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Abstract

A tecent result on the enumeration of p-tuples of nonintersecting lattice paths in an integral
rectangle is used to deduce a formula of Abhyankar for standard Young bitableaux of certain
type. which gives the Hilbert function of a class of determinantal ideals. The lattice path for-
mula is also shown to yield the numerator of the Hilbert series of these determinantal ideals
and the A-vectors of the associated simplicial complexes. As a consequence, the g-invariant of
these determinantal ideals is obtained in some cases, extending an earlier result of Grdbe. Some
problems concerning generalizations of these results to ‘higher dimensions’ are also discussed.
In an appendix. the equivalence of Abhyankar’s formula for unitableaux of a given shape and a
formula of Hodge, obtained in connection with his determination of Hilbert functions of Schubert
varieties in Grassmannians, is outlined.
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1. Introduction

A celebrated result of Doubilet et al. (1974), known as the Straightening Law, tells
that the standard bitableaux with positive integral entries, bounded by a pair m =
(m(1),m(2)), give a vector space basis of the polynomial ring in m(1)m(2) variables.
Abhyankar (1984) gave an enumerative proof of the Straightening Law. In the process,
he obtained a number of formulae to enumerate the set stab(2.m, p,a, V') of certain
standard bitableaux (see Section 2 below for definition). One such formula is the
following:

V+C-D
F(m.p.a. V)= Z(—I)DFD(m.p.a)< )
Dez C-D
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where C = (p— 1)+ 3 | S0 [m(k) - a(k,i)], and

Fp(m.p.a)=>_ (g) He(m, p.a)

£ez

with Hy being a sum of the determinants of certain p X p matrices:

Hp{m. p,a) = 3 det (("1(1 )—a(]ﬁj)#-i—j)(m(Z)a(2,j)+j*j>> .

1)+ betp—E e(i)y+i—j e(i)

It may be noted that all these summations are essentially finite.

Abhyankar’s formula for bitableaux differs considerably from the classical enumer-
ative formulae for Young tableaux such as the Determinantal Formula of Frobenius,
Hooklength Formula, etc., and, in particular, the known bijective proofs for latter do
not seem to extend to the former. This formula of Abhyankar also turns out to be the
Hilbert function, as well as the Hilbert polynomial, of a class of determinantal ideals
denoted by /( p.a). which includes the ideal generated by all minors of a fixed size
in an m(1) x m(2) matrix with variable entries. Moreover, the same formula counts a
set of monomials — the so-called ‘indexed monomials’, denoted by mon(2,m, p,a, V).
For a survey of these results, see Ghorpade (1993) and for a detailed account, see
Abhyankar (1988).

In this article, we outline an alternate proof of Abhyankar’s formula using a re-
cent result that Ay (m. p,a) counts a certain family of nonintersecting lattice paths.
We also recognise Hg(m. p,a) as the sequence of coefficients in the numerator of the
Hilbert-Poicaré scries of /{ p.a), thus recovering a result of Galigo (1983). It follows
that {Hg(m. p,a) : E=0} gives the so-called A-vector of the simplicial complex. say
A( p.a), associated with /( p,a) as in Herzog and Trung (1992). The lattice path in-
terpretation of Hy(m. p,a) leads to better bounds for the degree of the numerator of
the Hilbert series of /(p.«) and, in some cases, the exact value. So we can determine
the a-invariant of [(p,a) in certain cases. extending a result of Grabe (1988). In a
brief section on multitableaux, we discuss some related problems concerning possible
extensions of some of these results to ‘*higher dimensions’. Lastly, in an appendix,
we indicate how the Hilbert function for Schubert varieties is closely connected to a
precursor to Abyhankar’s formula, and observe a consequence thereof.

Our proot of Abhyankar's formula was inspired by the paper of Modak (1992).
Subsequently, we have learned of the proofs of the main result of Modak’s paper
given independently by Kulkarni (1992) and Krattenthaler (1992). Kulkarni’s proof, in
fact, uses Abhyankar’s formula and may be viewed as the ‘reverse’ of the proof given
here. On the other hand, proofs by Modak and Krattenthaler do not use Abhyankar’s
formula. Very recently, our attention was drawn to a preprint of Conca and Herzog
(1993) which also uses a lattice path approach to calculate the Hilbert series of /( p.a).
However, it appears that Conca and Herzog use the shellability of A(p.a) and the
McMullen-Walkup formulae to determine the Hilbert series of /(p.a), whereas we
use a direct and a rather routine computation.
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2. Lattice paths

