary case and the case t = 0 have already been dealt with in subsections 4.1 and 4.2, we shall 
assume that q ≥ 3 and 1 ≤ t ≤ m − 1. Then s = 0 implies that r = t(q − 1) > 1.

Proposition 4.8. Assume that q ≥ 3 and r = t(q−1) with 1 ≤ t ≤ m −1. Then any minimal free N-resolution 
of the Reed-Muller code RMq(r, m) is not pure.

Proof. Write Fq = {ω1, . . . , ωq} and pick any ω ∈ Fq. Consider

Q(X1, . . . , Xm) =
(

t−1∏
i=1

(Xq−1
i − 1)

)⎛⎝ q∏
j=3

(Xt+1 − ωj)

⎞⎠ (Xt+2 − ω)

Then degQ = (t − 1)(q − 1) + (q − 2) + 1 = t(q − 1) = r and so Q ∈ Vq(r, m). Also, we can write 
Supp(cQ) = A1 ∪A2, where for i = 1, 2,

Ai := {a = (a1, . . . , am) ∈ Fm
q : a1 = · · · = at = 0, at+1 = ωi, and at+2 �= ω}.

Clearly, A1, A2 are disjoint and so wt(cQ) = 2(q − 1)qm−t−1. The minimum distance of RMq(r, m) in this 
case is qm−t, and 2(q − 1)qm−t−1 > qm−t, since q ≥ 3. Thus, cQ is not a minimum weight codeword. As in 
the proof of Proposition 4.6, it suffices to show that the existence of F ∈ Vq(r, m) such that cF is a minimum 
weight codeword with Supp(cF ) ⊂ Supp(cQ) leads to a contradiction. By the characterization of minimum 
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weight codewords of RMq(r, m), any such F has to be of the form F (X1, . . . , Xm) =
∏t

i=1(L
q−1
i −1) for some 

linearly independent linear polynomials L1, . . . , Lt in Fq[X1, . . . , Xm]. Hence, Supp(cF ) is the affine space 
A′ := {a ∈ Fm

q : Li(a) = 0 for i = 1, . . . , t}. Since Supp(cF ) ⊂ Supp(cQ), we can argue as in the proof of 
Proposition 4.7 to deduce that A′ is in fact, the linear space {a ∈ Fm

q : a1 = · · · = at = 0}. We now claim that 
Supp(cF ) is either disjoint from A1 or from A2. Indeed, if this is not the case then there are Pi ∈ Supp(cF ) ∩Ai

for i = 1, 2. But then Pλ := P1 +λ(P2 −P1) ∈ Supp(cF ) for any λ ∈ Fq, since Supp(cF ) = A′ is linear. Also 
since q �= 3, we can pick λ ∈ Fq such that λ �= 0 and λ �= 1. Now Supp(cF ) ⊂ Supp(cQ) = A1 ∪ A2 leads 
to a contradiction since the tth coordinate of Pλ is neither ω1 nor ω2. This proves the claim. It follows that 
A′ = Supp(cF ) ⊂ Ai for some i ∈ {1, 2}. But then qm−t ≤ (q − 1)qm−t−1, which is a contradiction. This 
proves the proposition. �
4.5. The case of t = m − 1 and 1 < s < q − 2

We will now consider the last case of nontrivial Reed-Muller codes RMq(r, m) of order r = t(q − 1) + s, 
where r > 1 and s �= 1, namely, when t = m − 1 and s > 1. Note that if we allow s = q − 2, then 
RMq(r, m) becomes a MDS code, and so we shall assume that 1 < s < q − 2. In particular, this implies 
that q ≥ 5.

Proposition 4.9. Assume that r = (m −1)(q−1) +s with 1 < s < q−2. Then any minimal free N-resolution 
of the Reed-Muller code RMq(r, m) is not pure.

Proof. As in the proof of Proposition 4.8, write Fq = {ω1, . . . , ωq} and pick any ω ∈ Fq. Also let ν1, . . . , νs+1
be any distinct elements of Fq. Consider

Q(X1, . . . , Xm) =
(

m−2∏
i=1

(Xq−1
i − 1)

)⎛⎝ q∏
j=3

(Xm−1 − ωj)

⎞⎠⎛⎝s+1∏
j=1

(Xm − νj)

⎞⎠ .

