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We begin with the familiar notion of the discriminant of a quadratic and
discuss how it can be extended to more general situations. We also outline
some important applications of the notion of discriminant in Algebra and
Arithmetic.

1 Discriminant in High School Algebra

Usually, we first come across discriminants in High School when we study
the quadratic equation
aX?+bX +c=0, (1)

The quantity A = b?> — 4ac is called the discriminant of (1) and it has the
quintessential property:

A = 0 <= the equation (1) has a repeated root. (2)

Strictly speaking, (2) holds if (1) is a genuine quadratic, i.e., if a # 0.
Indeed, if a # 0 and if «, B are the roots of (1), then we have

aX?+bX +c=a(X —a)(X - B) (3)

or equivalently

Of‘f‘ﬁzz and Ojﬂ:

QIO

Thus from the simple identity (o — 8)? = (a + (8)? — 4af3, it follows that
A = d*(a—p)*. (4)

Note that the above expression makes it obvious that the property (2) holds.
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We now consider the problem of suitably defining the discriminant of a
general equation

F(X) =0

where f is a polynomial of degree n, i.e.,
f(X) = aoX” + aan_l + ...+ an_lX + A, Wlth Qg ?é 0. (5)

Let us assume that f is a nonconstant polynomial, i.e., n > 1. What should
the discriminant of f be? Burnside and Panton (1892) answer this nicely
by saying that the discriminant ought to be the simplest function of the
coefficients in a rational and integral form, whose vanishing expresses the
condition for equal roots. Let o, ..., o, denote the roots? of f so that

f(X)=ap(X —aq)...(X — ). (6)
As a first guess for the discriminant of f, it seems natural to consider an

eXpression such as
Vf = H (O!i - Oéj).
1<i<j<n

This is certainly a simple function whose vanishing expresses the condition
for repeated roots. But it isn’t really a function of the coefficients, even in
the case of a quadratic. So we take a cue from (4), and consider

Vf2 = H (Cki - O!j)Z.

1<i<j<n
Now this is a symmetric polynomial function in «, ..., a,, in the sense that
it is unchanged if we permute aq,...,a,. We have a fundamental result

2Tt may be worthwhile to digress here a bit to discuss the idea of roots of a polynomial.
If our polynomial f(X) has complex coefficients (in particular, integral, rational or real
coefficients), then the Fundamental Theorem of Algebra assures us that it has exactly
n roots in C, when counted with multiplicities. Recall that « is said to be a root of
multiplicity m if f(X) = (X — a)™g(X) for some polynomial g(X) with g(a) # 0. In
case m > 1, we say that « is a multiple root or a repeated root of f. In general, if A is
an integral domain and f € A[X] (i.e., f is a polynomial in X with coefficients in A),
then for any integral domain B containing A as a subring, f has at most n roots in B.
Moreover, there exists a field L containing A as a subring such that f has exactly n roots
in L when counted with multiplicities. Thus abstractly speaking, by suitably enlarging
the domain, if necessary, we can always consider n elements «y,...,a, which are the
roots of f. Here each root is repeated as many times as its multiplicity.
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going back to Newton which says that every symmetric polynomial can be
expressed as a polynomial in the ‘elementary symmetric functions’. The
elementary symmetric functions in aq, ..., a, are as follows.

epL = o1+ ... +a, = Z o;

1<i<n
€ = g+ ...+ oy 10, = z ;0
1<i<j<n
€n = Q1...04.
From (5) and (6), we see that
—a a —-1)"a
61:—1,62:—2,...,6n:7( ) n' (7)
Qo Qo Qg
Thus it follows from Newton’s Theorem on symmetric functions, that any
symmetric polynomial in «, ..., a, is a polynomial in ey, ..., e,, and hence
it equals a polynomial in the coefficients ag,aq,...,a, divided by some
power of ag. In the case of sz, the degree in oy is 2(n — 1), and since
each e; is of degree 1 in oy, we see that the degree of Vf2 ineg,...,e, is at
most 2(n — 1). Thus a3" > Vf2 would be a polynomial in ag, a1, ..., a, with

integral coefficients. We are now ready to make a formal definition.

Definition 1.1 The discriminant of f, denoted by Disc(f), is defined by
Disc(f) = ag" 2 H (i — o).

