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Abstract. We consider a q-analogue of abstract simplicial complexes, called

q-complexes, and discuss the notion of shellability for such complexes. It

is shown that q-complexes formed by independent subspaces of a q-matroid

are shellable. Further, we explicitly determine the homology of q-complexes

corresponding to uniform q-matroids. We also outline some partial results

concerning the determination of homology of arbitrary shellable q-complexes.

1. Introduction

Shellability is an important and useful notion in combinatorial topology and

algebraic combinatorics. Recall that an (abstract) simplicial complex ∆ is said to

be shellable if it is pure (i.e., all its facets have the same dimension) and there is a

linear ordering F1, . . . , Ft of its facets such that for each j “ 2, . . . , t, the complex

xFjy X xF1, . . . , Fj´1y is generated by a nonempty set of maximal proper subsets

of Fj . Here for i “ 1, . . . , t, by xF1, . . . , Fiy we denote the complex generated by

F1, . . . , Fi, i.e., the smallest simplicial complex containing F1, . . . , Fi.

From a topological point of view, a shellable simplicial complex is like a wedge of

spheres. In particular, the reduced homology groups are well understood. Shellable

simplicial complexes are of importance in commutative algebra partly because their

Stanley-Reisner rings (over any field) are Cohen-Macaulay. Gröbner deformations

of coordinate rings of several classes of algebraic varieties can be viewed as Stanley-

Reisner rings of some simplicial complexes. Thus showing that these complexes

are shellable becomes an effective way of establishing Cohen-Macaulayness of the

corresponding coordinate rings. Important classes of simplicial complexes that

are known to be shellable include boundary complex of a convex polytope, order
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complex of a “nice” poset (or more precisely, a bounded, locally upper semimodular

poset), and matroid complexes, i.e., complexes formed by the independent subsets

of matroids. For relevant background and proofs of these assertions, we refer to the

books of Stanley [21], Bruns and Herzog [5], the collection [8] of lecture notes, and

the survey article [4] of Björner.

We are interested in a q-analogue of some of these notions and results, wherein

finite sets are replaced by finite-dimensional vector spaces over the finite field Fq.

One of our motivation comes from the recent work of Jurrius and Pellikaan [14]

where the notion of a q-matroid is introduced and several of its properties are

studied. (See also Crapo [7] and Terwilliger [23] where more general notions are

studied.) Jurrius and Pellikaan [14] also outline the connections between rank

metric codes, which has been a topic of much current interest (see, e.g., the recent

survery by Gorla [10]), and q-matroids. The notion of a simplicial complex admits

a straightforward q-analogue, and this goes back at least to Rota [19]. Alder [1]

studied q-complexes in his thesis and defined when a q-complex is shellable. A

natural question therefore is whether the q-complex of independent subspaces of a

q-matroid is shellable. We will show in this paper that the answer is affirmative.

Next, we consider the question of determining the homology of shellable q-

complexes. This appears to be much harder than the classical case, and we are

able to make partial progress here by way of explicitly determining the homology

of q-spheres as well as the more general class of q-complexes formed by indepen-

dent subspaces of uniform q-matroids. We also describe the homology of a shellable

q-complex provided it satisfies an additional hypothesis. A basic stumbling block

(pointed out in [14] already) is that the notions of difference (of two sets) and com-

plement (of a subset of a given set) do not have an obvious and unique analogue in

the context of subspaces.

Our other motivation is from coding theory and the work of Johnsen and Verdure

[12] where to a q-ary linear code (or more generally, to a matroid), one can associate

a fine set of invariants, called its Betti numbers. These are obtained by looking at

a minimal graded free resolution of the Stanley-Reisner ring of a simplicial complex

that corresponds to the vector matroid associated to the parity check matrix of

the given linear code. The question that arises naturally is whether something

like Betti numbers can be defined in the context of rank metric codes, or more

generally, for q-matroids as in Jurrius and Pellikaan [14] or going even further, for

the pq,mq-polymatroids studied in the works of Shiromoto [20], Britz, Mammoliti

and Shiromoto [6], and Ghorpade and Johnsen [9], or the q-polymatroids studied by

Gorla, Jurrius, Lopez and Ravagnani [11]. We were led to the study of shellability

and homology of q-complexes, and especially, complexes associated to q-matroids

with a view toward a possible topological approach to the above question. The

question is still open, in general, but in the case of Gabidulin rank-metric codes, a



SHELLABILITY AND HOMOLOGY OF q-COMPLEXES AND q-MATROIDS 3

plausible definition has been proposed very recently in [13] by associating a classical

matroid to the q-matroid corresponding to the given Gabidulin rank-metric code,

and then exploiting an isomorphism between the lattice of flats of this classical

matroid and the lattice of q-flats of the q-matroid.

We remark that the only results we know thus far on the shellability of a q-

complex are those of Alder [1, Ex. 1.5.2] who showed that q-spheres are shellable.

Alder [1, §4.3.1] also studied certain q-complexes associated to symmetric groups

and observed that several of them are not shellable. Thus a general result obtained

here on the shellability of an arbitrary q-matroid complex seems noteworthy. More-

over, questions on the homology of a shellable q-complex (and the partial results

obtained here) could be of interest in themselves and also have the potential to be

useful in the study of rank metric codes. We also remark that Alder [1, §5.2] has de-

termined the so called modular homology of a special class of q-complexes, namely,

q-spheres. However, this modular homology depends on the “quantum character-

istic” m “ mpp, qq and, in turn, on a prime p that does not divide q. As such,

it is different from singular homology considered in this paper. In fact, singular

homology is readily available in the context of the well-developed theory of finite

topological spaces (which is briefly reviewed in §5.1) and it seems more natural and

more amenable for possible applications to q-matroids and rank metric codes. (See

Remark 6.12 for more on this.) But computing singular homology groups of arbi-

trary q-complexes, and even those that are shellable, seems hard, and as indicated

earlier, at present, we only have partial results about their explicit determination

for some classes of shellable q-complexes.

This paper is organized as follows. In the next section, we collect some prelimi-

naries and recall definitions of basic concepts such as q-complexes and q-matroids.

In Section 3, we outline a procedure called “tower decomposition” that provides

a useful way to order subspaces in a q-complex. The notion of shellability for q-

complexes is reviewed in Section 4 and the shellability of q-matroid complexes is

also established in this section. Next, we explicitly determine the homology of q-

spheres, and more generally, the homology of the so called uniform q-complexes in

Section 5. Finally, our results on the homology of arbitrary shellable q-complexes

are described in Section 6.

2. Preliminaries

Throughout this paper q denotes a power of a prime number and Fq the finite

field with q elements. We fix a positive integer n, and denote by E the n-dimensional

vector space Fn
q over Fq. By ΣpEq we denote the set of all subspaces of E. Given

any y1, . . . , yr P E, we denote by 〈y1, . . . , yr〉 the Fq-linear subspace of E generated

by y1, . . . , yr. Also, for U, V,W P ΣpEq, we often write U “ V ‘ W to mean

that U “ V `W and V XW is the space t0u consisting of the zero vector in E.
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In other words, all direct sums considered in this paper are internal direct sums.

For A P ΣpEq, we usually write dimA to mean dimFq A, i.e., the Fq-vector space

dimension of A. In other words, the subscript Fq is often dropped. Occasionally,

vector spaces over an extension of Fqm of Fq are considered and while considering

the dimension of such spaces, the relevant subscript will always be used. We denote

by N the set of all nonnegative integers, and by N` the set of all positive integers.

Basic definitions and results concerning simplicial complexes and matroids will

not be reviewed here. These are not formally needed, but they motivate the notions

and results discussed below. If necessary, one can refer to [21] or [8] for simplicial

complexes, shellability and related concepts, and to White [24] for basics (and more)

about matroids.

Definition 2.1. [19, §5] By a q-complex on E “ Fn
q we mean a subset ∆ of ΣpEq

satisfying the property that for every A P ∆, all subspaces of A are in ∆.

Let ∆ be a q-complex. Elements of ∆ are called faces of ∆. Faces of ∆ that

are maximal (w.r.t. inclusion) are called the facets of ∆. The dimension of ∆ is

maxtdimA : A P ∆u, and it is denoted by dim ∆. We say that ∆ is pure if all its

facets have the same dimension.

Example 2.2.

(i) Clearly, ΣpEq is a pure q-complex of dimension n. Also, ∆ :“ tA P ΣpEq :

A ‰ Eu is a pure q-complex of dimension n´ 1; we denote it by Sn´1
q and

call it the q-sphere of dimension n´ 1.

(ii) If A is any subset of ΣpEq, then tB P ΣpEq : B Ď A for some A P Au is a

q-complex, called the q-complex generated by A, and denoted by xAy. In

case A “ tA1, . . . , Aru, we often write xAy as xA1, . . . , Ary. By convention,

if A is the empty set, then xAy is defined to be the empty set.

We now recall the definition of a q-matroid, as given by Jurrius and Pellikaan [14].

Definition 2.3. A q-matroid on E is a pair M “ pE, ρq, where ρ : ΣpEq Ñ N is a

function (called the rank function of M) satisfying the following properties.

(r1) 0 ď ρpAq ď dimA for all A P ΣpEq,

(r2) If A,B P ΣpEq with A Ď B, then ρpAq ď ρpBq,

(r3) ρpA`Bq ` ρpAXBq ď ρpAq ` ρpBq for all A,B P ΣpEq.

Definition 2.4. Let M “ pE, ρq be a q-matroid. We call ρpEq the rank of M , and

we sometimes denote it by ρpMq. Let A P ΣpEq. Then A is said to be independent

(in M) if ρpAq “ dimA; otherwise it is called dependent. Further, A is a basis (of

M) if A is independent and ρpAq “ ρpMq.
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Example 2.5. Given a positive integer k ď n, consider ρ : ΣpEq Ñ N defined by

ρpAq “

$

&

%

dimA if dimA ď k,

k if dimA ą k.

Then it is easily seen that pE, ρq is a q-matroid of rank k; this is called the uniform

q-matroid on E of rank k, and it is denoted by Uqpk, nq.