Then degQ = (m − 2)(q − 1) + (q − 2) + (s + 1) = (m − 1)(q − 1) + s = r and so Q ∈ Vq(r, m). Also, 
wt(cQ) = 2(q − s − 1) and Supp(cQ) ⊂ A1 ∪ A2, where Ai denotes the affine line {a = (a1, . . . , am) ∈ Fm

q :
a1 = · · · = am−2 = 0, am−1 = ωi} for i = 1, 2. The minimum distance of RMq(r, m) in this case is q − s

and it is less than 2(q − s − 1), since s < q − 2. As in the proof of Proposition 4.6, it suffices to show that 
the existence of F ∈ Vq(r, m) such that cF is a minimum weight codeword with Supp(cF ) ⊂ Supp(cQ) leads 
to a contradiction. By the characterization of minimum weight codewords of RMq(r, m), any such F has 
to be of the form

F (X1, . . . , Xm) =
m−1∏
i=1

(Lq−1
i − 1)

s∏
j=1

(Lm − ω′
j)

for some linearly independent linear polynomials L1, . . . , Lm in Fq[X1, . . . , Xm] and distinct ω′
1, . . . , ω

′
s ∈ Fq. 

Also, arguing as in the proof of Theorem 4.8, we see that Supp(cF ) is contained in the affine line A′ := {a ∈
Fm
q : Li(a) = 0 for i = 1, . . . , m − 1}. Now if any two points of Supp(cF ) belong to different affine lines 

A1 and A2, then Ai ∩ A′ is nonempty for i = 1, 2 and dimension considerations imply that A1 = A2 = A′, 
which is a contradiction. Hence, the (q− s) points of Supp(cF ) are contained in Supp(cQ) ∩Ai for a unique 
i ∈ {1, 2}. But then q − s ≤ q − s − 1, which is a contradiction. This proves the proposition. �

An easy consequence of the above result is that unlike linear resolutions (which correspond to MDS 
codes), purity of a resolution is not preserved when passing to the dual.
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Corollary 4.10. There exist linear codes C with a pure resolution such that C⊥ does not have a pure reso-
lution.

Proof. By Theorem 4.1, the first order Reed-Muller code RMq(1, m) has a pure resolution. But the dual 
of RMq(1, m) is RMq((m − 1)(q − 1) + (q − 3), m) and it does not have a pure resolution, thanks to 
Proposition 4.9. �

We can consolidate the results in subsections 4.1–4.5 to obtain the following.

Theorem 4.11. Assume that m ≥ 2 and 1 < r < m(q − 1) − 1. Write r = t(q − 1) + s, where 0 ≤ t ≤ m − 1
and 0 ≤ s < q− 1. Suppose s �= 1. Then any minimal free N-resolution of the Reed-Muller code RMq(r, m)
is not pure.

Proof. Follows from Propositions 4.4, 4.6, 4.7, 4.8, and 4.9. �
5. On the purity and resolutions of some two-weight codes

This section is devoted to two-weight codes. A linear code C is said to be a two-weight code if there are 
two distinct positive integers w1 and w2 such that every nonzero codeword of C has weight either w1 or w2. 
We will usually take w1 < w2 so that w1 = d1(C). We have seen in Corollary 3.10 that the resolution of 
constant weight codes are pure and their Betti numbers are explicitly known. The first order Reed-Muller 
codes are examples of two-weight codes, and Theorem 4.1 shows that their resolutions are pure and the 
Betti numbers can be explicitly determined. Thus, it is natural to ask if every two-weight code has pure 
resolution. In this section we will choose several examples of two-weight codes given by Calderbank and 
Kantor [8] and see that some of them have pure resolution and others do not. In [8], these codes are referred 
to by a nomenclature such as RT1, TF1, TF1d, etc., and this is indicated in parenthesis at the beginning 
of each of the examples considered here. We also compute the Betti numbers of some of the two-weight 
codes irrespective of whether or not their resolution is pure. The examples of two-weight codes given in [8]
are defined geometrically. So before considering them here, we recall a geometric language for codes and 
translate our characterization of purity (Theorem 3.6) in this language.