1<i<j<n
From the definition of Disc(f), the following result is evident.
Theorem 1.2 Disc(f) = 0 <= f has a repeated root. a

Although our definition of Disc(f) meets all the basic requirements, the
situation is still unsatisfactory because for any practical use of the above
theorem, we should not have to find the Disc(f) by first finding the roots
of f. In other words, it is highly desirable to have a concrete expression for
Disc(f) purely in terms of the coefficients ag, a1, . .., a, of f. This is not so
easy (try the case of n = 3)! But we can give a nice expression for Disc(f) if
we know the classical notion of resultant. Let us quickly recall some basics
concerning resultants. We refer to [21] for more on this topic.



Definition 1.3 Given any two polynomials
f(X)=aX"+---+a, and g(X)=b X"+ -+ bp, (8)

the resultant of f(X) and ¢g(X) is defined to be the (m + n) X (m + n)
determinant

apg A1 e Ay,
apg A1 c.eeeeaan ap—-1 Qan
m Trows
Qg a1 ..., (079
S b 3
bp by .l bm—1 bm
........................... ¢ TV TOWS
bp by ..l bm

/

where the blanks before ag, by and after a,,b,, are to be filled with zeros.
It is denoted by Resx(f, g;n, m) or simply by Res(f, g).

An important fact about resultants is the following.

Theorem 1.4 (Product Formula) Let f(X) and o, ..., be as in (5)
and (6). Also let g(X) = bgX™ + b X™ ' + ...+ by, be a polynomial in X.
Then

Resf, _aO Hgaz

Moreover, if by # 0 and if By,..., 5, are the roots of g so that g(X) =
bo HT:1(X — Bj), then

Res(f, g) 1)™ e Hf B;) = agby [T [ J(cu
j=1

=1

In particular, Res(f, g) = 0 if and only if f and g have a common root.

We are now ready to relate resultants to discriminants and thereby get
a concrete formula for Disc(f) in terms of the coefficients of f.
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Theorem 1.5 Let f(X) = ao X"+ a1 X" ' + ...+ a1 X + a, be a non-
constant polynomial of degree n. Let f'(X) be the derivative of f(X), i.e.,
(X)) =naX" 1+ (n—-1)a; X" 2+ ... +an_1. Then

n(n—1)

Res(f, f') = (=1)" 7 ao Disc(f).

Proof: Let a4, ..., a, be the roots of f. Then we have
f(X) = ao H(X —«;), and therefore f'(X) = ag H(X — qj).
i=1 i=1

Hence, using Theorem 1.4, we see that Res(f, f') equals

a,gflnf ﬁ[ _ 2n 1HH

=1 j=1

JFi

uIZ]@

LS.
I
=

Now if in the last product, we collate together the terms of the form (o; —a;)
and (a; — o) so as to get the corresponding term in the expression for
Disc(f), then the number of sign changes required would be

n n n . n(n—l)
S =31 =Ym-q= "0
1<i<j<n i=1 j=i+1 i=1 2

(Alternatively, the number of sign-changes is the number of 2-element sub-
sets {, o }icj of the n-element set {1, ..., a,}, and so it is (Z) = @)
Therefore, we conclude that

Res(f, f') = ag" ' n(n B HH (—1)n(n271) ag Disc(f). O

le.l_
1<J

Remark. The sign factor (—1) "5 in the above result has, curiously,
been missed by several mathematicians. For example, this error occurred
in the first edition of Lang’s Algebra. In the second edition [13, p. 211],
Lang mentions that Serre has pointed out to him this error and also that it
occurs in van der Waerden, Samuel, and Hilbert but not in Weber. Indeed,




the error occurs in van der Waerden’s Algebra [23, p. 82|, the original French
edition of Samuel’s Algebraic Theory of Numbers [17, p. 49] although not
in its English translation. In the case of Hilbert, one might expect that the
reference is to Hilbert’s famous Zahlbericht (see [8, pp. 63-363] or the recent
English translation [9]), but we have not been able to spot any error there.
This may be because Hilbert’s collected works were revised and corrected
by Olga Taussky et al. On the other hand, Weber’s Textbook of Algebra,
written more than a century ago, is quite careful about the sign during the
discussion of the discriminant (cf. [24, §50]).