Important properties of independent subspaces in a q-matroid (which, in fact,

characterize a q-matroid) are proved in [14, Thm. 8] and recalled below.

Proposition 2.6. Let M “ pE, ρq be a q-matroid, and let I be the family of

independent subspaces in M . Then I satisfies the following four properties:

(i1) I ‰ H.

(i2) A P ΣpEq and B P I with A Ď B ñ A P I.

(i3) A,B P I with dimA ą dimB ñ there is x P AzB such that B ` 〈x〉 P I.

(i4) A,B P ΣpEq and I, J are maximal independent subspaces of A,B, respectively

ñ there is a maximal independent subspace K of A`B such that K Ď I ` J .

It is shown in [14] that if I is an arbitrary subset of ΣpEq satisfying (i1)–(i4),

then there is a unique q-matroid MI “ pE, ρIq whose rank function ρI is given by

ρIpAq “ maxtdimB : B P I, B Ď Au for A P ΣpEq;

moreover, I is precisely the family of independent subspaces in MI .

Remark 2.7. From (r2) in Definition 2.3 and (i3) in Proposition 2.6, it is clear

that bases in a matroid M are precisely the maximal independent subspaces in M .

We now recall some fundamental properties of bases of a q-matroid, which pro-

vide yet another characterization of q-matroids. For a proof, see [14, Thm. 37].

Proposition 2.8. The set B of bases of a q-matroid on E satisfies the following.

(b1) B ‰ H.

(b2) If B1, B2 P B are such that B1 Ď B2, then B1 “ B2.

(b3) If B1, B2 P B and C P ΣpEq satisfy B1XB2 Ď C Ď B2 and dimB1 “ dimC ` 1,

then there is x P B1 such that C ` 〈x〉 P B.

(b4) If A1, A2 P ΣpEq and if Ij is a maximal element of tB X Aj : B P Bu
(with respect to inclusion) for j “ 1, 2, then there is a maximal element J

of tB X pA1 `A2q : B P Bu such that J Ď I1 ` I2.

The third property here is called the basis exchange property. It can be used

together with (b1) and (b2) to deduce that any two bases of a q-matroid have the

same dimension. See, for example, [14, Prop. 40].

As a consequence of Proposition 2.8, we shall derive the following dual basis

exchange property, which will be useful to us in the sequel.



6 SUDHIR R. GHORPADE, RAKHI PRATIHAR, AND TOVOHERY H. RANDRIANARISOA

Corollary 2.9. Let M “ pE, ρq be a q-matroid. Let B1, B2 be bases of M with

B1 ‰ B2 and let y P B2zB1. Then there exist U P ΣpEq and x P B1zB2 such that

B1 XB2 Ď U, B1 “ U ‘ 〈x〉 , and U ‘ 〈y〉 is a basis of M . (1)

Proof. Let r :“ ρpMq and s :“ r´dimB1XB2. Note that 1 ď s ď r. We use (finite)

induction on s to prove the existence of U P ΣpEq and x P B1zB2 satisfying (1).

First, suppose s “ 1. Then dimB1XB2 “ r´ 1 and so if we take U :“ B1XB2

and x an arbitrary element of B1zB2, then we readily see that (1) is satisfied.

Next, suppose s ą 1 and the result holds for smaller values of s. Since s ě 2, we

have dimB1 XB2 ď r ´ 2, and so we can find A P ΣpEq and y1 P B2zB1 such that

B1 XB2 Ď A Ď B2 and B2 “ A‘ 〈y〉‘
〈
y1
〉
.

In particular, dimA “ r ´ 2. Consider C :“ A ‘ 〈y〉. Clearly, B1 X B2 Ď C Ď B2

and dimB1 “ dimC ` 1. So by (b3) in Proposition 2.8, there is x1 P B1 such that

C ‘ 〈x1〉 is a basis of M . Note that x1 R B2, since C Ď B2. Let B12 :“ C ‘ 〈x1〉.
Since y P C and y P B2zB1, we see that y P B12zB1. Moreover,

x1 P B1 XB
1
2 and B1 XB2 Ď B1 XA Ď B1 X C Ď B1 XB

1
2.

It follows that B1, B
1
2 are bases of M such that B1 ‰ B12 and y P B12zB1, and

moreover, dimB1 X B
1
2 ą dimB1 X B2, i.e., s1 :“ r ´ dimB1 X B

1
2 ă s. Hence, by

the induction hypothesis, there is U P ΣpEq and x P B1zB
1
2 such that

B1 XB
1
2 Ď U, B1 “ U ‘ 〈x〉 , and U ‘ 〈y〉 is a basis of M .

Since B1 X B2 Ď B1 X B12, we see that x P B1zB2 and (1) holds. This completes

the proof. �

We end this section by noting that if M “ pE, ρq is a q-matroid on E “ Fn
q

with ρpMq “ r, then it follows from Proposition 2.6 that M defines a q-complex

∆M whose faces are precisely the independent subspaces of M , i.e., those Fq-linear

subspaces F of Fn
q such that dimF “ ρpF q. Moreover, in view of Remark 2.7, the

facets of ∆M are precisely the bases of M . We will refer to ∆M as the q-complex

associated to M . Since any two bases of M have the same dimension r, it is clear

that ∆M is pure of dimension r. By a q-matroid complex on E, we shall mean the

q-complex associated to a q-matroid on E. Following Jurrius and Pellikaan [14], a

nontrivial example of q-matroid complex is provided by the following.

Example 2.10. Recall that a (vector) rank metric code of length n over an ex-

tension Fqm of Fq is, by definition, an Fqm-linear subspace of Fn
qm . Let C be such

a rank metric code. Suppose dimFqm
C “ k. Let G be a generator matrix of C,

i.e., an k ˆ n matrix with entries in Fqm whose rows form a basis of C. Given an

Fq-linear subspace A of E “ Fn
q with dimA “ r, let YA denote a generator matrix

of A, i.e., an r ˆ n matrix with entries in Fq whose rows form a basis of A, and let
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ρCpAq :“ rankpGY T
A q, where Y T

A denotes the transpose of YA. It is shown in [14,

§ 5] that pE, ρCq is a q-matroid of rank k. Hence

∆C :“ tA P ΣpEq : rankpGY T
A q “ dimAu

is a pure q-complex of dimension k “ dimFqm
C.

3. Tower Decompositions

Suppose ∆ is a pure q-complex on Fn
q of dimension r. Then its facets are certain

r-dimensional subspaces of Fn
q and a priori it is not clear how they can be linearly

ordered. In this section, we consider a variant of row reduced echelon forms, called

tower decompositions, which will allow us to put a total order on such subspaces.

Fix a positive integer r ď n and let GrpEq denote the Grassmannian of r-planes

in E “ Fn
q defined (as a set) by

GrpEq :“ tU : U is a r-dimensional subspace of Eu.

Given any U P GrpEq, let MU be a generator matrix of U in row echelon form, i.e.,

let MU be an r ˆ n matrix in row echelon form whose row vectors form a basis of

U . We denote by ur, ur´1, . . . , u1 the row vectors of MU so that

MU “

»

—

—

–

ur
...

u1

fi

ffi

ffi

fl

.

We define subspaces U1, . . . , Ur of E and subsets U1, . . . , Ur of Ezt0u by

Ui :“ 〈u1, . . . , ui〉 and U i :“ UizUi´1 for i “ 1, . . . , r, (2)

where, by convention, U0 :“ t0u. Further, we define

τpUq :“ pU1, U2, . . . , Urq,

and we shall refer to this as the tower decomposition of U . Observe that although

MU (or equivalently, the vectors u1, . . . , ur) need not be uniquely determined by

U , the subspaces Ui (and hence the subsets U i) are uniquely determined by U . To

see this, it suffices to note that there is a unique generator matrix of U , say M˚
U ,

which is in reduced row echelon form, and it is easily seen that the corresponding

subspace U˚i is equal to Ui for each i “ 1, . . . , r. Thus, the tower decomposition

τpUq of U depends only on U . Moreover, it is obvious that τpUq determines U ,

since U “ Ur. Note also that the set Uzt0u of nonzero elements of U has the

disjoint union decomposition

Uzt0u “
r
ž

i“1

U i. (3)
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Definition 3.1. Given any nonzero vector u P Fn
q , the leading index of u, denoted

ppuq, is defined to be the least positive integer i such that the i-th entry of u is

nonzero. Further, given a subset S of Fn
q , the profile ppSq of S is defined to be the

union of the leading indices of all of its nonzero elements, i.e.,

ppSq “ tppuq : u P Szt0uu .

Note that the profile of S can be the empty set if S contains no nonzero vector.

Lemma 3.2. Let U P GrpEq and let ur, . . . , u1 be the rows of a generator matrix

MU of U in row echelon form. Then ppu1q ą ¨ ¨ ¨ ą ppurq. Further, given any

i P t1, . . . , ru, if Ui, U i are as in (2), then ppU iq “ tppuiqu, and for any u P Uzt0u,

u P U i ðñ ppuq “ ppuiq.

Proof. Since MU has rank r and it is in row-echelon form, it is clear that u1, . . . , ur

are nonzero and ppu1q ą ¨ ¨ ¨ ą ppurq. Now fix i P t1, . . . , ru. Then ppuiq ă ppujq

for 1 ď j ă i. Consequently, if u “ c1u1 ` ¨ ¨ ¨ ` ciui for some c1, . . . , ci P Fq with

ci ‰ 0, then ppuq “ ppciuiq “ ppuiq. This shows that ppU iq “ tppuiqu. The last

assertion follows from this together with (3). �

Fix an arbitrary total order ă on Fq such that 0 ă 1 ă α for all α P Fqzt0, 1u.

This extends lexicographically to a total order on E, which we also denote by ă.

For v, w P E “ Fn
q , we may write v ĺ w if v ă w or v “ w.

Lemma 3.3. Let v, w be nonzero vectors in E “ Fn
q . If ppvq ă ppwq, then w ă v.