Unlike the more common convention, we consider lattice paths in rectangular grids
whose points are specified using the ‘matrix notation’ rather than that of Coordinate
Geometry. Given z. f8 € Z, we let [%, ff] denote the integral segment {7 € Z : <y < f}.
A pair m = (m(1),m(2)) of positive integers shall be kept fixed throughout this paper.
Given any two points A4, B in the integral rectangle [1.m(1)] x [1.m(2)], by a lattice
puath from 4 to B, we mean a finite sequence 4 = (ug. ). (#1.61). ... (4. t;) = B of
points in [1.m(1)] x [1,m(2)] such that for 0</ < n,

either v, = w;.y and v; =0, .+ 1 or w;=uw;y —Vand v; =t;4;

we call (u;.v;) an antinode 1\t 0 < j < n.w; =,y and v; = ;.. By nonintersecting
(tuples of) paths we mean lattice paths with no point in common. For example, if
m = (5,6), then the corresponding integral rectangle and some lattice paths in it may
be depicted as in Fig. 1. Note that according to our "matrix notation’, the dot on the
top left corner corresponds to the point (1, 1).

Observe that in Fig. 1, L,, for instance. is a lattice path from 4> = (2.6) to
B> = (5.3). Formally. L. is given by the sequence 4> = (2.6).(3.6).(3.5).(4.5).(4.4),
(4.3), (5.3) = B>. Note that the paths L. L», L; depicted above are nonintersecting,
and their antinodes are the points marked by thick dots.

Now let p be a positive integer and ¢ = (a(k.i)) .4« be a fixed hivector, ie.,

l<isp

apaira=(a(l.p) > - >a(l.l) a2.1) < - < a(é,\}))) of strictly increasing se-
quences of positive integers, bounded by m = (m(1),m(2)), ie., alk,i)y<m(k) for
k=12andi=1...., p. Put A; = (a(1.i).m(2)) and B, = (m(1),a(2.i})). The result

for lattice paths mentioned in the Introduction (cf. Theorem 3.3.2 of Modak, 1992;
Theorem 5 of Kulkarni, 1992; Theorem 11 of Krattenthaler, 1992) can be stated as
follows.

L] [ ]
L} .
[
L}

B,

| tHE N
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Theorem 1. Given any integer E, we have Hg(m,p,a) is equal to the number of p-
tuples (Ly,...,L,) such that L; is a lattice path from A; to B; and the paths Ly,...,L,
are nonintersecting and together have E antinodes.

Remark. Using the multilinearity of the determinant and elementary properties of bi-
nomial coefficients, we see that

> Hi(m pa):da((m(l)a(l,i)+m(z)—a(z,j)> )
I<ij<p

Eez m(1) = a(l.i)

Thus, the above result generalizes the well-known formula of Gessel-Viennot (1985)
for the number of p-tuples of nonintersecting lattice paths in an integral rectangle.

I<i<r cicr'

and b(k,i)<b' (ki) for k =1,2and i = 1,...,¢/. A ;zzmdard bitableau bounded by
m is, by definition, a finite sequence 7 = (T[1],...,7[d]) of bivectors bounded by m
such that T[1]< - -+ <T[d]. Given any nonnegative integer V, by stab(2,m, p,a, V') we
denote the set of all standard bitableaux 7 = (7[1], ..., T'[d]) which are bounded by m,
dominated by a, i.e, a<T|e] for 1 <e<d, and of area, viz., the sum Zi:l length(T'[e])
of its row lengths, equal to V. For example, Fig. 2 represents a standard bitableau of
area ¥ = 8, which, for instance, is bounded by m = (5,6) and dominated by the
bivector a =(4 > 2 > 1]2 < 3 < 5).

With F(m, p,a,V) as in the Introduction, we now state Abhyankar’s formula for
bitableaux (Abhyankar, Theorem 9.7, 1988) and give a proof using the previous the-
orem. The reader may find it helpful to look at the example given at the end of the
proof of Theorem 2 to understand some of the concepts involved in this proof.

Given bivectors b = (b(k,i)) 1. and b' = (b'(k,0))| <y <2. We define b<b' if r=>7

Theorem 2. For any nonnegative integer V, we have

[stab(2,m, p.a, V)| = F(m, p,a, V).