As before, fix positive integers n, k with k ≤ n and a prime power q. We denote by Pk−1 the (k − 1)-
dimensional projective space over the finite field Fq. A (nondegenerate) [n, k]q projective system is a multiset 
of n points in Pk−1 that do not lie on a hyperplane of Pk−1. Let P be a [n, k]q projective system. For 
r = 1, . . . , k, the rth generalized Hamming weight, or the rth higher weight of P is defined by

dr(P) = n− max{|P ∩ Πr| : Πr linear subspace of Pk−1 with codim Πr = r}.

Here the “cardinality” |P ∩Πr| is understood as the sum of multiplicities of points of P that are in Πr. Note 
that the only linear subspace of codimension k in Pk−1 is the empty set, whereas those of codimension k−1
consist of a single point. Thus,

dk(P) = n and dk−1(P) = n− 1. (15)

We can naturally associate a nondegenerate [n, k]q-linear code to P as follows. Choose representatives 
P1, . . . , Pn in Fk

q corresponding to the n points of P. Let (Fk
q )∗ be the dual space of the vector space Fk

q . 
Consider the evaluation map

Ev : (Fk
q )∗ → Fn

q defined by Ev(f) = (f(P1), . . . , f(Pn)).
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The image of Ev is a linear subspace C of Fn
q such that dimC = k and C is not contained in a coordinate 

hyperplane of Fn
q . This, then, is the [n, k]q-linear code associated to P. We refer to Tsfasman, Vlăduţ and 

Nogin [24] for more on projective systems and simply remark that the above association gives rise to a 
one-to-one correspondence between the equivalence classes of [n, k]q projective systems and nondegenerate 
[n, k]q-linear codes, which preserves generalized Hamming weights. Also, subcodes of C of dimension r
correspond to linear subspaces of Pk−1 of codimension r. Thus, we define the support of a linear subspace 
Πr of Pk−1 with codim Πr = r, to be the multiset P \ P ∩ Πr. This corresponds precisely to the support 
of the corresponding subcode of C. As a consequence, we obtain the following geometric translation of our 
characterization of purity.

Theorem 5.1. Let P ⊆ Pk−1 be an [n, k]q projective system and let C be the corresponding [n, k]q-code. The 
N-graded minimal free resolution of C is pure if and only if for every 1 ≤ r ≤ k − 1 and every linear 
subspace Πr ⊂ Pk−1 of codimension r, there exists a linear subspace H(Πr) ⊂ Pk−1 of codimension r with 
Πr ∩ P ⊆ H(Πr) ∩ P and |H(Πr) ∩ P| = n − dr(P).

Proof. Follows from Theorem 3.6. �
Corollary 5.2. P ⊆ Pk−1 be an [n, k]q projective system and let C be the corresponding linear code. Then 
the N-graded resolution of C is always pure at the (k − 1)th and kth step.

Proof. From (15), we see that C is (k − 1)-MDS. Thus the desired result follows from Corollary 3.9 and 
Theorem 5.1. �

The following definition from [8] is a geometric counterpart of two-weight codes.

Definition 5.3. Let h1, h2 be distinct nonnegative integers. An [n, k]q projective system P is said to be a 
projective (n, k, h1, h2)q system if every hyperplane of Pk−1 intersects P either at h1 points or at h2 points 
(counting multiplicities).

Note that if P is a projective (n, k, h1, h2)q system, then every nonzero codeword of the corresponding 
[n, k]q code C is of Hamming weight w1 or w2, where wi = n − hi for i = 1, 2. Also note that for i = 1, 2, if 
Awi

denotes the number of codewords of C of weight wi, then

Awi
= (q − 1)νi, (16)

where νi denotes the number of hyperplanes Π of Pk−1 such that |Π ∩ P| = hi. The factor (q − 1) is due 
to the fact that the codewords Ev(f) and Ev(λf) of C correspond to the same hyperplane in Pk−1 for any 
λ ∈ Fq with λ �= 0.

We are now ready to discuss several examples from [8] of two-weight codes, and investigate their purity 
and minimal free resolutions. We use the following notation.

pj = pj(q) := |P j(Fq)| =
{
qj + qj−1 + · · · + q + 1 if j ≥ 0,
0 if j < 0.