Proof. Let i P t1, . . . , nu be such that ppvq “ i. Suppose ppwq ą i. Then the jth

coordinate wj of w is 0 for 1 ď j ď i, whereas the i-th coordinate of v is nonzero.

Hence it is clear from the definition of ă that w ă v. �

In what follows, for any nonempty subset S of E “ Fn
q , we denote by minS the

least element of S with respect to the total order ă on E defined above. Some

simple observations concerning this notion are recorded below for ease of reference.

Lemma 3.4. Let S be a nonempty subset of E “ Fn
q .

(i) If S is closed with respect to multiplication by nonzero scalars (for example,

if S “ U i for some i, where U i are as in (2) for some subspace U P GrpEq),

then the first nonzero entry of the vector minS in Fn
q is necessarily 1.

(ii) If S “ Uzt0u for some subspace U P GrpEq, then minS “ minU1, where

U1 is as in (2).

Proof. The assertion in (i) is clear since 1 ă α for all nonzero α P Fq. To prove (ii),

let U P GrpEq and let U i, 1 ď i ď r, be as in (2). Write u :“ minU1. Then for

each v P U2 Y ¨ ¨ ¨ Y Ur, by Lemma 3.2 we see that ppuq ą ppvq, and hence u ă v,

thanks to Lemma 3.3. Thus, from (3), we obtain u “ minpUzt0uq, as desired. �



SHELLABILITY AND HOMOLOGY OF q-COMPLEXES AND q-MATROIDS 9

We are now ready to define a nice total order on GrpEq.

Definition 3.5. Let U, V P GrpEq and let τpUq “ pU1, . . . , Urq and τpV q “

pV1, . . . , Vrq be the tower decompositions of U and V , respectively. Define U 4 V

if either U “ V or if there exists a positive integer e ď r such that

Uj “ Vj for 1 ď j ă e, Ue ‰ Ve, and minUe ă minV e.

Lemma 3.6. The relation 4 defined in Definition 3.5 is a total order on GrpEq.

Proof. Clearly, 4 is reflexive. Next, let U, V P GrpEq and let τpUq “ pU1, . . . , Urq

and τpV q “ pV1, . . . , Vrq be their tower decompositions. If U ‰ V , then there exists

a unique positive integer e ď r such that Uj “ Vj for 1 ď j ă e and Ue ‰ Ve. Let

u :“ minUe and v :“ minV e. Observe that Ue “ Ue´1 ‘ 〈u〉 and Ve “ Ve´1 ‘ 〈v〉.
Since Ue´1 “ Ve´1 and Ue ‰ Ve, it follows that u ‰ v. Hence either u ă v or v ă u,

but not both. This shows that any two elements of GrpEq are comparable with

respect to 4. In particular, 4 is antisymmetric.

It remains to show the transitivity of 4. To this end, suppose U 4 V and V 4W

for some W P GrpEq. Let τpW q “ pW1, . . . ,Wrq be the tower decomposition of W .

If U “ V or V “ W , then clearly U 4 W . Suppose U ‰ V and V ‰ W . Then

there are unique integers e, d P t1, . . . , ru such that

Uj “ Vj for 1 ď j ă e, Ue ‰ Ve, and minUe ă minV e.

and

Vj “Wj for 1 ď j ă d, Vd ‰Wd, and minV d ă minW d.

First, suppose e ă d. Then it is clear that

Uj “ Vj “Wj for 1 ď j ă e, Ue ‰ Ve “We, and minUe ă minV e “ minW e.

Hence U 4W . Likewise, if we suppose d ă e, then

Uj “ Vj “Wj for 1 ď j ă d, Ud “ Vd ‰Wd, and minUd “ minV d ă minW d.

So, we again obtain U 4 W . Finally, if e “ d, then the transitivity of ă on E is

readily seen to imply that U 4W . Thus 4 is a total order on GrpEq. �

4. Shellability of q-matroid complexes

In this section, we begin with the definition of shellability of a q-complex and an

equivalent formulation of it. Next, we shall use the results of the previous section

to obtain a shelling of q-matroid complexes.

The following definition is a straightforward analogue of the notion of shellability

for q-complexes recalled in the Introduction. A slightly different, but obviously

equivalent, definition was given by Alder [1, Definition 1.5.1].
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Definition 4.1. Let ∆ be a q-complex on E “ Fn
q . A shelling of ∆ is a linear

order F1, . . . , Ft on the facets of ∆ such that for each j “ 2, . . . , t, the q-complex

xFjy X xF1, . . . , Fj´1y is generated by a nonempty set of maximal proper subspaces

of Fj .

We say that a q-complex is shellable if it is pure and it admits a shelling.

Example 4.2. (Alder [1, Example 1.5.2]) A q-sphere Sn´1
q is a shellable q-complex

on E “ Fn
q of dimension n ´ 1. Indeed, its facets are the pn ´ 1q-dimensional

subspaces of E, and if F1, . . . , Ft is an arbitrary listing of these facets, then it is

easily seen from the formula for the dimension of the sum of two subspaces, that

dimpFi X Fjq “ n ´ 2 for 1 ď i ă j ď t. Hence, for any j “ 2, . . . , t, we see that

tFi X Fj : 1 ď i ă ju is a nonempty set of maximal proper subspaces of Fj , which

generates xFjy X xF1, . . . , Fj´1y. Thus F1, . . . , Ft is a shelling of Sn´1
q .

The following characterization is analogous to the corresponding result in the

classical case (see, e.g., [8, p. 135]) and it will be useful to us in the sequel.

Lemma 4.3. Let ∆ be a pure q-complex of dimension r, and let F1, . . . , Ft be a

listing of the facets of ∆. Then F1, . . . , Ft is a shelling of ∆ if and only if for every

i, j P N` with i ă j ď t, there exists k P N` with k ă j such that

Fi X Fj Ď Fk X Fj and dimpFk X Fjq “ r ´ 1. (4)

Proof. Suppose F1, . . . , Ft is a shelling of ∆. Let i, j P N` with i ă j ď t. Then

Fi X Fj Ď Gj , where Gj P xFjy X xF1, . . . , Fj´1y is a maximal proper subspace of

Fj . Since Gj P xF1, . . . , Fj´1y, there exists k P N` with k ă j such that Gj Ď Fk.

Thus, Gj Ď Fk X Fj and moreover, dimGj “ dimFj ´ 1 “ r ´ 1. Now, Fk ‰ Fj ,

since k ă j. Also, dimFk “ dimFj “ r. It follows that dimpFkXFjq ď r´ 1. This

implies that Gj “ Fk X Fj , and so both the conditions in (4) are satisfied.

Conversely, suppose for every i ă j ď t, there exists k ă j such that (4) holds.

Let j P t2, . . . , tu and let F be a face of xFjyXxF1, . . . , Fj´1y. Then F is a subspace

of Fj as well as Fi for some i ă j. For these i, j, there exists k P N` with k ă j such

that (4) holds. Now F Ď Fi X Fj Ď Fk X Fj and so F is a subspace of Fk X Fj . It

follows that tFkXFj : 1 ď k ă j and dimpFkXFjq “ r´1u constitutes a nonempty

set of maximal proper subspaces, which generates xFjy X xF1, . . . , Fj´1y. �

We are now ready to prove the main result of this section. Here we make use

of the total order 4 given in Definition 3.5. As usual, for any U, V P ΣpEq of the

same dimension, we write U ă V to mean that U 4 V and U ‰ V .

Theorem 4.4. Let M be a q-matroid on E “ Fn
q of rank r. Then the q-complex

∆M associated to M is shellable. In fact, if F1, . . . , Ft is an ordering of the facets

of ∆M such that Fi ă Fj for 1 ď i ă j ď t, then this defines a shelling of ∆M .
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Proof. We have seen already ∆M is a pure q-complex of dimension r. Let F1, . . . , Ft

be an ordering of the facets of ∆M such that F1 ă ¨ ¨ ¨ ă Ft. Fix integers i, j with

1 ď i ă j ď t. We need to show that there is a positive integer k ă j such

that (4) holds. This will be done in several steps. First, let us denote the tower

decompositions of Fi and Fj by

τpFiq “ pW1, . . . ,Wrq and τpFjq “ pV1, . . . , Vrq.

Since Fi ă Fj , there is a unique positive integer e ď r such that

W1 “ V1, . . . ,We´1 “ Ve´1, We ‰ Ve, and minW e ă minV e.

Write w :“ minW e and v :“ minV e. We claim that w P FizFj . Clearly, w P Fi

and w ‰ 0. Suppose on the contrary that w P Fj . Since w ă v, by Lemma 3.3, we

see that we can not have ppvq ą ppwq. Thus, ppvq ď ppwq. Now since w P Fjzt0u,

it follows from Lemma 3.2 that if ppvq “ ppwq, then w P V e. But this contradicts

the minimality of v in V e, since w ă v. Thus ppvq ă ppwq. So w P Fjzt0u

with ppwq ą ppvq and ppV eq “ tppvqu. Hence it follows from Lemma 3.2 that

w P V s for some positive integer s ă e. But then w P W s and so by Lemma 3.2,

ppW sq “ tppwqu “ ppW eq, which is a contradiction. This proves the claim.

Since w P FizFj , we use the dual basis exchange property (Corollary 2.9) to

obtain U P ΣpEq and x P FjzFi such that

Fi X Fj Ď U, Fj “ U ‘ 〈x〉 , and U ‘ 〈w〉 is a basis of M.

The last condition implies that U ‘ 〈w〉 “ Fk for a unique positive integer k ď t.

Note that k ‰ j since w R Fj . Now it is clear that FiXFj Ď U Ď FkXFj . Further,

FkXFj is a proper subspace of Fk, since k ‰ j, and hence dimFkXFj ď r´1. On

the other hand, since dimU “ r´1 and U Ď FkXFj , we see that dimFkXFj “ r´1.

It remains to prove that k ă j. To this end, we consider the tower decompositions

of U and Fk, say,

τpUq “ pU1, . . . , Ur´1q and τpFkq “ pZ1, . . . , Zrq.