Corollary 1.6 Let f(X) and ay,...,a, be asin (5) and (6). Assume that
(X)) is of degree n — 13 and let By, ..., Bn_1 be the roots of f'(X). Then

n n—1
Disc(f) = (~1)"7 ag? [] '(es) = (-1)"F nrag T £(8)).
j=1

i=1

Proof: Follows easily from Theorem 1.4 and Theorem 1.5 by noting that
(_1)n(n—1) = 1. 0

Example: Consider a cubic polynomial of the form f(X) = X® + pX +q.
To find Disc(f), we note that the roots of f/(X) = 3X?+p are +(—p/3)"/2.
Therefore, by the second formula in the Corollary above, Disc(f) equals

(=1)7= 3% [(—p/3)*? + p(=p/3)""* + q] [~(=p/3)*/* = p(—p/3)'* + ¢]
= —27[¢* = [(=p/3) + 1)’ (-p/3)]

= —27[¢* + (4p*/9)(p/3)]

= —4p® — 274>

3(2)
2

More generally, if f(X) = X3+ aX?+bX +c, then using the above method
or by directly computing the resultant, it can be seen that

Disc(f) = —4a’c + a’b® + 18abc — 4b* — 27¢>.

We leave it to the reader to verify this formula.

Exercise: Let f(X) and oy, ..., a, be as in the definition of the Discrimi-
nant. Assume that f(X) is monic, i.e., agp = 1. Prove that Disc(f) equals

3This is always the case if the coefficients are complex numbers or more generally, if
n is not divisible by the characteristic.
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the square of the Vandermonde determinant det (af 71) corresponding to
aq,...,0,. Deduce that Disc(f) is also given by the determinant of the
n X n matrix whose (i,7)™ entry is the power sum symmetric function
Ditjo- In other words, if for k > 0, py = of + ...+ of, then show that

2

1 o P Po P --- Pnoi

1 oy ... of! D1 P2 .. D
Disc(f) = | . _ ? = |. : !

1 a, ... a'! Pn-1 Pn --- Pon-2

2 Discriminant in College Algebra

In the B.Sc. and M.Sc. level courses in Algebra, where one mainly studies
groups, rings, fields, etc., the notion of discriminant is encountered once
again. Here, at least initially, it appears far removed from the classical or
the high school algebra notion of discriminant. We will try to narrow this
gap by first recalling the relevant definitions and then describing how the
two seemingly different notions of discriminant are related to one another.
In what follows, we will assume mild familiarity with the concepts such as
rings, fields, vector spaces, and basic facts concerning them. We begin with
a brief discussion of the notion of trace, and some of its properties, which
are needed later. For proofs of these auxiliary results, one may refer to [6]
or standard texts such as [13].

Let K be a field and L be a ring containing K as a subring. Then L is
a vector space over K. We will assume that the vector space dimension of
L over K is finite and denote it by [L : K|. A nice passage from L to K is
provided by the trace map

TI"L/K:L—)K

which is defined as follows. Let n = [L : K|. Given any « € L, let ¢, denote
the linear transformation of L — L defined by t,(z) = ax for z € L. Then
we define Try/x (), to be the trace of ¢,. In other words, if {u,...,u,} is
a K-basis of L, and if to(u;) = Y ., a;;u; for some a;; € K (1 < j < n),
then Trp/x(c) = D1, aii. The latter is easily seen to be independent of
the choice of a basis. Some basic properties of the trace map Tr (we often
drop the subscript L/K when it is clear from the context) are as follows.



(i) Try/k is a K-linear map, i.e., Tr(au + bv) = aTr(u) 4 bTr(v) for all
a,b € K and u,v € L. Moreover, the restriction of Try/x to K equals
[L : K] times the identity map, that is, Tr(a) = na for a € K.

(ii) Suppose L is a field such that L = K(«) for some o € L.* Let f(X)
be the minimal polynomial® of o over K. Assume that f(X) has
distinct roots, say a4, ...,q,. Then Tr(a) = a; + ... + .