Proof. We work with the set mon(2,m, p,a, V) of all monomials § = [],.J X: in the
m(1)m(2) variables (X;;) of degree V' such that

ind(supp(8))<p and ind(0y;) </ fork=12and /I=1,...,p,

R
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where supp(0) = {(i,j) € [1,m(1)] x {1,m(2)] : a;; # 0} and for [ =1,..., 2

O 1={(i,j) €supp(@) : i < a(1.1)} and 0O»,={(i.j) € supp(0)) : j < a(2,1)},
and where for a subset Y of [1,m(1)] x [1,m(2)], we set

ind(Y)=max{r : I(ai.by),....(a.b.) €Y with a; <---<a, and b; <--- <bh,}.

Notice that if ind(Y )< 1, then Y is contained in a lattice path in [1,m(1)] x [1,m(2)],
and conversely. Now, observe that for any 0 € mon(2,m, p,a, V), supp(0) lies on
a uniquely determined p-tuple (L),....L,) of nonintersecting lattice paths with end
points as above such that the antinodes are necessarily in supp(8). This can be seen,
for instance, by the light-and-shadow technique (with sun in the southeast) of Viennot
(1977). Indeed, we can begin at 4, traverse vertically downwards to A’p = (u1,01)
till no point of supp(#) exists further downwards, then turn left at 4’, and continue
horizontally till the column index reaches either a(2, p) or an integer j with (u, ;) €
supp(#) for some u>u,; at the first such instance, we go down and proceed as in the
case of 4,. This determines the path L, from 4, to B,. Replacing supp(6), 4,. B,
and a(2, p) by supp(0)\L,, Ap-1, By—1 and a(2. p— 1) respectively, we obtain L,
by the same procedure. Continuing in this manner, we have (L,,...,L,) as desired.
We can now vary the number of antinodes, and we obtain

Imon(2,m, p.a. V) =3 He Mg,
=

where M is the number of monomials of degree ¥ in as many variables as the total
length of the above lattice paths, namely, Y7 [m(1) — a(1,i) + m(2) — a(2,i) + 1],
such that E of these variables necessarily occur. With C as defined in the Introduction,

we clearly have My = (lvff“'), and thus

V-E+C
|mon(2,m, p.a, V)| = ZHE(m, p,a)( c )
=
Now if both sides of the identity (1 —X )" *£=1 = (1 = X)E(1 —X)~ "' (in the ring
of formal power series in X) are expanded by Binomial Theorem, then by comparing
the coefficient of X, we obtain that

V-E+C\ L p(E\(V+C-D
() e ()(e5”)

Therefore, it follows that |mon(2,m, p,a, V)| = F(m, p,a, V). Finally, the well-known
bijection of Robinson-Schensted-Knuth can be used to give an explicit bijection be-
tween stab(2,m, p.a. V') and mon(2,m, p.a,V’) (cf. Abhyankar and Kulkarni, 1989/90),
and thus we have the desired identity. [

Example. First, we note that the condition ind(supp(f)))< p in the above definition
of mon(2,m, p.a,V) corresponds to saying that the monomial ¢ is not divisible by
the principal diagonal of any minor of size > p, whereas the condition ind(6; ;) < /
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means that the principal diagonal of any minor of size =/, with entries in exactly one
of the striped regions in Fig. 3 (excluding the dotted lines), does not divide 6.

For instance, if m = (5.6) and a = (4 > 2 > 1|2 < 3 < 5), then the monomial
0 = X} X23X33X36Xi5X56 is an element of mon(2.m, p.a, V) with p =3 and V = 8.
It may be noted that the tuple of nonintersecting lattice paths corresponding to this
monomial is precisely the triple (L,,L,,L3) depicted earlier, whereas the standard
bitableaux corresponding to this monomial is the bitableaux depicted ecarlier. Indeed,
in the correspondence of Abhyankar and Kulkarni (1989/90), the standard bitableaux
associated with a monomial ¢ is obtained by first writing ¢ as a two-rowed array

q1 [/} B/ N

PP .. pr,
such that § = HL] Xy p and for 1<i < V, either g; < ¢;-y or ¢; = qi.1 and p; = piy,
and then using a variation (namely, the one that yields row-strict bitableaux) of the
usual Robinson-Schensted—Knuth correspondence (cf. Knuth, Section 5.1.4, 1973).