Recall that Ws “ Vs for 1 ď s ă e. We shall now show that Us “ Vs for 1 ď s ă e.

To see this, let d be the least positive integer such that Ud ‰ Vd. Suppose, on

the contrary that d ă e. Let α :“ minUd and β :“ minV d. Observe that α P

Uzt0u Ď Fjzt0u. Now if ppαq “ ppβq, then from Lemma 3.2 we see that α P V d.

Consequently, Vd “ Vd´1 ‘ 〈α〉 “ Ud´1 ‘ 〈α〉 “ Ud, which is a contradiction.

Also, if ppαq ą ppβq, then from Lemma 3.2 we see that α P V s for some positive

integer s ă d. But then α P Vs “ Us Ď Ud´1, which is a contradiction since

α P Ud “ UdzUd´1. It follows that ppαq ă ppβq. Consequently, from Lemma 3.2

we see that β P Us for some positive integer s ă d. But then β P Us “ Vs Ď Vd´1,

which is a contradiction, since β P V d “ VdzVd´1. This proves that d ě e and

therefore Us “ Vs for 1 ď s ă e, as desired.
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Now let ` be the least positive integer such that V` ‰ Z`. We shall show that

k ă j, or equivalently, Fk ă Fj . by considering separately the following two cases.

Case 1. ` ă e.

Let v` :“ minV` and z` :“ minZ`. Note that if ppz`q ą ppv`q, then by

Lemma 3.3, z` ă v`, and so Fk ă Fj . Thus, to complete the proof in this case

it suffices to show that ppz`q ď ppv`q leads to a contradiction.

First suppose ppz`q ă ppv`q. Since ` ă e ď d, we see that v` P V` “ U` Ď Fk

and v` ‰ 0. Thus, from Lemma 3.2 it follows that v` P Zs for some positive integer

s ă `. But then Zs “ Vs Ď V`´1 and so v` P V`´1, which is a contradiction.

Next, suppose ppz`q “ ppv`q. In this case, if z` P Fj , then we must have z` P V`,

thanks to Lemma 3.2. But then Z` “ Z`´1 ‘ 〈z`〉 “ V`, which is a contradiction.

Thus z` R Fj . In particular, if y :“ z` ´ v`, then y ‰ 0. Moreover, by part (i) of

Lemma 3.4, the first nonzero entry in z` as well as v` is 1. Hence ppyq ą ppz`q “

ppv`q. Also, y P Fk, since z` P Fk and v` P V` “ U` Ď Fk. Thus, from Lemma 3.2,

we see that y P Zs for some positive integer s ă `. But then y P Vs, and so y P Fj ,

which is a contradiction. This completes the proof in Case 1.

Case 2. ` ě e.

Here Zs “ Vs “ Ws for 1 ď s ă e. Also w ă v, where w “ minW e and

v “ minV e. So by Lemma 3.3, ppvq ď ppwq. Now pick any z P Ze so that

Ze “ Ze´1‘ 〈z〉 “ Ve´1‘ 〈z〉 and, by Lemma 3.2, ppZeq “ tppzqu. Now w P Fkzt0u

and so w P Zs for a unique positive integer s ď r. Also since w P W e, we see that

w R We´1 “ Ze´1. Thus s ě e and so, in view of Lemma 3.2, ppvq ď ppwq ď ppzq.

Now if ppvq “ ppzq, then ppwq “ ppzq, and hence w P Ze. Consequently,

minZe ĺ w ă v “ minV e,

which implies that Fk ă Fj . On the other hand, if ppvq ă ppzq, then by Lemma 3.3,

z ă v, and hence

minZe ĺ z ă v “ minV e,

which implies once again that Fk ă Fj , as desired. �

We remark that the shellability of the q-sphere Sn´1
q is a trivial consequence of

Theorem 4.4, because Sn´1
q is precisely the q-matroid complex corresponding to

the uniform q-matroid Uqpn´ 1, nq.

5. Homology of q-Spheres and Uniform q-Complexes

This section is divided into three subsections. In § 5.1 below, we review some

preliminaries concerning finite topological spaces and their homotopy. Next, we

consider q-spheres and explicitly determine their reduced homology groups in § 5.2.

These results are then generalized in § 5.3 to q-complexes associated to arbitrary

uniform q-matroids.
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5.1. Topological Preliminaries. Finite topological spaces, or in short, finite

spaces, are simply topological spaces having only a finite number of points. In

case they are T1, the topology is necessarily discrete and not so interesting. Rather

surprisingly, finite spaces that are T0 (but not T1)1 have a rich structure and a close

connection with finite posets. The study of finite spaces goes back to Alexandroff

[2] and it has had important contributions by Stong [22] and McCord [16]. Good

expositions of the theory of finite spaces are given by May [15] and Barmak [3].

Still, the theory is not as widely known as it should, and so for the convenience of

the reader, we provide here a quick review of the relevant notions and results.

Let X be a finite T0 space. Then for each x P X, the intersection, say Ux, of all

open sets of X containing x is open. Clearly tUx : x P Xu is a basis for (the topology

on) X. For x, y P X, define x ď y if x P Uy. Then this defines a partial order on X

(since X is T0); moreover Uy becomes the “basic down-set” tx P X : x ď yu.

On the other hand, suppose X is a finite poset (with the partial order denoted

by ď). We call a subset U of X a down-set (resp. up-set) if whenever y P U and

x P X satisfy x ď y (resp. y ď x), we must have x P U . We can define a topology

on X by declaring that the open sets in X are precisely the down-sets in X (or

equivalently, the closed sets in X are precisely the up-sets in X). This is called the

order topology on X, and it makes X a finite T0 space.

Let X,Y be finite posets, both regarded as finite topological spaces with the

order topology. Then it can be shown (cf. [3, Proposition 1.2.1]) that a function

f : X Ñ Y is continuous if and only if it is order-preserving. Further, if we let Y X

denote the set of all continuous functions from X to Y , then Y X is a poset with the

pointwise partial order defined (for any f, g P Y X) by f ď g if fpxq ď gpxq for every

x P X. Thus Y X can also be regarded as a finite topological space with the order

topology. Moreover, f, g P Y X are homotopic (which means, as usual, that there is

a continuous map h : X ˆ r0, 1s Ñ Y such that hpx, 0q “ fpxq and hpx, 1q “ gpxq

for all x P X) if and only if there is a continuous map α : r0, 1s Ñ Y X such that

αp0q “ f and αp1q “ g. We write f » g if f, g P Y X are homotopic. Also, X and

Y are said to be homotopy equivalent if there are f P Y X and g P XY such that

f ˝ g » IdY and g ˝ f » IdX . Finally, recall that X is said to be contractible if

it is homotopy equivalent to a point. Note that the homotopy groups as well as

the reduced (singular) homology groups of contractible spaces are all trivial. Recall

also that a topological space is acyclic if all of its reduced homology groups are

trivial. A contractible space is acyclic, but the converse is not true, in general.

We now recall some known basic results for which a reference is given. These

will be useful to us later. Unless mentioned otherwise, the topology on finite posets

1Recall that a topogical space X is T0 (resp: T1) if given any two distinct points of X, at least

one of them (resp: each of them) is contained in an open set that does not contain the other point.
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is assumed to be the order topology and topological notions such as continuity,

contractibility are considered with respect to this topology.

Proposition 5.1 ([3, Corollary 1.2.6]). Let X,Y be finite posets and let f, g P Y X .

Then f » g if and only if there is a finite sequence f0, f1, . . . , ft in Y X such that

f “ f0 ď f1 ě f2 ď ¨ ¨ ¨ ft “ g.

Proposition 5.2 ([15, Corollary 2.3.4]). Let X be a finite poset such that X has a

unique maximal element or a unique minimal element. Then X is contractible.

A finer version of Proposition 5.2 for the posets that are of interest to us in this

article is the following.

Lemma 5.3. Let ∆ be a nonempty collection of subspaces of E “ Fn
q . Call the

elements of ∆ as the faces of ∆ and those faces of ∆ that are maximal with respect

to inclusion as the facets of ∆. Assume that any finite intersection of facets of ∆

that contains a fixed face of ∆ is necessarily a face of ∆. Suppose there is A P ∆

such that A Ď F for every facet F of ∆. Then ∆ is contractible.

Proof. Fix any B P ∆. Consider f : ∆ Ñ tBu and g : tBu Ñ ∆ defined by

fpUq :“ B for all U P ∆ and gpBq :“ A.

Clearly, f and g are continuous and f ˝ g “ IdtBu. We will show that g ˝ f » Id∆.

To this end, define, for any U P ∆, the set VU to be the intersection of all facets of

∆ containing U . Let h : ∆ Ñ ∆ be defined by hpUq :“ VU for U P ∆. Observe that

if U1, U2 P ∆ with U1 Ď U2, then any facet of ∆ containing U2 must contain U1,

and therefore, VU1
Ď VU2

. Thus h is order-preserving and hence it is continuous.

By our hypothesis, A Ď VU for every U P ∆. Hence g ˝ f ď h. Also, since U Ď VU
for any U P ∆, we obtain Id∆ ď h. Thus it follows from by Proposition 5.1 that ∆

is homotopy equivalent to tBu. This proves that ∆ is contractible. �

Definition 5.4. A subset ∆ of ΣpEq satisfying the hypothesis in Lemma 5.3 is

called a cone with apex A.