Remarks. 1. Suppose L is a field. Then K is a subfield of L and the
finiteness of [L : K] = dimg L implies that for each @ € L, the mini-
mal polynomial of o over K exists.® The roots ay, ..., a4 of this minimal
polynomial are called the conjugates of o over K.

2. Suppose L is a field. If every u € L has distinct conjugates over K,
then we say that L/K is separable. It can be shown that if K is any field
containing rationals, then L/K is always separable. If L/K is separable
(and dimg L is finite), then the so called Primitive Element Theorem as-
sures us that there exists some o € L such that L = K(«); such an element
« is called a primitive element in L.

3. Suppose L is a field such that L/K is a separable and v is any element
of L. If we let d denote the degree of the minimal polynomial of u over K

and uq,...,uq denote the roots of the minimal polynomial, then n = de,
where e = dimg(y) L, and the n elements u®, ... u™ obtained by taking
each of uy, ..., uy exactly e times, are called the conjugates of u w.r.t. L/K.

We have Tr(u) =« + ... +u™,

Example. Consider L = Q(v/2) = {a+bv2 : a,b € Q}. This is a field and
a 2-dimensional vector space over K = Q with {1, \/5} as a basis. Given
any u = a + by/2 € L, the matrix of the linear transformation ¢, w.r.t. the

‘By K(a) one denotes the smallest subfield of L containing K and «; it consists of
all ‘rational functions’ p(a)/q(a), where p(X),q(X) € K[X] with g(a) # 0.

5 A monic polynomial (i.e., a polynomial whose leading coefficient is 1) in K[X] sat-
isfied by a and of least possible degree is unique and is called the minimal polynomial of
a over K. Its degree equals [K(a) : K]. See [6], [11], [13] or [26] for more on this.

6Indeed, since n = dimg L, the set {1,a,...,a"} of n + 1 elements must be linearly
dependent over K, and thus « satisfies a nonzero polynomial of degree < n over K.
This, or any nonzero polynomial satisfied by «, can easily be made monic upon dividing
by its leading coefficient.
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above basis is easily seen to be

a b
2b «a
and therefore Tr(u) = 2a. Alternately, u satisfies the polynomial

X = 20X + (a2 = 20%) = (X — (a+ 0v2)) (X = (a — bV2))

and this is the minimal polynomial of u if b # 0. Therefore a+bv/2, a—bv/2
are the conjugates of v w.r.t. L/K and the last equality in the Remark
above is verified.

We are now ready to define the notion of discriminant in the set-up of
the ring L containing a field K as a subring and such that dimg L = n is
finite.

Definition 2.1 Given any n elements ui,...,u, € L, the discriminant
Dp/k(ui,...,up) of uy, ..., u, wrt. L/K is defined to be the determinant
of the n x n matrix (Trz,x (usu;)).

Note that Dpx(u1,...,us) is an element of K.

Lemma 2.2 If uy,...,u, € L are such that Dy g (uy,...,u,) # 0, then
{u1,...,u,} is a K-basis of L.

Proof: It suffices to show that w4, ..., u, are linearly independent over K.
Suppose Y | ¢;u; = 0 for some ¢y,...,c, € K. Multiplying the equation
by u; and taking the trace, we find that Y, ¢;Tr(u;u;) = 0. By hypothesis,
the matrix (Trz,x(usu;)) is nonsingular. Hence it follows that ¢; = 0 for
j=1,...,n. O

Lemma 2.3 If {uy,...,u,} and {vq,...,v,} are two K-bases of L and
u; = 2?21 aijvj, a;; € K, then we have
DL/K(UI; ceey U,n) = [det(aij)]QDL/K(vl, ceey Un).

In particular, since (a;;) is nonsingular, we have

-DL/K(u17 .. .,’U,n) =0 DL/K(UI; .. ,’Un) =0.



Proof: For any i,j € {1,...,n}, we have

n n n n o n
UU; = E QiVg | Uj = E QiU E GV | = E E QA1 VgV -
k=1 k=1 =1

k=1 I=1

Taking trace of both sides, and letting A denote the matrix (a;;), we see
that
(Tr(uguy)) = A" (Tr(vivy)) A

and so the result follows. O

Remark: We shall say that the discriminant of L/K is zero (or nonzero)
and write Dy /g = 0 (or Dy x # 0) if for some K-basis {u1,...,u,} of L,
the quantity Dy k (u1, ..., uy) is zero (or nonzero). The last lemma justifies
this terminology.