Example 5.4 (RT1). Take the base field as Fq2 and let P = Pk−1(Fq2). Consider P = Pk−1(Fq) as a 
projective system in P . If Π is a hyperplane in P , then it is given by an equation of the form 

∑k
i=1 ziXi = 0, 

where z1, . . . , zk ∈ Fq2 , not all zero. Fix a Fq-basis {1, θ} of Fq2 and write zi = ai + θbi, where ai, bi ∈ Fq for 
i = 1, . . . , k. Then P ∩ Π consists of points (c1 : · · · : ck) ∈ Pk−1(Fq) satisfying 

∑
aici = 0 and 

∑
bici = 0. 

Now if there is λ ∈ Fq such that ai = λbi for all i = 1, . . . , k, or such that bi = λai for all i = 1, . . . , k, 
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then P ∩ Π corresponds to a Fq-rational hyperplane in Pk−1(Fq). Otherwise, it corresponds to a linear 
subspace of codimension 2 in Pk−1(Fq). Thus, |P ∩Π| = pk−2(q) or pk−3(q). It follows that the linear code 
corresponding to P, say C, is a two-weight code of length pk−1(q) and dimension k over Fq2 . Also, it is clear 
that as Πr varies over Fq2-linear subspaces of codimension r in P , the maximum possible value of |P ∩ Πr|
is attained when Πr is Fq-rational, and in that case |P ∩ Πr| = pk−1−r(q) for r = 1, . . . , k. It follows that 
the higher weights of P are given by dr = pk−1(q) − pk−1−r(q) for r = 1, . . . , k.

To determine the purity of the minimal free resolution of C, fix a Fq2-linear subspace Π of codimension 
r in P . Let t := dimFq

(Π ∩ P). If Π is not Fq-rational, then t < k − 1 − r. Let {f1, . . . , ft+1} be a Fq-
basis of Π ∩ P. Extend this to a linearly independent set {f1, . . . , ft+1, . . . , fk−r} ⊂ P. Note that the set 
{f1, . . . , fk−r} is linearly independent over Fq2 . (This can be seen, as before, by expressing the coefficients 
in a linear dependence relation in terms of 1, θ.) Now if H = H(Πr) is the linear subspace of P spanned by 
{f1, . . . , fk−r}, then Π ∩P ⊂ H ∩P and |H ∩P| = n − dr(P). Thus, Theorem 5.1 shows that the N-graded 
minimal free resolution of C is pure. Moreover, it is of the form

0 → R(−dk)βk → · · · → R(−d2)β2 → R(−d1)β1 → R

where dr = pk−1(q) − pk−1−r(q) and βr’s are given by Herzog-Kühl equation for r = 1, . . . , k. In fact, this is 
precisely the resolution for constant weight codes given in Corollary 3.10. It may be noted that even though 
constant weight codes have been characterized by Johnsen and Verdure [17, Thm. 2 and Prop. 4] as those 
having a resolution as in Corollary 3.10, the code C is not a constant weight code because it is a code over 
Fq2 , whereas the characterization is for q-ary codes.

Remark 5.5. One can similarly consider P = Pk−1(Fq) ⊆ Pk−1(Fqm) for any m ≥ 2, and show that the 
resolution of the linear code corresponding to this projective system is pure and of the form similar to that 
in Example 5.4 even though this code is not a two-weight code when m > 2.

Example 5.6 (TF1). Assume that q is even and consider the projective plane P 2 over Fq. Let P ⊆ P 2 be a 
hyperoval, i.e., a set of q + 2 distinct points, no three collinear, with the property that if L is a line in P 2, 
then |L ∩ P| = 0 or 2. In this case, the corresponding code is an MDS [q + 2, 3]q-code and the resolution of 
this code is given by Corollary 3.9.

Example 5.7 (TF1d). Suppose q is even and P is the hyperoval in the projective plane P 2 over Fq as in 

Example 5.6. Let P̂ 2 be the dual projective plane. Consider

P̂ = {L : L is a line in P 2 with |L ∩ P| = 2}.