5.2. Homology of q-Spheres. If ∆ is a q-complex on E “ Fn
q , then ∆ is a finite

topological space with the order topology corresponding to the partial order given

by inclusion. As a topological space, it is contractible because it has a unique

minimal element, namely, the zero space t0u and so Proposition 5.2 applies. Thus,

the homology (as well as homotopy) groups of ∆ are trivial. With this in view, and

as in the classical case, we will replace ∆ by the punctured q-complex

8∆ :“ ∆z tt0uu

obtained by removing the zero subspace from ∆. Thus, when we speak of the

homology of ∆, we shall in fact mean the homology of 8∆. In this subsection, we

will outline how the (reduced) homology of q-spheres can be computed explicitly.
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〈x, y, z〉

〈x, y〉 〈x, z〉 〈y, z〉 〈x, y ` z〉 〈y, x ` z〉 〈x ` y, x ` z〉 〈z, x ` y〉

〈x〉 〈y〉 〈z〉 〈x ` y〉 〈x ` z〉 〈y ` z〉 〈x ` y ` z〉

〈0, 0, 0〉

Figure 1. Illustration of the punctured q-sphere 8S2
q when q “ 2

Recall that the q-sphere Sn´1
q is the q-complex formed by all the subspaces of

E “ Fn
q other than E itself. So the punctured q-sphere 8Sn´1

q consists of all the

subspaces of E other than E and t0u. It is equipped with the order topology

w.r.t. inclusion. In particular, 8Sn´1
q is the empty set if n “ 1. When n “ 2, the

punctured q-sphere 8Sn´1
q consists of q`1 distinct one-dimensional subspaces of F2

q,

which form connected components with respect to the order topology. Thus the

homology is rather easy to determine if n “ 1 or n “ 2. But the poset structure

and the homology becomes a little more difficult to determine when n ě 3. For

example, the poset structure of the punctured q-sphere 8S2
q when q “ 2 is depicted by

(the solid lines in) Figure 5.2, where we have let x, y, z denote linearly independent

elements of F3
2. It is seen here that unlike in the case n “ 2, the q-sphere is a

connected space when n “ 3.

The key to determine the homology of q-spheres is the following lemma. Here,

and hereafter, for an Fq-vector space F , we denote by 8ΣpF q the set of all nonzero

subspaces of F .

Lemma 5.5. Assume that n ě 2. Then there exists a shelling F1, . . . , Ft of the

q-sphere Sn´1
q and a positive integer ` ď t such that if for 1 ď i ď t, we let

∆i :“ xF1, . . . , Fiy, then the punctured q-complex 8∆` is contractible and moreover,

8∆i X 8ΣpFi`1q “ 8ΣpFi`1qztFi`1u for ` ď i ă t, (5)

that is, 8∆i X 8ΣpFi`1q is the punctured q-sphere 8Sn´2
q for each i “ `, . . . , t´ 1.

Proof. We have seen in Example 4.2 that any ordering of the facets of Sn´1
q gives a

shelling of Sn´1
q . To obtain a shelling with the additional two properties asserted in

the lemma, we proceed as follows. Fix an arbitrary nonzero vector a in Fn
q . Suppose
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F1, . . . , F` are all the facets of Sn´1
q containing a. In other words tF1, . . . , F`u is the

set of all pn´1q-dimensional subspaces of Fn
q , which contain a. Also, let F``1, . . . , Ft

denote all the facets of Sn´1
q , which do not contain a. Write ∆i :“ xF1, . . . , Fiy for

1 ď i ď t. Then 〈a〉 is contained in every facet of 8∆`, and hence by Lemma 5.3, 8∆`

is contractible.

To prove that F1, . . . , Ft also satisfies (5), first suppose n “ 2. Then it is clear

that ` “ 1 and 8∆` “ t〈a〉u. Also, 8ΣpFi`1q “ tFi`1u for 1 ď i ă t. Thus, we readily

see that the two sets on either sides of the equality in (5) are both empty. Now

suppose n ě 3. Fix i P N such that ` ď i ă t. Since Fi`1 R ∆i, it is clear that
8∆i X 8ΣpFi`1q Ď 8ΣpFi`1qztFi`1u. To prove the other inclusion, it suffices to show

that every facet of ΣpFi`1qztFi`1u is in ∆i. Let G be a facet of ΣpFi`1qztFi`1u.

Since i ě `, we see that a R G. Hence G‘ 〈a〉 is a facet of Sn´1
q containing a, and

therefore, G‘ 〈a〉 “ Fk for some positive integer k ď `. In particular, G Ď Fk and

so G P ∆k Ď ∆i. �

Remark 5.6. It is possible to describe the positive integers t and ` in Lemma 5.5

explicitly. Indeed, t is the number of subspaces of Fn
q of dimension n´ 1. Also, the

proof of Lemma 5.5 shows that we can take ` to be the number of subspaces of Fn
q

of dimension n ´ 1 containing a fixed nonzero vector a. Consequently, both t and

` can be described in terms of Gaussian binomial coefficients as follows.

t “

„

n

n´ 1



q

“
qn ´ 1

q ´ 1
and ` “

„

n´ 1

n´ 2



q

“
qn´1 ´ 1

q ´ 1
.

Observe that t´ ` “ qn´1.

Let us recall that as per standard conventions in topology, if X is the empty

set, then its reduced homology group rHppXq is Z if p “ ´1 and 0 otherwise2. In

general, the homology groups of (punctured) q-spheres are given by the following.

Theorem 5.7. Let cn :“ qnpn´1q{2. Then the reduced homology groups of the

punctured q-sphere 8Sn´1
q are given by

ĂHpp 8Sn´1
q q “

$

&

%

Z
cn

if p “ n´ 2,

0 otherwise .

Proof. We use induction on n. If n “ 1, then the desired result follows from the

standard conventions about the reduced homology of the empty set.

Now suppose n ě 2 and the result holds for values of n smaller than the given

one. Let F1, . . . , Ft be a shelling of Sn´1
q as in Lemma 5.5, and let ` be the positive

2Indeed, a p-simplex is the convex hull of p`1 points. So if p “ ´1, then this is the empty set,

while the singular p-simplex in X consists precisely of the empty function, and the free abelian

group CppXq generated by it is Z. On the other hand, all other chain complexes are 0.
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integer as in Lemma 5.5 and Remark 5.6. Also let ∆i, for 1 ď i ď t, be as in

Lemma 5.5. In the first step, we take

X1 :“ 8∆` and X2 :“ 8ΣpF``1q.

Note that both X1 and X2 are down-sets, and thus they are open subsets of 8Sn´1
q .

Moreover, X1YX2 “ 8∆``1, and by Lemma 5.5, X1XX2 can be identified with the

punctured q-sphere 8Sn´2
q . Let us apply the Mayer-Vietoris sequence for reduced

homology:

ĂHppX1q‘ĂHppX2q ÝÑ ĂHppX1YX2q ÝÑ rHp´1pX1XX2q ÝÑ rHp´1pX1q‘ rHp´1pX2q

and observe that by Lemma 5.5, X1 is contractible, and since X2 has a unique

maximal element (viz., F``1), by Proposition 5.2 , X2 is also contractible. Thus

both the direct sums in the above exact sequence are 0, and we obtain

ĂHpp 8∆``1q “ ĂHppX1 YX2q – rHp´1pX1 XX2q “ rHp´1p 8Sn´2
q q.

So by the induction hypothesis, ĂHpp 8∆``1q is equal to Z
cn´1

if p ´ 1 “ n ´ 3, i.e.,

p “ n´ 2, and 0 otherwise. In the next step, we take

X1 :“ 8∆``1 and X2 :“ 8ΣpF``2q,

and note that X1, X2 are open subsets of 8Sn´1
q such that X1 YX2 “ 8∆``2, and by

Lemma 5.5, X1 XX2 can be identified with the punctured q-sphere 8Sn´2
q . Let us

apply (a slightly longer) Mayer-Vietoris sequence for reduced homology:

ĂHppX1 XX2q ÝÑ ĂHppX1q ‘ ĂHppX2q ÝÑ ĂHppX1 YX2q
§

§

đ

rHp´1pX1 XX2q ÝÑ rHp´1pX1q ‘ rHp´1pX2q

This time X2 is contractible, whereas the homology of X1 is determined in the

previous step, while that ofX1XX2 is known, as before, by the induction hypothesis.

Using this for p “ n´ 2, we obtain

0 ÝÑ Z
cn´1

ÝÑ rHn´2p 8∆l`2q ÝÑ Z
cn´1

ÝÑ 0.

The short exact sequence above splits (since Z
cn´1

is a projective Z-module, being

free), and therefore rHn´2p 8∆l`2q “ Z
cn´1

‘ Z
cn´1

. Moreover, rHpp 8∆l`2q “ 0 if

p ‰ pn ´ 2q. Now if ` ` 2 ă t, we can proceed as before, and we shall obtain that
rHpp 8∆l`3q is Z

cn´1

‘Z
cn´1

‘Z
cn´1

if p “ n´2, and 0 otherwise. Continuing in this

way, we see that rHpp 8∆tq is the direct sum of pt ´ `q copies of Z
cn´1

if p “ n ´ 2,

and 0 otherwise. Now ∆t “ Sn´1
q and in view of Remark 5.6,

pt´ `qcn´1 “ qn´1qpn´1qpn´2q{2 “ qnpn´1q{2 “ qcn .

This yields the desired result. �
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It may be noted that Lemma 5.5 plays a crucial role in determining the homology

of q-spheres. Indeed Theorem 5.7 can be readily extended to shellable q-complexes

satisfying the hypothesis of Lemma 5.5, and moreover the hypothesis in Lemma 5.5

about contractibility can be replaced by the slightly weaker hypothesis of acyclicity.

We record this below.

Theorem 5.8. Let ∆ be a pure q-complex on E “ Fn
q of positive dimension d.

Assume that F1, . . . , Ft is a shelling on ∆ and there is ` P N` with ` ď t such that

if for 1 ď i ď t, we let ∆i :“ xF1, . . . , Fiy, then the punctured q-complex 8∆` is

acyclic and moreover, 8∆i X 8ΣpFi`1q is the punctured q-sphere 8Sd´1
q for ` ď i ă t.

Then

ĂHpp 8∆q “

$

&

%

Z
pt´`qqdpd´1q{2

if p “ d´ 1,

0 otherwise.

Proof. Follows using similar arguments as in Theorem 5.7. �

5.3. Homology of Uniform q-Complexes. We shall now outline how the results

of the previous subsection can be extended to the following more general class of

q-complexes associated to arbitrary uniform q-matroids.