We are now ready to describe the link between the two notions of dis-
criminant considered in this and the previous section.

Theorem 2.4 Suppose L is a field and L/K is a separable. Then the
discriminant of L/K is nonzero. In fact, if o is a primitive element (so
that L = K(a) and {1,a,0?,...,a" '} is a K-basis of L) and f(X) is its
minimal polynomial, then we have

DL/K(LO"O?""?O[nil) = :l_‘[(ozi_a/j)2 = DlSC(f)

i>j
where aq, g, . .., q, denote the conjugates of a.

Proof: Since L/K is separable, the trace of any element of L equals the

sum of its conjugates w.r.t. L/K. Thus if {uq,...,u,} is a K—basis of L

and u;(",u;®, ... 4;(™ denote the conjugates of u; w.r.t. L/K, then we

have Tr(uu;) =Y p_, uz(-k)ug-k). In other words, the matrix (Tr(u;u;)) equals
(4

the product of the matrix (ul ) with its transpose. Therefore

2
ugl) u§2) . u§”’
1 (@2 (n)
DL/K(ula---:un) = 2 '2 . '2
ud M)
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In case uq1, Us, . .., up are 1, v, ..., a1V respectively, then the determinant
above is a Vandermonde determinant and the RHS becomes

1 1 o1

(0741 (6%)] A 2 9
. . . . ZH(OJZ'—O!J') = H(ai—aj) .
: : i>] 1<j

O!ln_l Ozgn_l .. ann—l

Therefore, we obtain the desired formulae. Our first assertion follows
from the fact that if L = K(«) is separable over K, then the conjugates
oM, a®, ... o™ of a wr.t. L/K are distinct. O

Remark: The converse of the above Theorem, viz., if Dy x # 0 then L/K
is separable, is also true. For a proof, see [26].

3 Discriminant in Arithmetic

In Arithmetic, which we start learning even before entering high school, we
mainly deal with numbers and their divisibility properties. A basic result
is the

Fundamental Theorem of Arithmetic Fvery nonzero integer can be
factored as +1 times a finite product of prime numbers. Moreover, this
decomposition is unique up to rearrangement of terms.

In higher arithmetic, we are interested in knowing if such a result holds
in domains more general than Z, the ring of integers. An example of such
a domain is

Zli] = {a+bi:a,be Z}.

This is a subring of C, and is called the ring of Gaussian integers. Here
is the usual complex number whose square is —1. The notion of divisibility
is easily defined in Z[i] or for that matter, in any ring.

Given a ring” A and elements a,b € A, we say that b divides a, and
write b|a, if a = be for some ¢ € A.

The analogue of a prime number is the so called irreducible element.

"By a ring we shall always mean a commutative ring with identity.

11



An element p in a ring A is said to be irreducible if p # 0, p is not a
unit®, and whenever p = be for some b,c € A, either b is a unit or c is a
unit.

For example, 5 is irreducible in Z but not in Z[i] since it decomposes as
5= (2+1)(2 — i). Further, the factors 2 4+ 4 and 2 — ¢ can be shown to be
irreducible elements which are distinct; in fact, they do not even differ by a
unit. On the other hand, 3 remains prime in Z[i]. Indeed, if v = a + bi and
v = ¢ + di are elements of Z[i] such that 3 = wv, then by taking modulus
(as complex numbers) and squaring, we have 9 = (a? + b%)(c? + d?). But
the square of an integer is always = 0 or 1 (mod 4), and so the sum of two
squares is never = 3 (mod 4). Hence a® +b* = 1 or ¢ + d* = 1. This
implies that either u or v is in {1, —1,4, —i}, i.e., either u is a unit or v is
a unit. The prime 2 of Z is special. It splits in Z[i] as 2 = (1 + ¢)(1 — 7)
and the factors 1 4+ ¢ are irreducible, but they aren’t really distinct because
they differ simply by a unit [indeed, 1 + 7 = i(1 — i) and so 2 = (1 — 7)?].
In general, a prime number p, when extended to Z]i]

splits as a product of two distinct irreducibles if p = 1(mod 4)
remains irreducible if p = 3(mod 4)
equals unit times the square of an irreducible if p = 2.