Note that P̂ ⊆ P̂ 2 and the points of the projective plane P 2 are lines in P̂ 2. Note also that any two points of 
P correspond to a unique line L in P 2 such that L ∈ P̂. Consequently, |P̂| =

(
q+2
2
)
. Now consider a line in 

P̂ 2, i.e., a point P of P 2. Counting the intersection of this line with P̂ corresponds to counting lines L ⊆ P 2

that pass through P and intersect the hyperoval P in exactly two points. The cardinality of this intersection 
depends only on whether or not the chosen point P lies on P. More precisely, if P ∈ P, then any line passing 
through P will intersect the hyperoval P in two points, and there are exactly (q + 1) such lines. On the 
other hand, if P /∈ P, then choosing any point Q on P will correspond to a unique line LQ passing through 
P and Q such that LQ intersects P in another point Q′ �= Q. Further, since each LQ passes through P , 
the points Q′ ∈ P corresponding to Q ∈ P are distinct. Since |P| = q + 2, it follows that there are exactly 
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(q + 2)/2 lines of the form LQ. This shows that P is a 
((

q+2
2
)
, 3, (q + 1), q+2

2
)
q

projective system, and it 
corresponds to an [

(
q+2
2
)
, 3]q two-weight code with distinct nonzero weights

w1 =
(
q + 2

2

)
− (q + 1) = q(q + 1)

2 and w2 =
(
q + 2

2

)
− q + 2

2 = q(q + 2)
2 .

Also, the number of lines in P̂ 2 that intersect P̂ in (q + 1) points is |P| = q + 2, whereas the number of 
lines in P̂ 2 that intersect P̂ in q+2

2 points is |P 2 \ P| = q2 − 1. Thus, in view of (16), we see that the weight 
spectrum of the two-weight code corresponding to P̂ is given by

Aw1 = (q + 2)(q − 1) and Aw2 = (q2 − 1)(q − 1).

Furthermore, any hyperplane section of P̂ has to be either of the following two types: (i) a set consisting 
of lines passing through a fixed P ∈ P and a varying point of P \ {P}, or (ii) a set consisting of lines of 
the form LQ where Q varies over a suitable subset of P having (q + 2)/2 elements. Now a set of type (ii) 
has at least two lines and no two lines in this set can intersect in a point of P. Hence a set of type (ii) can 
never be contained in any set of type (i). It follows that the purity criterion in Theorem 5.1 is violated (for 
r = 1). Equivalently, every 1-dimensional subcode of C has minimal support, and since C has two distinct 
nonzero weights d1 = w1 < w2, we see that the criterion in Theorem 3.6 is violated (for i = 1). Thus, the 
resolution of C is not pure. Moreover, in view of (5) and (12), we see that the resolution has two twists at 
the first step, whereas it is pure at the second and third step, thanks to Corollary 5.2. Hence, the resolution 
of C is of the form

R(−d3)β3,d3 → R(−d2)β2,d2 → R(−w2)β1,w2 ⊕R(−w1)β1,w1

where w1, w2 are as before and

d2 =
(
q + 2

2

)
− 3 + 2 = q(q + 3)

2 and d3 =
(
q + 2

2

)
− 3 + 3 = (q + 1)(q + 2)

2 .

Moreover, from Corollary 3.7, we see that

β1,w1 = (q + 2) and β1,w2 = (q2 − 1).

To determine the remaining Betti numbers, let us write X1 = β1,w1 , X2 = β1,w2 , Y = β2,d2 , and Z = β3,d3 . 
Then the Boij-Söderberg equations (8) give the following system of linear equations

1 − (X1 + X2) + Y − Z = 0

−w1X1 − w2X2 + d2Y − d3Z = 0

−w2
1X1 − w2

2X2 + d2
2Y − d2

3Z = 0

Putting the values of w1, w2, d2, d3, X1 and X2, we obtain Y = q(q+1)(q+2)
2 and Z = q2(q+1)

2 . This 
determines the resolution of the code C corresponding to P̂.

Example 5.8 (TF2). Assume that q is even with q > 2. Suppose h is an integer such that 1 < h < q

and h divides q. Following Denniston [12], a maximal arc in the projective plane P 2 may be defined as a 
set of points meeting every line in h points or none at all. Let P ⊆ P 2 be a maximal arc consisting of 
n = 1 + (q + 1)(h − 1) points. It has been shown by Denniston [12] that such maximal arcs exist. Since 
|L ∩ P| = 0 or h, for any line L in P 2, we see that the [n, 3]q-code C corresponding to P is a two-weight 
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code (cf. [8]) whose nonzero weights are q(h − 1) and n. Since the second weight of C is the length of C, 
a minimal 1-dimensional subcode of C must be of minimum weight. Hence, by Theorem 3.6, the minimal 
free resolution of the code C is pure. Thus, in view of Corollary 5.2, we see that the resolution of C is of 
the form:

R(−d3)β3,d3 → R(−d2)β2,d2 → R(−d1)β1,d1

where d1 = q(h − 1), d2 = (q + 1)(h − 1) and d3 = 1 + (q + 1)(h − 1). Using the Herzog-Kühl formula, one 
can compute the Betti numbers, and they are

β1,d1 = (q + 1)2 − q

h
, β2,d2 = qn, and β3,d3 = (h− 1)2(q + 1) q

h
.