Definition 5.9. Let k be a nonnegative integer such that k ď n. The uniform

q-complex of dimension k is the q-complex ∆qpk, nq on E “ Fn
q given by

∆qpk, nq :“ tA P ΣpEq : dimA ď ku.

Note that ∆qpk, nq is a pure q-complex and its dimension is indeed k. Moreover,

∆qpk, nq is precisely the q-matroid complex corresponding to the uniform q-matroid

Uqpk, nq, and so it follows from Theorem 4.4 that it is shellable. We shall now show

that it admits a nice shelling, just as in the case of q-spheres.

Lemma 5.10. Let k be a positive integer such that k ď n, and let ∆qpk, nq be

the uniform q-complex of dimension k. Then there exists a shelling F1, . . . , Ft of

∆qpk, nq and an integer ` with 1 ď ` ď t such that if for 1 ď i ď t, we let

∆i :“ xF1, . . . , Fiy, then 8∆` is contractible and 8∆i X 8ΣpFi`1q is the punctured q-

sphere 8Sk´1
q for each i “ `, . . . , t´ 1. Moreover, t “

“

n
k

‰

q
and ` “

“

n´1
k´1

‰

q
.

Proof. The facets of ∆qpk, nq are precisely the k-dimensional subspaces of E “ Fn
q .

Consider the total order 4 on GkpEq obtained using a total order ă on E and

tower decompositions as in Definition 3.5. This induces a total order on the facets

of ∆qpk, nq, which, by Theorem 4.4, gives a shelling F1, . . . , Ft of ∆qpk, nq, where

t “ the number of k-dimensional subspaces of E “

„

n

k



q

.

Let a be the least nonzero element of E with respect to the total order ă. Note

that if U, V are any two facets such that a P U and a R V , then in view of part (ii)
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of Lemma 3.4, we see that a “ minU1 ă minV 1, and hence from Definition 3.5, it

follows that U ă V . Now let

` “ the number of k-dimensional subspaces of E containing a “

„

n´ 1

k ´ 1



q

so that the first ` facets F1, . . . , F` contain a, whereas the last t´` facets F``1, . . . , Ft

do not contain a. Now 8∆` is a cone with apex a, and hence by Lemma 5.3, it is

contractible.

Next, let us fix an integer i such that ` ď i ă t. Since Fi`1 R ∆i, we see that
8ΣpFi`1q X 8∆i Ď 8ΣpFi`1qztFi`1u. To prove the reverse inclusion, it suffices to show

that any subspace of Fi`1 of dimension k´ 1 is in ∆i. Let G be a subspace of Fi`1

with dimG “ k´1. Then a R G, since i ą `, and so G‘ 〈a〉 “ Fj for some positive

integer j ď `. In particular, j ď i and G‘ 〈a〉 P ∆i. This implies that G P ∆i. �

We can now generalize Theorem 5.7 from q-spheres to uniform q-complexes.

Theorem 5.11. Let k P N with k ď n, and let cpn, kq :“ qkpk`1q{2
“

n´1
k

‰

q
. Then

the reduced homology of the uniform q-complex ∆qpk, nq is given by

ĂHpp 8∆qpk, nqq “

$

&

%

Z
cpn,kq

if p “ k ´ 1,

0 otherwise.

Proof. If k “ 0, then cpn, kq “ 1, while 8∆qpk, nq is the empty set, and the result

follows from standard conventions in topology. If k is a positive integer ď n, then

the result follows from Lemma 5.10 and Theorem 5.8 by noting that

t´ ` “

„

n

k



q

´

„

n´ 1

k ´ 1



q

“ qk
„

n´ 1

k



q

and so pt´ `qqkpk´1q{2 “ cpn, kq,

where t and ` are as in Lemma 5.10. �

It may be remarked that Theorem 5.11 is a trivial consequence of Proposition 5.2

when k “ n, because in this case 8∆qpk, nq contains a unique maximal element (viz.,

E “ Fn
q ), while cpn, kq “ 0.

6. Homology of Shellable q-Complexes

We shall now attempt to determine the homology of a shellable q-complex. We

proceed in a manner analogous to the classical case of simplicial complexes. But as

we shall see, there are some difficulties in obtaining results analogous to those in

the classical case.

6.1. Intervals in Shellable q-Complexes. In the classical case, the notion of

restriction RpF q of a facet F plays an important role in the determination of the

homology of a shellable simplicial complex; see, e.g., [4, § 7.2]. But in the case of

q-complexes, a straightforward analogue is not possible because the complement of

an element (or even of a one-dimensional subspace) in an Fq-linear subspace needs
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not be a subspace. Nonetheless, it turns out that we have a useful analogue if we

consider a plethora of restrictions of a facet Fj as defined below. The sets Ij in this

definition provide an analogue of the intervals rRpFjq, Fjs in the classical case.

Definition 6.1. Let F1, . . . , Ft be a shelling of a shellable q-complex ∆ on E “ Fn
q .

For 1 ď i ă j ď t, the ith restriction of Fj is defined to be the set

RipFjq :“ tx P Fj : xxy ‘ pFi X Fjq “ Fju.

Further, for 1 ď j ď t, we define

Ij :“ tA P xFjy : AXRipFjq ‰ H whenever 1 ď i ă j and RipFjq ‰ Hu.

Remark 6.2. If i, j and F1, . . . , Ft are as in Definition 6.1 and if Fi X Fj is not a

hyperplane in Fj , i.e., if dimpFi X Fjq ă dimFj ´ 1, then clearly RipFjq “ H. On

the other hand, for each j “ 2, . . . , t, we can use Lemma 4.3 to obtain k P N` with

k ă j such that RkpFjq ‰ H, and therefore, Ij is nonempty. Note also that the

defining condition for Ij is vacuously true if j “ 1, and thus I1 “ xF1y. In general,

tFju Ď Ij Ď xFjy for each j “ 1, . . . , t.

In the classical case, the interval rRpFjq, Fjs equals tFju if and only if RpFjq “

Fj . The following lemma is a partial analogue of this in the case of q-complexes.

Lemma 6.3. Let F1, . . . , Ft be a shelling of a shellable q-complex ∆ on E “ Fn
q .

If j P t2, . . . , tu is such that Ij “ tFju, then

j´1
ď

i“1

RipFjq “ Fjzt0u.

Proof. Let j P t2, . . . , tu satisfy Ij “ tFju. The inclusion Yj´1
i“1RipFjq Ď Fjzt0u is

obvious. To prove the reverse inclusion, let x P Fjzt0u. Also let A be a codimension

1 subspace of Fj such that xxy‘A “ Fj . Since j ě 2, in view of Remark 6.2, there

is i P N` with i ă j such that RipFjq ‰ H. In particular, dimFiXFj “ dimFj´1.

Now since Ij “ tFju, we see that A R Ij , and therefore A X RipFjq “ H. This

implies that A Ď Fi X Fj and since A has codimension 1, we obtain A “ Fi X Fj .

Consequently, x P RipFjq. �

Unlike in the classical case, the converse of Lemma 6.3 is not true, and this is

shown by the following example3

Example 6.4. Consider the field extension F24{F2 of degree 4, and let a be a root

in F24 of the irreducible polynomial X4 `X ` 1 in F2rXs so that F24 “ F2paq. Let

3Some of the computations in this example are done using SageMath, and the code is available

at: drive.google.com/file/d/16 aAa2Us4maRx3rXA2wuaJZBQULCRxCc/view?usp=sharing

https://drive.google.com/file/d/16_aAa2Us4maRx3rXA2wuaJZBQULCRxCc/view?usp=sharing
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C be the rank metric code of length 4 over the extension F24 of F2 such that a

generator matrix of C is given by

G :“

¨

˚

˝

a2 ` a` 1 a2 a3 ` a` 1 a3 ` a2 ` a` 1

a2 ` a` 1 a3 ` 1 a a` 1

a2 ` 1 1 a2 ` 1 a3 ` 1

˛

‹

‚

.

Let ∆C be the q-matroid complex on F4
2 associated to C as in Example 2.10. Then

dim ∆C “ rankpGq “ 3. There are
“

4
3

‰

2
“ 15 subspaces of F4

2 of dimension 3 and it

turns out that 14 among these are in ∆C . In the shelling order of Definition 3.5,

these 14 facets of ∆C , say F1, . . . , F14, can be explicitly listed as follows.

xe2, e3, e4y, xe1 ` e2, e3, e4y, xe1, e2, e4y, xe1 ` e3, e2, e4y, xe1, e2 ` e3, e4y,

xe1 ` e3, e2 ` e3, e4y, xe1, e2, e3y, xe1 ` e4, e2, e3y, xe1, e2 ` e4, e3y,

xe1 ` e4, e2 ` e4, e3y, xe1, e2, e3 ` e4y, xe1 ` e4, e2, e3 ` e4y,

xe1, e2 ` e3, e3 ` e4y, xe1 ` e4, e2 ` e4, e3 ` e4y,

where for 1 ď i ď 4, by ei we have denoted the element of F4
2 with 1 in the ith

position and 0 elsewhere. We can take a generator matrix of Fj to be the 3 ˆ 4

matrix Yj , which has as its rows the elements of the given ordered basis of Fj ,

and it can be checked that the rank of the 3 ˆ 3 matrix GY T
j is indeed 3 for each

j “ 1, . . . , 14. Incidentally, the only 3-dimensional subspace of F4
2 missing in the

above list is F :“ xe1, e3, e4y and its generator matrix Y has the property that

rankpGY T q “ 2; indeed,

Y “

¨

˚

˝

1 0 0 0

0 0 1 0

0 0 0 1

˛

‹

‚

and pGY T q

¨

˚

˝

1

a3 ` a2 ` a` 1

a2 ` a

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

.