Remark. Combining the (Abhyankar—Kulkarni version of) Robinson—Schensted—Knuth
correspondence with the arguments above, we have a ‘combinatorial’ proof of the
identity

[stab(2.m. p.a. V) =S He(m, p,a)( c + )

E

when M, is interpreted in terms of lattice paths as in Theorem 1. This shows that
the problem of obtaining a bijective proof’ or ‘combinatorial proof’ of Abhyankar’s
formula can be reduced to finding such a proof of the Lattice Path formula. The
latter has very recently been achieved by Krattenthaler (1993), who actually proves a
somewhat stronger result.

The ideal /( p,a), alluded to in the Introduction, is defined to be the ideal in the
polynomial ring K[X] = K[X;; : 1<i<m(1), | <j<m(2)], where K is a field, gen-
erated by all (p + 1) x (p + 1) minors of the m(1) x m(2) matrix X = (Xj;) and
all / x [/ minors of the submatrices (X,,) 1., w1, and (X)) (o ewa.  for 1<I<p.

T<er<m(2) I<r<a2. )

7

(a'(1> l)’ 1)1

Fig. 3.
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It 1s a homogeneous ideal and, as remarked earlier, its Hilbert function is given by
F(m, p.a, V) (cf. Abhyankar, 1988). A computation of the Hilbert series of /(p,a),
viz., 30, oo F(m. p.a. V)t is described in Section 8 of Galigo (1983). After setting
up some notation below, we give a slightly different description of this Hilbert series,
connecting 1t with lattice path enumeration.

Notation. With m = (m(1),m(2)) and bivector a = (a(k’i))fi . as earlier, we put
By
F=m{l)—a(l.i), s;i=m(2)—a(2,i) fori=1,..., P,
RZX:II', and S:Zp:s,»,
i- izl
Note that since a(k,i) is strictly increasing in i, we have p —i<r;<m(l) — 1 and
p—i<s;€<m(2) — i, for 1 <i< p. Next, we put

A(p,a)
={Y [lL.m(1)]=x[1,m(2)]: Y =supp()) for some (0 € mon(2,m, p,a,V)}.

Evidently, 4(p.a) is an abstract simplicial complex, and using some results from
Herzog and Trung (1992) or, alternately, the equality [stab(2, m, p,a, V)| = |mon(2,m, p,
a, V)|, it can easily be seen that the Stanley-Reisner ring of A(p,a) is isomorphic as a
graded K-module to K[X]//( p,a). Lastly, we put £* = max{E € Z : Hg(m, p,a) # 0}.
Observe that we clearly have E* >0.

Theorem 3. We have 0<E*< (3.7, min{ri.s;}) < min{R.S} <C. and the Hilhert
series of the ring K{X/I( p.a) is given by
Z[é;() He(m, p,ay*
( 1 — t)(' +1
In particular, {He(m, p.a) . E=0} is the h-vector of the simplicial complex A(p,a)
assoctated with 1( p.a).

Proof. Clearly, a lattice path from A; to B; can have at most min{r;,s;} antinodes.
Hence, the first inequality for £* follows from Theorem 1. The subsequent inequalities
are obvious, Now for E<C and V>0, we have

(V ~E+ C) _ (‘1),5(? - 1)
c >

and thus, using the identity for F(m. p.a, V) in the above Remark, we find

3 = X [—C—1 L
> Fm, paV 3 = Z HL-(m.p.a)tE > i (?,)' -k N
=0 E—Q Tk V- E

Remark. The equivalence of the Hilbert series formula above and the one given in
Galigo (1983) is easily seen using the multilinearity of the determinant. The upper

RULL i N o
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bound for £* given in the above result [which is also noted in the Corollary to (3.3.3)
of Modak (1992)] improves the bound min{R,S} given by Galigo (1983). In fact, as
Krattenthaler has pointed out to me, the bound ), min{r;,s;} is attained if ri,...,r,
and s1,...,s, are strongly nonconsecutive, i.c., if [, —#_| =2 and |s; —s;_(| =2 for
i=2,....p.

From Commutative Algebra, we know that the a-invariant, say a(/(p,a)), of the
residue class ring 4 = K[X]//(p,a) [which is known to be a homogeneous Cohen—
Macaulay ring, see Herzog and Trung (1992)], viz., the least degree of a generator of
the graded canonical module w4 of 4, is given by the order of the pole of the Hilbert
series of 4 at infinity. Thus, in our notation, a({/( p,a)) = E*—C—1. In the special case
when a(l,i) = a(2,i) =i for 1 <i< p, the ideal /( p,a) is the classical determinantal
ideal /,; of K[X] generated by all (p+ 1) x(p-+ 1) minors of X; in this case, Gribe
(1988) has shown that the a-invariant equals — p[max{m(1),m(2)}]. This result has
been extended to the weighted case for the classical determinantal and Pfaffian ideals
by Bruns and Herzog (1992). Following is another generalization of Grabe’s result.