Example 5.9 (TF2d). Let q, h, n and P be as in Example 5.8. Consider the dual projective plane P̂ 2 of P 2, 
and let P̂ = {L ∈ P̂ 2 : |L ∩P| = h}. Now there are exactly (q + 1) lines passing through a point of P 2, and 
in case this point is in P, then such a line intersects P in exactly h points. Since |P| = n, it follows that

n̂ := |P̂| = (q + 1)n
h

= (q + 1) (1 + (q + 1)(h− 1))
h

.

Next we want to understand the intersection of P̂ with a hyperplane of P̂ 2. Note that a hyperplane, say H, 
of P̂ 2 corresponds to a point, say P , of P 2, and

H ∩ P̂ = {L ⊂ P 2 : L is a line passing through P and |L ∩ P| = h}.

Therefore |H∩P̂| is (q+1) or n/h, according as P ∈ P or P /∈ P. Thus P̂ is an (n̂, 3, (q+1), n
h )q projective 

system and the corresponding [n̂, 3]q-code is a two-weight code with distinct nonzero weights given by

w1 = n̂− (q + 1) = q(q + 1)(h− 1)
h

and w2 = n̂− n

h
= qn

h
.

Using similar arguments as in Example 5.7, we see that the weight spectrum of this code is given by

Aw1 = (q − 1)n and Aw2 = (q − 1)(q + 1)(q − h + 1),

and also that the resolution of this code is of the form

R(−d3)β3,d3 → R(−d2)β2,d2 → R(−w2)β1,w2 ⊕R(−w1)β1,w1

where β1,w1 = n = 1 +(q+1)(h − 1) and β1,w2 = (q+1)(q−h +1), and in view of Corollary 5.2, d2 = n̂− 1
and d3 = n̂. As in Example 5.7, using the Boij-Söderberg equations (8) and putting all known values, we 
obtain

β2,d2 = q(q + 1)(qh + h− q)
h

and β3,d3 = q2(q + 1)(h− 1)
2 .

We remark that when q > 2, Examples 5.6 and 5.7 are special cases of Examples 5.8 and 5.9, respectively, 
with h = 2.

Example 5.10 (TF3). Assume that q > 2. In the finite projective 3-space P 3 over Fq, an ovoid may be 
defined as a set of q2 + 1 points, no three of which are collinear (see, e.g., Dembowski [11, p. 48]). Suppose 
P is an ovoid in P 3. Then for any hyperplane H of P 3, the intersection P ∩H is an ovoid in H � P 2, and 
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hence using [11, p. 48, §49], we see that |H ∩P| = 1 or q+ 1. Let C be the corresponding linear code. Then 
C is a two-weight code of length n = q2 + 1, dimension k = 4, and weights w1 = q(q− 1) and w2 = q2. The 
resolution of this code C is pure. To see this, note that if Π is a hyperplane in P 3 intersecting P at only 
one point, then there is another hyperplane H with |H ∩ P| = q + 1 and Π ∩ P ⊂ H ∩ P. More precisely, 
let Π ∩P = {P} and let Q ∈ P be any point other than P . Take any hyperplane H passing through P and 
Q. Since |H ∩ P| > 1, we must have |H ∩ P| = q + 1. Further, Π ∩ P ⊂ H ∩ P. It follows that all minimal 
codewords of C are of minimum weight. Hence, by Corollary 3.7, we see that β1,j = 0 for all j �= w1, i.e., 
the resolution of C is “pure at the first step”. Next, observe that the maximum possible cardinality of L ∩P
is 2 for any line L in P 3, and there do exist lines L for which |L ∩ P| = 2. Hence, d2(C) = n − 2 = q2 − 1. 
Consequently, C is a 2-MDS code, and hence by Corollary 3.9, the resolution is linear after the second step. 
This proves that the resolution of C is pure and is of the form

R(−(q2 + 1))β4,q2+1 → R(−q2)β3,q2 → R(−(q2 − 1))β2,q2−1 → R(−q(q − 1))β1,q(q−1)

where the Betti numbers can be obtained from Herzog-Kühl formula (9) as follows.