Incidentally, for p = 1(mod 4), the two irreducible factors in Z[i] must be
(complex) conjugates of each other (prove!), and thus the result about the
decomposition of such primes in Z[i] is equivalent to Fermat’s Two Squares
Theorem (viz., primes = 1(mod 4) are sums of two squares).

The ring Z[i] is an example of the ring of algebraic integers (in a number
field). The latter are defined as follows. A subfield K of C, which is finite
dimensional as a vector space over Q is called an algebraic number field or
simply a number field. We call dimg K the degree of K/Q and denote it by
[K : Q. If K is a number field, then every element of K satisfies a nonzero
polynomial with integer coefficients (check!). Those elements of K which
satisfy a monic polynomial with integer coeflicients are called (algebraic)
integers in K. The set of all algebraic integers in K form a subring of K,
called the ring of integers of K and denoted by Ok.

Exercises. Let K be a number field of degree n and Ok be its ring of
integers.

8Units in a ring A are defined to be the elements which divide 1. For example, 1, —1
are the only units in Z.

12 BONA MATHEMATICA



1. Show that given any u € K, there exists d € Z such that d # 0 and
du € Ok. Deduce that the quotient field of Ok is K and moreover, there
exist a Q-basis {u1, ..., u,} of K such that u; € Ok forall i =1,...,n.

2. Show that O NQ = Z. In other words, if a rational number satisfies
a monic polynomial with integer coefficients, then it must be an integer.

If {uy,...,u,} is a Q-basis of K such that {uy,...,u,} C Ok, then from
Exercise 2 above, we see that Dg/q(u1,...,u,) is an integer. Moreover, by
Theorem 2.4, it is a nonzero integer.

Lemma 3.1 Let {uy,...,u,} C Ok be a Q-basis of K with the property
that |Dgjg(u1,-..,un)| is minimal. Then O = Zuy + ... + Zuy, i.e.,
u € Ok if and only if u = ciuy + ... 4+ cyu, for someci,...,c, € 7.

Proof: It is clear that Zu, + ... + Zu,, C Ok. If u € Ok, then we can
write u = riuy + ...+ ru, for some rq,...,r, € Q. If ry € Z for some k
(1 <k <n), then 7, = my + A, where my € Z and A\ is a rational number
with 0 < A < 1. Define v1,...,v, by v; = u; if j # k and vy, = u — myuy.
Then it is clear that {vi,...,v,} C Ok and {vy,...,v,} is a Q-basis of
K. Moreover the matrix (a;;) of rationals for which v; = Z?:l a;;u; for
1 =1,...,n, is the identity matrix except for the k-th row, which is given
by (r1,.-«yTk-1, A, Tkt1,- .-, Tn). Thus in view of Lemma 2.3, we see that

Dk jq(vi, ..., v,) = [det (aij)] Dijg(ui, - .., un) = A2 Dgjg(ut, - . ., un).

Since A < 1, the minimality of |Dg/q(u1,...,us)| is contradicted. This
proves the lemma. O

Definition 3.2 A Q-basis uy,...,u, of a number field K such that Og =
Zuy + ...+ Zuy, is called an integral basis of K.

The above Lemma shows that every number field has an integral basis.
Also, it is clear that if {us,...,u,} and {vy,...,v,} are any two integral
bases of K, then v; = 377 a;u; for j = 1,...,n, for some n x n matrix
(a;;) with integral entries. Moreover the inverse of (a;;) is also a matrix
with integral entries. Therefore, det (a;;) = £1. Hence from Lemma 2.3, it
follows that any two integral bases of K have the same discriminant; it is

called the (absolute) discriminant of K and is denoted by d.
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The following example illustrates the computation of discriminant and
determination of integral bases.