Theorem 4. If ..., rp are consecutive and v;=s; for 1 <i< p, then
E"=58— w and a(l(p,a)) = —R — IJ(L;—]—) = —p(r +1).
And if sy,.... s, ure consecutive and s;=r; for 1 <i< p, then
E*=R- % and a(l(p.a))=—-S — ﬂ—[%n = —p(s; + 1).

Proof. Suppose ry,...,r, are consecutive and r; =s; for 1 <i< p. Given a lattice path
L (uo.vo), (uy,v1), ... (g, vy), et us call {1,021 ), (u;, 1;)} the ith step of L, and
refer to it as a horizontal step if w;_y = u; and v; = v;_y + 1. Let (Ly,...,L,) be a
p-tuple of nonintersecting lattice path, where L; is from A; to B;. Let E; be the number
of antinodes of L;. By decreasing induction on i, we see that the first p — i steps of
L; must be horizontal, for 1</ < p. Thus, it follows that for 1 <i< p, we have

E; = number of antinodes of a path L! from A/ = (a(1,i),m(2) — p+1i) to B,.
Now the RHS above is clearly < min{m(2)— p+i—a(2,i),m(1)—a(l,i)} =s,—(p—i).

Hence Z[p:l Ei<S - %p(p — 1). On the other hand, given any i € [1. p], if we let L}
be the lattice path from A4; to B, given by the #; +s; + 1 points

(a(1,i), m(2y—r), r=0.1,..., p— 1
(a(L,Y+r—p+i, m(2)—r + D (a(L,))+r—p+i, m(2)—r), r=p—i+l,....5,
(a(bL,iy+r—p+ia2,i)). r=s+1,.... v+ p -1

then we find that L] has precisely s; —( p — i) antinodes and, moreover, Lj....,L}, are
readily seen to be nonintersecting. It follows that £ = § — %p(p — 1) and, conse-
quently, a(/(p.a))=E*—-R-S—-p = —%p(er 1Yy— R = —p(1 4+ r). The other

case i1s similiar. ]
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3. Multitableaux

In this section we consider multitableaux and higher dimensional determinants. This
is a largely unexplored territory. We describe briefly what is known and discuss some of
the problems suggested by these notions, especially in view of our earlier observations.

The notion of a multitableau is fairly straightforward — it is simply a tableau having
multiple sides. A typical row, called a multivector, looks like

a=(alk,i))1<i<q1<icp With I<a(k, 1) <. <alk, p) for 1<k <gq.

where ¢, the number of sides, is called the width or the dimension and p is called
the length (of a). By analogy, a multivector should correspond to something like the
minor of a g-dimensional matrix. One needs, then, a suitable notion of a determinant
of a higher dimensional matrix, and it can, in fact, be found in the works of Cayley
(1843) and some of his successors (see Muir and Metzler, 1933). The theory is some-
what nicer in even dimensions. At any rate, the set stab(g,m, p,a, V') of all standard
multitableaux of width ¢, bounded by m = (m(1),...,m(q)), of area V', and dominated
by a multivector @ of length p can certainly be considered; it was asked in Abhyankar
(1984, 1988) whether a polynomial formula for its cardinality can be found. An affir-
mative answer for even values of ¢ is given in Ghorpade (1989). The formula obtained
is as follows.

F(g.m.p,a, V)= 3% Fp(q,m, p.a)

beZ

V+R+p—1-D
R+p—1-D /)

where R = 3"1_ >°F  r(k,i), with r(k.i) = m(k) — a(k.i), and

Fp(g,m. p,ay=">_det G.(a).

where the parameter ¢ ranges over all ¢ x p integral matrices e = (e(k,i)) such that
the sum of the entries in the last row is D, and G.(@) is the g-dimensional matrix
whose (i, i...., ig)th entry is given by

g <r(1,m+ ki) - e(k.i”) <r(k,ik)+ i — im)

/\-1;[| r(ka l/\) e(kw l/«) - e(kw i/(-l )

with the convention that iy =e(0,i)= 0 for 1 <i< p. For the definition of g-dimensional
determinants, see Muir and Metzler (1933) or Ghorpade (1989). In Abhyankar and
Ghorpade (1991), it is shown that the monomials in multiminors corresponding to
standard muititableaux are, as in the classical case, linearly independent. The above
formula can be used to show that, in general and unlike in the classical case, they
do not form a vector space basis of the corresponding polynomial ring (cf. Ghorpade,
1989).