β4,q2+1 = q3(q−1)2
2 , β3,q2 = (q − 1)(q2 − 1)(q2 + 1),

β2,q2−1 = q3(q2+1)
2 , and β1,q(q−1) = q(q2 + 1).

Example 5.11 (RT3). Assume that k ≥ 3. Consider the quadratic extension Fq2 of Fq and the projective 
variety Pk−2 ⊂ Pk−1(Fq2) defined by the equation

Xq+1
1 + · · · + Xq+1

k = 0.

Following Bose and Chakravarti [7], we may refer to Pk−2 as the (nondegenerate) Hermitian variety of 
dimension k− 2. Let Ck−2 be the [nk, k]q2 -code corresponding to Pk−2, where nk := |Pk−2|. We know from 
[7, Theorem 8.1] that

nk =
(
qk − (−1)k

) (
qk−1 − (−1)k−1)

q2 − 1 . (17)

To understand the weights of Ck−2, first note that since x → xq is an involutory automorphism of Fq2 , 
every hyperplane of Pk−1(Fq2) is given by an equation of the form cq1X1 + · · · + cqkXk = 0 for some 
c = (c1 : · · · : ck) ∈ Pk−1(Fq2); we denote this hyperplane by Hc and call it a tangent hyperplane in case 
c ∈ Pk−2 (see, e.g., Chakravarti [9, §2]). We remark that Hc and c determine each other. In other words, 
if c, d ∈ Pk−1(Fq2), then: Hc = Hd ⇔ c = d. Now from [9, Theorem 3.1] and from Theorem 7.4 as well as 
Theorem 8.1 (and its corollary) of [7], we see that

|Hc ∩ Pk−2| =
{
nk−1 if Hc is not a tangent hyperplane,
1 + q2nk−2 if Hc is a tangent hyperplane,

(18)

where nk−1 and nk−2 are given by expressions similar to that in (17) with appropriate substitution. Thus, 
it follows that Ck−2 is a two-weight code. We will now discuss the nature of the resolution of this code when 
k = 3 and k = 4.

First, suppose k = 3. Then P1 is the Hermitian curve consisting of q3 +1 points. If L is a line in P 2(Fq2), 
then by (18), |L ∩P1| is either q+1 or 1, and thus the two nonzero weights of C1 are given by w1 = q(q2−1)
and w2 = q3. Moreover, if L1 is a tangent line to P1 so that L1 ∩ P1 consists of a single point, say P , then 
by choosing another point Q of P1 and a line L2 passing through P and Q, we find
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|L2 ∩ P1| = q + 1 and L1 ∩ P1 ⊂ L2 ∩ P1.

Consequently, every 1-minimal subcode of C1 has support weight w1 = d1(C1). Thus, as in Example 5.10, 
we can deduce from Corollary 3.7 that the resolution of C1 is “pure at the first step”. This together with 
Corollary 5.2 shows that the resolution of C1 is pure and it looks like

R(−(q3 + 1))β3,q3+1 → R(−q3)β2,q3 → R(−q(q2 − 1))β1,q(q2−1)

where the Betti numbers can be obtained from Herzog-Kühl formula (9) as follows.

β1,q(q2−1) = q2(q2 − q + 1), β2,q3 = (q3 + 1)(q2 − 1) and β3,q3+1 = q(q2 − 1)(q2 − q + 1).

Next, suppose k = 4. Here P2 is the Hermitian surface with (q2 + 1)(q3 + 1) points. Further, by (18), a 
section P2 ∩Hc of the Hermitian surface by a tangent hyperplane has q3 + q2 + 1 points, while a section 
P2 ∩Hd by a non-tangent hyperplane has q3 + 1 points. Moreover, P2 ∩Hd � P2 ∩Hc for any c ∈ P2 and 
d ∈ P 3(Fq2) \P2. Indeed, by [9, Theorem 3.1], P2 ∩Hd is nondegenerate in Hd � P 2 and so the linear span 
of points in P2 ∩Hd is Hd. But then P2 ∩Hd ⊆ P2 ∩Hc would imply that Hd ⊆ Hc and hence Hd = Hc, 
which is a contradiction. (Alternatively, if P2∩Hd ⊆ P2∩Hc, then q3+q2+1 = |P2∩Hd| = |P2∩Hd∩Hc| ≤
|Hd ∩Hc| = q2 + 1, which is a contradiction.) At any rate, it follows that C2 is a two-weight code with the 
nonzero weights w1 = q5 and w2 = q5 + q2, and moreover, every 1-dimensional subcode of C2 is minimal. 
Thus, the resolution of C2 has two twists at the first level and by Corollary 3.7, the corresponding Betti 
numbers are as follows.