Example: Let K be a quadratic field [that is, a subfield of C such that
[K : Q] = 2] and O be its ring of integers. If « is any element of K which
is not in Q, then 1 < [Q(a) : Q] < [K : Q] = 2, and hence K = Q(«).
Moreover, « satisfies a quadratic polynomial with integer coefficients, and
thus o = a + bv/A for some a,b € Q and A € Z. Since o ¢ Q, we must
have b # 0 and A not a square. It follows that K = Q (\/Z) Removing
the extraneous square factors from A, if any, we can write K = Q(y/m),
where m is a squarefree integer. We now attempt to give a more concrete
description of O. First, note that Z[\/m| = {r + s\/m :r,s € Z} C O. Let
z = a+bym € O for some a,b € Q. Then the other conjugate a — by/m
of z must also be in O. Therefore the sum of these two, i.e., Tr(z) = 2a
and the product a? — mb? are both in Ox N Q = Z. Since m is squarefree
and a®> — mb? € Z, we see that a € Z if and only if b € Z. Thus if a ¢ Z,
then we can find an odd integer a; such that 2a = a4, and relatively prime
integers b; and ¢; with ¢; > 1 such that b = 2—1 Now

(a1 =2a € Z and o® — mb® € Z) = (4|cja] and ci|d4mb]) = ¢1 = 2.

Hence b, is odd and a? — mb? = 0(mod 4). Also a; is odd, and therefore,
m = 1(mod 4). It follows that if m # 1(mod 4), then a,b € Z, and so in
this case,

O =Z[v/m] ={a+bym:a,b € Z} and {1,+/m} is an integral basis.

In the case m = 1(mod 4), the preceding observations imply that

(@) g {M : al,bl € Z with a; = bl(mod 2)}

1 . o, . _
and, moreover, +;/r” € O since it is a root of X2 — X — mTl; therefore

1

and consequently,

14+ +v/m
2

{1’

} is an integral basis.
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We can now compute the discriminant of K as follows.

det(2 0 ) = 4m if m = 2,3(mod 4)
0 2m
dic = 2 1 :

det(l (1+m)/2) =m if m = 1(mod 4).

It may be remarked that the integer d = dx determines the quadratic

field K completely, and the set {1, d+T\/a} is always an integral basis of K.
(Verify!)

In general, the unique factorization property is not true in the ring of
integers of a number field; in other words, the Fundamental Theorem of
Arithmetic may not hold there. For example, if K = Q(+/=5), then from
the example above, we have Ok = Z[/=5], and for the number 6, we have
two different factorizations:

6=3-2=(1+vV-5)(1—+v-5).

It is not difficult to see that the factors 2,3,1 4+ /=5 and 1 — /=5 are
irreducible and genuinely distinct (i.e., no two differ by a unit) in Ok =
Z[\/=5]. Around 1844, the German mathematician E. Kummer was study-
ing arithmetic in the ring Z[(] of cyclotomic integers® while trying to prove
Fermat’s Last Theorem!'°. Kummer realised that the unique factorization
may not always hold in rings of cyclotomic integers. Instead of giving up
the problem, he continued to delve deeper and made a remarkable discov-
ery! He showed that the unique factorization property can be salvaged if we
replace numbers by what he called ideal numbers. Another German math-
ematician R. Dedekind simplified and extended Kummer’s work by using

9Tf ¢ = (, is a primitive n—th root of unity (e.g., ¢ = €*>™/™ = cos(2r/n)+isin(27/n)),
then Q(¢) is a number field, called a cyclotomic field and its ring of integers is Z[(] =
{ap+ a1+ ...+ an_1¢""' : ap,a1,...,a, € Z}, which is called the ring of cyclotomic
integers.

0Fermat’s Last Theorem (FLT) is the famous assertion of P. Fermat that the equation
™ 4+ y™ = 2™ has no solution in nonzero integers, if n > 3. It is natural to consider
the ring of cyclotomic integers here because the existence of a solution (x,y, z) yields
a factorization z™ = (y — 2)(y — €z)...(y — ¢"712) in Z[(] and to proceed further, it
would be useful to know if the unique factorization property is valid in Z[¢]. In a sense,
Kummer didn’t succeed in proving FLT (though he settled it for several values of n)
because of the failure of unique factorization in Z[¢]. Recently, in 1994, FLT has been
proved by A. Wiles partly in collaboration with R. Taylor.
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ideals in place of ideal numbers.!? Dedekind’s results were first published
in 1871.12 In effect, Dedekind showed that if K is a number field, then
every nonzero ideal of Ok factors as a finite product of prime ideals, and
this factorization is unique up to rearrangement of terms. Integral domains
with this property are now known as Dedekind domains.