Several questions may be asked. For example, it does not seem clear whether there
1s a close relationship between multidimensional determinants and some natural ana-
logue of lattice paths in multidimensional matrices or grids, which possibly extends
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the Gessel-Viennot formula stated in the Remark following Theorem 1. The higher-
dimensional paths studied in the literature (sce e.g., Handa and Mohanty, 1979) may
roughly be described as I-dimensional path-like configurations in multidimensional
space. It appears tempting to hazard a guess that path-like configurations of codimen-
sion 1 may be of greater relevance in our context. At any rate, it would be interesting
if an interpretation, in a manner similar to that for H;’s considered earlier (which sub-
sequently provides a combinatorial interpretation for Fp(m, p,a)), can also be obtained
for the coeflicients Fp(q,m, p,a).
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4. Appendix

A precursor to Abhyankar’s formula discussed in the previous sections is the fol-
lowing enumerative result for unitableaux (cf. Abhyankar, 1988 or Ghorpade, 1993).

Formula for stas : For any positive integers m and p, a univector a = (a) <--- <ap)
bounded by m (i.e.,1<a;<m for all i), and a p-tuple v = (v(1),....v(p)) of nonney-
ative integers, we have that the cardinality of the set stas(l,m, p,a,v) of all standurd
unitableaux bounded by m, dominated by a und of shape v (ic.. having exactly v(i)
rows of length i for 1<i< p), is given by

et <m—a,+v(i>+z‘(i+1)+-~-+r(p)a/‘—i>
WD+ i+ D+ p)+ i )i, )

Following Hodge (1943), we now consider the so-called generalized k-connexes
which, by definition, are polynomials in (s + 1) x (s 4+ 1) minors (0 <s<k) formed by
the first (s + 1) rows and any (s + 1) columns of the (k + 1) x (» + 1) matrix

00... X0y, ... X0
00...... Via, X
X =
00...... - Xy -+ Xkr
where ¥ =2, > % > -+ > % >0 are fixed integers (Hodge assumes % = 0 but

that is not really necessary) and x;; are variables. A power product is a typical term
in a k-connex (or a monomial in minors of x). A power product can be represented
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by a column-strict tableau whose columns specify the column indices of the minors
appearing in it, and listed so that the column lengths are nonincreasing; we say that
it has rype (ly,1y..... 1) if the row lengths of this tableau, in descending order, are
lo.1y.. ... l¢. A k-connex has type (lo,.... 1) if all the power products appearing in it
are of this type. A power product is said to be standard if the rows of the corresponding
column-strict tableau are nondecreasing. Hodge proves that the nonzero standard power
products of type (/o,...,/;) form a vector space basis for the k-connexes of type
(Zo..... 1), and their cardinality is

li+r—j
det ( ‘/>
P Y- Jo<ij<k

Note that if /, =/, = .- = [, (= V say), then the above expression 1s clearly a
polynomial in V. It is, in fact, the Hilbert function as well as the Hilbert polynomial
of the Schubert variety corresponding to % = (%.%,....% ) in the Grassmannian of
k-dimensional (projective) subspaces of P (cf. Hodge, 1943).

We remark that upon setting m = r+ 1, p =k + 1, and a;, = %_i—y + 1
for 1</< p. we have a one-to-one correspondence between the standard power prod-
ucts of type (/y,..../;) and unitableaux of shape (v(1),....v(p)), where I, = v(i +
1)+---+u(p) for 0<i<k, in which the nonzero power products correspond precisely
to the standard unitableaux dominated by the univector @ = (a; < --- < a,). This
can be seen by clementary considerations such as Laplace development of suitable
determinants. In fact, a proof is essentially contained in Hodge (1943) and Ch. X1V,
Section 9 of Hodge and Pedoe (1952). At any rate, it follows that the above formulae
of Abhyankar and Hodge are equivalent and thus either of them can be derived from
the other, It may also be remarked that combinatorial (i.e. bijective) proofs of either
of these formulae can easily be given using the Reflection Principle of Gessel and
Viennot (1985). A consequence of the above equivalence is that Abhyankar’s formula
for “stas’, like his other formulae, has a purely algebraic interpretation, namely, it gives
the vector space dimension of a finitely generated algebra.
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