β1,w1 = |P2| = (q2 + 1)(q3 + 1) and β1,w2 = |P 3(Fq2) \ P2| = q3(q2 + 1)(q − 1).

To understand the behavior of the resolution at the second step, we consider 2-dimensional subcodes of C2
and determine which of these are minimal. Equivalently, we consider the sections P2 ∩ L of the Hermitian 
surface with a line L in P 3(Fq2). It is shown in [7, §10] (see also [9, §5.2]) that |P2 ∩ L| can only take 3
possible values, namely, q2 + 1, q + 1, or 1. Accordingly, the line L is referred to as a generator, secant line, 
or tangent line, respectively. It is clear that if L is a tangent line, then there is a non-tangent line L′ such 
that P2 ∩ L ⊂ P2 ∩ L′. On the other hand, if L is a secant line, then P2 ∩ L �⊂ P2 ∩ L′ for any generator 
L′, because there is a unique line passing through any two points of P 3(Fq2). It follows that there are two 
types of 2-minimal subcodes of C2, one with support weight d2 = |P2| − (q2 + 1) = q3(q2 + 1) and another 
with support weight d′2 = |P| − (q + 1) = q(q4 + q2 + q − 1). Thus, it follows from (5) and (12) that the 
resolution of C2 has two twists at level 2, and these correspond to the above values of d2 and d′2. Finally, 
we note that C2 is 3-MDS and by Corollary 5.2, the resolution of C2 is pure at the third and fourth steps. 
Thus, we can conclude that the minimal free resolution of C2 has the form

R(−d4)z → R(−d3)y → R(−d′2)x1 ⊕R(−d2)x2 → R(−w2)β1,w2 ⊕R(−w1)β1,w1

where w1, w2, d2, d′2 are as before, d3 = (q2 + 1)(q3 + 1) − 1, d4 = (q2 + 1)(q3 + 1), and x1, x2, y, z denote 
the undetermined Betti numbers, namely,

x1 = β2,d′
2
, x2 = β2,d2 , y = β3,d3 , z = β4,d4 .

To determine these, we note that the Boij-Söderberg equations (8) give rise to

1 − (β1,w1 + β1,w1) + (β2,d2 + β2,d′
2
) − β3,d3 + β4,d4 = 0

−(w1β1,w1 + w2β1,w1) + (d2β2,d2 + d′2β2,d′ ) − d3β3,d3 + d4β4,d4 = 0

2
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−(w2
1β1,w1 + w2

2β1,w1) + (d2
2β2,d2 + d′ 22 β2,d′

2
) − d2

3β3,d3 + d2
4β4,d4 = 0

−(w3
1β1,w1 + w3

2β1,w1) + (d3
2β2,d2 + d′ 32 β2,d′

2
) − d3

3β3,d3 + d3
4β4,d4 = 0

and this is a system of four linear equation in four unknowns. Substituting the values of the known quantities 
and solving, we obtain

β2,d2 = q2(q3 + 1)(q + 1), β2,d′
2

= q6(q2 + 1)(q2 − q + 1),

β3,d3 = q3(q2 + 1)(q3 + 1)(q3 − q + 1), and β2,d4 = q9(q2 − q + 1).

Thus, the resolution of C2 is completely determined.
We remark that when k ≥ 5, the minimum weight of Ck−2 will be nk−nk−1 or nk−1 −q2nk−2 according 

as k is odd or even. Moreover, a cardinality argument similar to the one in the case of k = 4 will show that 
all 1-dimensional subcodes of Ck−2 are minimal, and hence the resolution is not pure (at the first step). It 
would be interesting to completely determine the resolution of Ck−2, in general.
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