Now let us consider the subspace F8 “ xe1` e4, e2, e3y and its restrictions RipF8q

for 1 ď i ă 8. Observe that F1 X F8 “ xe2, e3y and hence by Definition 6.1,

R1pF8q “ te1 ` e4, e1 ` e3 ` e4, e1 ` e2 ` e4, e1 ` e2 ` e3 ` e4u

Similarly, F2 X F8 “ xe3, e1 ` e2 ` e4y and F3 X F8 “ xe1 ` e4, e2y, and hence

R2pF8q “ te1 ` e4, e2, e1 ` e3 ` e4, e2 ` e3u and

R3pF8q “ te3, e1 ` e3 ` e4, e2 ` e3, e1 ` e2 ` e3 ` e4u

We see already that

7
ď

i“1

RipF8q “ F8zt0u.
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We can also compute the remaining restrictions and these turn out to be as follows.

R4pF8q “ te3, e1 ` e4, e2 ` e3, e1 ` e2 ` e4u,

R5pF8q “ te2, e3, e1 ` e2 ` e4, e1 ` e3 ` e4u,

R6pF8q “ te2, e3, e1 ` e4, e1 ` e2 ` e3 ` e4u, and

R7pF8q “ te1 ` e4, e1 ` e2 ` e4, e1 ` e3 ` e4, e1 ` e2 ` e3 ` e4u,

Considering these restrictions, it is clear that the interval I8 corresponding to F8 is

I8 “ txe1 ` e4, e3y, F8u.

Thus I8 ‰ tF8u and so the converse of Lemma 6.3 is not true, in general.

It may be observed in the above example that I8 “ xF1, . . . , F8yzxF1, . . . , F7y.

This turns out to be a special case of a general phenomenon. In fact, we have the

following result, which may be regarded as a q-analogue of [4, Proposition 7.2.2].

Theorem 6.5. Let F1, . . . , Ft be a shelling of a shellable q-complex ∆ on E “ Fn
q .

For any j P N with j ď t, let ∆j denote the subcomplex xF1, . . . , Fjy of ∆ generated

by F1, . . . , Fj (in particular, ∆0 “ H, as per our convention). Then

∆j “ Ij Y∆j´1 and Ij X∆j´1 “ H. (6)

Consequently, we obtain a partition of ∆ as a disjoint union of “intervals”:

∆ “

t
ž

j“1

Ij . (7)

Proof. As noted in Remark 6.2. I1 “ ∆1, and so (6) holds when j “ 1. Now

suppose 2 ď j ď t. The inclusion Ij Y∆j´1 Ď ∆j is obvious. To prove the other

inclusion, suppose, on the contrary, there is A P ∆j such that A R Ij and A R ∆j´1.

Then A Ď Fj . Moreover, there is i P N` with i ă j such that RipFjq ‰ H and

RipFjqXA “ H. Now, if A * FiXFj , then A would contain an element of RipFjq,

which is a contradiction. Thus, A Ď Fi X Fj , and therefore A P ∆j´1, which is

again a contradiction. This proves that ∆j Ď Ij Y∆j´1. Thus ∆j “ Ij Y∆j´1.

Next, suppose there is A P IjX∆j´1. Let S :“ ti P N` : i ă j and RipFjq ‰ Hu.

Then AXRipFjq ‰ H for all i P S, and so we can choose xi P AXRipFjq for each

i P S. Define G :“ 〈txi : i P Su〉. Now G P Ij and G Ď A Ď Fk for some k ă j

(because A P ∆j´1). Thus G Ď Fk X Fj . By Lemma 4.3, there exists ` ă j such

that FkXFj Ď F`XFj and dimpF`XFjq “ dimFj´1. Consequently, R`pFjq ‰ H,

and so ` P S. But then xx`y ‘ pF` X Fjq “ Fj (by the definition of R`pFjq), which

is a contradiction because x` P G Ď F` X Fj . This shows that Ij X∆j´1 “ H and

thus (6) is proved.

Finally, (7) follows from (6) by noting that ∆ “ ∆t and ∆1 “ I1. �



SHELLABILITY AND HOMOLOGY OF q-COMPLEXES AND q-MATROIDS 23

6.2. Acyclic Subcomplexes of Shellable q-Complexes. Recall that for a finite

dimensional vector space F over Fq, we use 8ΣpF q to denote the punctured q-complex

formed by all the nonzero subspaces of F .

Lemma 6.6. Let F be a vector space of dimension r over Fq. Let m P N` and let

G1, . . . , Gm be subspaces of F of dimension r ´ 1. For s P N` with s ď m, define

Us :“ tx P F : 〈x〉‘Gs “ F u and I :“ tA P 8ΣpF q : AXUs ‰ H for s “ 1, . . . ,mu.

Then

8ΣpF qzI “
m
ď

s“1

8ΣpGsq.

Proof. Suppose A P 8ΣpF qzI. Then A X Us “ H for some s P N` with s ď m. We

claim that A Ď Gs. Indeed, if there is x P AzGs, then 〈x〉 ‘ Gs “ F . But then

x P AX Us which is a contradiction. Therefore A P 8ΣpGsq.

On the other hand, if A is a nonzero subspace of Gs for some s P t1, . . . ,mu,

then any element x of A cannot be in Us because 〈x〉`Gs “ Gs. Thus AXUs “ H.

Hence A R I. This proves the lemma. �

The above lemma says that ΣpF qzI is a pure q-complex with facets G1, . . . , Gm.

We show below that the corresponding punctured q-complex is particularly nice.

Corollary 6.7. Let the notations and hypothesis be as in Lemma 6.6. Further let

U :“ U1 Y ¨ ¨ ¨ YUm. If U ‰ pF zt0uq and if x is any nonzero element of F zU , then
8ΣpF qzI is a cone with apex x. Consequently, 8ΣpF qzI is contractible.

Proof. Suppose U ‰ pF zt0uq and x is any nonzero element of F zU . We claim

that x P Gs for every s P t1, . . . ,mu. To see this, suppose x P F zGs for some

s P t1, . . . ,mu. Then 〈x〉 ‘ Gs “ F , and so x P Us. But this is a contradiction,

since x R U . Thus the claim is proved. Consequently, in view of Lemma 6.6, we see

that 〈x〉 is contained in every facet of 8ΣpF qzI. Thus 8ΣpF qzI is a cone with apex x.

The last assertion follows from Lemma 5.3. �

Corollary 6.8. Let F1, . . . , Ft be a shelling of a shellable q-complex ∆ on E “ Fn
q .

Suppose there is j P N` with 2 ď j ď t such that

j´1
ď

i“1

RipFjq ‰ Fjzt0u. (8)

Then 8ΣpFjqzIj is contractible.

Proof. If in Lemma 6.6, we take

F “ Fj and tG1, . . . , Gmu “ tFi X Fj : 1 ď i ă j and RipFjq ‰ Hu,

then we see that G1, . . . , Gm are subspaces of F of codimension 1, and moreover,

U “ Yj´1
i“1RipFjq and I “ Ij . Thus the desired result follows from Corollary 6.7. �
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The following result can be viewed as an analogue for q-complexes of Björner’s

Acyclicity Lemma [4, Lemma 7.7.1] for shellable simplicial complexes.

Theorem 6.9. Suppose F1, . . . , F` is a shelling of a shellable q-complex ∆1 on E

of positive dimension d, and let ∆j :“ 〈F1, . . . , Fj〉 for 1 ď j ď `. Assume that (8)

holds for each j “ 2, . . . , `. Then 8∆1 is acyclic.

Proof. We prove by induction on i (1 ď i ď `) that each 8∆i is acyclic. Notice

that each ∆i is shellable. Since 8∆1 “ 8ΣpF1q, has a unique maximal element, by

Lemma 5.3 we see that it is contractible, and therefore acyclic. Now assume that

1 ă j ď ` and 8∆j´1 is acyclic. We want to show that 8∆j is also acyclic. Note that
8ΣpFjq is contractible, and hence acyclic, while 8∆j´1 is acyclic by the induction

hypothesis. Moreover, by Theorem 6.5, ∆j´1 “ ∆jzIj , and by taking intersections

with 8ΣpFjq, we obtain 8∆j´1 X 8ΣpFjq “ 8ΣpFjqzIj . So by Corollary 6.8, it follows

that 8∆j´1 X 8ΣpFjq is contractible. Hence, by applying a Mayer-Vietoris sequence,

we see that 8∆j “ 8∆j´1 Y 8ΣpFjq is acyclic. This completes the proof. �

6.3. Computation of Homology of Shellable q-Complexes. It may be perti-

nent to begin by recalling how one determines the homology in the classical case of

a shellable simplicial complex, say ∆. The first step is to observe that the subcom-

plex ∆1 generated by the facets F of ∆ with RpF q ‰ F is acyclic. In the next step

we attach to ∆1 a facet F of ∆ with RpF q “ F and use the Mayer-Vietoris sequence

to determine the homology of ∆1 Y xF y, and then use an inductive argument. See,

for example, [4, § 7.7] or [8, pp. 138–139]. This approach works because the inter-

section ∆1XxF y is the boundary complex of F . And this boundary complex being

a sphere, we know its homology.

Now let us turn to a shellable q-complex ∆ on E “ Fn
q . We can similarly consider

the subcomplex ∆1 consisting of the facets Fj for which (8) holds. Then Theorem

6.9 would imply that ∆1 is acyclic, provided the ordering of facets of ∆ restricted

on the facets of ∆1 gives a shelling of ∆1. Next, if we were to attach to ∆1 a facet

F “ Fj for which (8) does not hold, then we do not know whether or not the

intersection ∆1 X 8ΣpFiq is a (punctured) q-sphere. But if one could overcome these

difficulties, then the homology can certainly be computed as shown by the following

result, where we have allowed ourselves a generous hypothesis.

Theorem 6.10. Let ∆ be a pure q-complex on E “ Fn
q of positive dimension d

such that ∆ admits a shelling F1, . . . , Ft. Let ∆1 :“ 〈Fj : j P J 1〉, where

J :“

"

j P t2, . . . , tu :
j´1
ď

i“1

RipFjq “ Fjzt0u

*

and J 1 :“ t1, . . . , tuzJ. (9)



SHELLABILITY AND HOMOLOGY OF q-COMPLEXES AND q-MATROIDS 25

Assume that the ordering F1, . . . , Ft restricted on the facets of ∆1 gives a shelling

of ∆1 and that 8ΣpFjq X 8∆1 is the punctured q-sphere 8Sd´1
q for each j P J . Then

ĂHpp 8∆q “

$

&

%

Z
|J|qdpd´1q{2

if p “ d´ 1,

0 otherwise.

Proof. The facets of ∆1 are Fj as j varies over J 1, and the ordering of these induced

by the linear ordering F1, . . . , Ft is a shelling of ∆1. Moreover, for 2 ď j ď t,

j P J 1 ùñ
j´1
ď

i“1

RipFjq ‰ Fjzt0u ùñ
ď

1ďiăj

iPJ 1

RipFjq ‰ Fjzt0u,

because RipFjq Ď Fjzt0u for all i ‰ j. Hence it follows from Theorem 6.9 that ∆1

is acyclic. Now using the second assumption together with suitable Mayer-Vietoris

sequences and proceeding as in the proof of Theorem 5.7, we obtain the desired

result about the reduced homology groups of 8∆. �

The above result explicitly determines the singular homology of arbitrary shellable

q-complexes, provided the hypothesis of Theorem 6.10 is satisfied. We show below

that this hypothesis is satisfied by shellable q-complexes for which the converse of

Lemma 6.3 is true.

Proposition 6.11. Let ∆ be a pure q-complex on E “ Fn
q of positive dimension d

such that ∆ admits a shelling F1, . . . , Ft. Suppose for any j P t2, . . . , tu,

ď

1ďiăj

RipFjq “ Fjzt0u ùñ Ij “ tFju.

Also, let J and J 1 be as in (9). Then ∆1 :“ 〈Fj : j P J 1〉 satisfies the following.

(i) The ordering F1, . . . , Ft restricted on the facets of ∆1 gives a shelling of ∆1.

(ii) 8ΣpFjq X 8∆1 is the punctured q-sphere 8Sd´1
q for each j P J .

Proof. For 1 ď j ď t, let ∆j :“ 〈F1, . . . , Fj〉. Note that the facets of ∆1 are given by

Fj , where j varies over J 1. Evidently, ∆1 is a pure complex on E of dimension d. To

show that it is shellable, let i, j P J 1 with i ă j. By Lemma 4.3 (applied to ∆), there

is k1 P t1, . . . , tu with k1 ă j such that FiXFj Ď Fk1XFj and dimFk1XFj “ d´1.

If k1 P J 1, then we are done. If not, then k1 P J and in particular, k1 ě 2.

By our hypothesis, Ik1
“ tFk1

u. Hence by Theorem 6.5, ∆k1
z∆k1´1 “ tFk1

u.

Consequently, Fk1
XFj Ď Fk2

for some k2 P N` with k2 ă k1 ă j. This implies that

Fk1
XFj Ď Fk2

XFj , and since dimpFk1
XFjq “ d´1, we obtain Fk1

XFj “ Fk2
XFj .

Again, if k2 P J
1, then we are done. Or else, k2 P J , and we can proceed as before to

obtain k3 P N` with k3 ă k2 ă k1 ă j and Fk3XFj “ Fk2XFj . Since k1, k2, k3, . . .

are positive integers, this process can not continue indefinitely. Hence there is k P J 1

with k ă j such that Fi X Fj Ď Fk X Fj and dimpFk X Fjq “ d ´ 1. This proves



26 SUDHIR R. GHORPADE, RAKHI PRATIHAR, AND TOVOHERY H. RANDRIANARISOA

that ∆1 is shellable and the ordering F1, . . . , Ft restricted on the facets of ∆1 gives

a shelling of ∆1. Thus (i) is proved.

Next, let j P J . Then j ě 2 and Fj R ∆1. Hence 8ΣpFjq X 8∆1 Ď 8ΣpFjqztFju. We

claim that the reverse inclusion also holds, i.e., 8ΣpFjqztFju Ď 8ΣpFjq X 8∆1. This is

trivial if d “ 1. So we may assume that d ě 2. Let F be a facet of 8ΣpFjqztFju,

i.e., a nonzero subspace of Fj with dimF “ d ´ 1. Then F P ∆j and since j P J ,

by Theorem 6.5 and our hypothesis, we see that F R tFju “ ∆jz∆j´1. Thus,

F P ∆j´1, i.e., F Ă Fi for some i P N` with i ă j. Thus F Ď Fi X Fj , and since

dimF “ d´ 1, we see that F “ Fi X Fj . Now as noted in the previous paragraph,

we can write Fi X Fj “ Fk X Fj for some k P J 1 with k ă j. In particular, F

is a subspace of Fk and so F P ∆1. This proves that 8ΣpFjqztFju Ď 8ΣpFjq X 8∆1.

Consequently, 8ΣpFjq X 8∆1 is the q-sphere 8ΣpFjqztFju of dimension d´ 1. �

Remark 6.12. A q-complex equipped with the order topology (with respect to

inclusion) is weak homotopy equivalent to its order complex [16, Theorem 2.15]

(see also [18, Theorem 4.5]). Thus their topological invariants are the same. For

the classical case, i.e., for simplicial complexes, the singular homology is the same

as the simplicial homology, and this, in turn, is related to the Betti numbers of

the Stanley-Reisner rings via Hochster’s formula (see, e.g., [5, Theorem 5.5.1] or

[21, Corollary 4.97]). Thus the results for Hamming metric codes involving Betti

numbers can be rephrased in terms of the singular homology of the associated

matroid complexes. Since our q-matroid complexes are not simplicial complexes,

(or more generally, the corresponding posets are not simplicial posets), it does

not seem straightforward to associate to them the Betti numbers as in the case

of classical matroids using the method adopted in [12]. That is why we took the

topological approach to consider the singular homology and tried to compute it for

q-matroid complexes using the fact (established here) that they are shellable.

Remark 6.13. Consider the shellable q-complex ∆C of Example 6.4. We have seen

that the converse of Lemma 6.3 is not true for this. We have also seen that ∆C

has 14 facets F1, . . . , F14, and we have determined the sets RipF8q for 1 ď i ď 7.

The remaining sets RipFjq can also be easily computed. We are of course mainly

interested in the unions Rj :“ Yj´1
i“1RipFjq for 2 ď j ď 14, and it turns out that

R2 “ te1 ` e2, e1 ` e2 ` e3, e1 ` e2 ` e4, e1 ` e2 ` e3 ` e4u,

R3 “ te1, e1 ` e2, e1 ` e4, e1 ` e2 ` e4, e2, e2 ` e4u,

R4 “ te1 ` e3, e1 ` e2 ` e3, e1 ` e3 ` e4, e1 ` e2 ` e3 ` e4, e2, e2 ` e4u,

R5 “ te1, e1 ` e2 ` e3, e1 ` e4, e1 ` e2 ` e3 ` e4, e2 ` e3, e2 ` e3 ` e4u,

R6 “ te1 ` e3, e1 ` e2, e1 ` e3 ` e4, e1 ` e2 ` e4, e2 ` e3, e2 ` e3 ` e4u, and

Rj “ Fjzt0u for j “ 7, . . . , 14.



It can thus be seen that if J and J 1 are as in (9) with ∆ “ ∆C , then

J “ t7, 8, 9, 10, 11, 12, 13, 14u and J 1 “ t1, 2, 3, 4, 5, 6u.

Moreover, it is clear from the description in Example 6.4 of the facets F1, . . . , F14

of ∆C that 〈e4〉 Ď Fj for all j P J 1. Thus, by Lemma 5.3, ∆1C :“ 〈Fj : j P J 1〉 is

acyclic. On the other hand, it can be seen that for this q-complex of dimension 3,

8ΣpF7q X 8∆1C “
8ΣpF7qzI7 “ 8ΣpF7q z txe1, e3y, F7u,

and this is not a punctured q-sphere of dimension 2. Thus, we see that ∆C does

not satisfy one of the hypotheses of Theorem 6.10. The determination of singular

homology of shellable q-complexes such as ∆C , which do not satisfy the hypothesis

of Theorem 6.10, remains an open question.
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mann, J.-L. Kim and P. Solé Eds.), pp. 227–250, CRC Press, Boca Raton, 2021.

[11] E. Gorla, R. Jurrius, H. H. López, and A. Ravagnani, Rank-metric codes and q-

polymatroids, J. Algebraic Combin. 52 (2020), 1–19.

[12] T. Johnsen and H. Verdure, Hamming weights and Betti numbers of Stanley-Reisner

rings associated to matroids, Appl. Algebra Engrg. Comm. Comput. 24 (2013), 73–93.

[13] T. Johnsen, R. Pratihar and H. Verdure, Weight spectra of Gabidulin rank-metric codes

and Betti numbers, arXiv:2106.10993v3 [math.CO], 2021.



28 SUDHIR R. GHORPADE, RAKHI PRATIHAR, AND TOVOHERY H. RANDRIANARISOA

[14] R. Jurrius and R. Pellikaan, Defining the q-analogue of a matroid, Electron. J. Combin.

25 (2018), #P3.2, 32 pp.

[15] J. P. May, Finite spaces and larger contexts, Univ. of Chicago Lect. Notes, available:

math.uchicago.edu/„may/FINITE/FINITEBOOK/FINITEBOOKCollatedDraft.pdf

[16] M. C. McCord, Singular homology groups and homotopy groups of finite topological

spaces, Duke Math. J. 33 (1966), 465–474

[17] T. H. Randrianarisoa, A geometric approach to rank metric codes and a classification of

constant weight codes, Des. Codes Cryptogr. 88 (2020), 1331–1348.

[18] G. Raptis, Homotopy theory of posets, Homology Homotopy Appl. 12 (2010), 211–230.

[19] G.-C. Rota, On the combinatorics of the Euler characteristic. Studies in Pure Math.

presented to Richard Rado (L. Mirsky, Ed.) pp. 221–233, Academic Press, London, 1971.

[Reprinted in: J. P. S. Kung (Ed.), Gian-Carlo Rota on Combinatorics: Introductory

Papers and Commentaries, Birkhäuser Boston, 1995.]
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