At any rate, if K is a number field and p is a prime number, then,
thanks to the abovementioned result of Kummer-Dedekind-Kronecker, the
extended ideal pOg can be factored uniquely as

poK — P1€1P2€2 ... P;h

where P, ..., P, are distinct prime ideals of Ok and ey, ..., e, are positive
integers. The prime p is said to be ramified in K if e; > 1 for some 3.

Example: If K = Q(i), then 2 is the only ramified prime.

In general, to understand the phenomenon of ramification, the discrim-
inant is an indispensable tool. This may be clear from the following basic
result.

Theorem 3.3 (Dedekind’s Discriminant Theorem) Let K be a num-
ber field and di be its discriminant. Then for any prime number p, we
have

p is ramified in K <= p|dk.

Example: If K = Q(y/m), where m is a squarefree integer, then we have
calculated the discriminant dg of K. Thus, for any prime number p, we
have:

plm if m = 1(mod 4)

p is ramified in K <= { plmor p=2 if m # 1(mod 4).

UTn fact, the concept of an ideal of a ring was thus born in the work of Kummer
and Dedekind. Note that these historical origins justify the nomenclature “ideal”, which
may otherwise seem obscure. Indeed, by considering ideals, the ideal situation (of unique
factorization) is restored!

2Tncidentally, another approach towards understanding and extending Kummer’s
work was developed by his student L. Kronecker, whose work was apparently completed
in 1859 but was not published until 1882.
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In the case of the cyclotomic field K = Q((,), where n is any integer > 2
and ¢, is a primitive n—the root of unity, the discriminant turns out'? to be

ne®)

_ (Lq)em)2
e = GV e

where the product in the denominator is over all prime numbers dividing n,
and ¢(n) denotes the number of positive integers < n and relatively prime
to n. Therefore,

p is ramified in Q(¢,) <= p|n.

Remarks. 1. For a proof of Dedekind’s discriminant Theorem, see [7] or
the books of Lang [14] or Serre [19].

2. The notions of discriminant and resultant are no doubt classical and
date back more than a century. However, extensions and generalisations (to
‘higher dimensions’) of these notions are of much current interest. For an
introduction, see the expository article [22] by Sturmfels and the references
therein. At a more advanced level, there is a book [5] by Gelfand, Kapranov
and Zelevinsky, and the recently published review [3] by Catanese may be
a good starting point for this.

3. It may be remarked that the phenomenon of ramification or rather
the absence of ramification, is closely related to certain basic notions in
Topology. Briefly speaking, unramified field extensions (i.e., extensions
for which no prime ‘below’ is ramified ‘above’) correspond to (topological
or unbranched) coverings. Thus, saying that a field has no unramified
extensions, is analogous to the condition that the corresponding topological
space is simply connected. Unfortunately, in the compartmentalized courses
at College and University level, such analogies are rarely highlighted. Thus
we might take this opportunity to mention the following brief and rough
dictionary of some basic concepts from Algebra and Topology.

Algebraic Field Extensions <— Branched Coverings;
Galois extensions «<— Regular Coverings;
Galois Groups <— Groups of Deck transformations.

For more on Coverings Spaces in particular, and Topology, in general, we
recommend the classic text of Seifert and Threlfall [18] or the more recent

13For a proof of the discriminant formula for cyclotomic fields, one may refer to [25].
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book of Massey [15]. The first appendix in [16] also gives a nice and quick
summary of the basics of covering spaces.

4. Tt is a nontrivial result of Minkowski that for any number field K other
than @Q, we have |dg| > 1. This means that there exists at least one prime
number p which is ramified in K. Thus, we might say that Q is simply
connected! Analogous result holds when Q is replaced by the field C(X) of
rational functions in one variable with complex coefficients. This time, the
topological analogue is the more familiar result that the Riemann sphere or
the extended complex plane is simply connected.

5. The study of ramification (and hence of discriminants) is of basic
importance in some advanced developments in Algebraic Number Theory,
which go under the name of Class Field Theory. This is a fascinating topic,
and to learn more about it, see [2] or [14]. It may also be worthwhile and
interesting to see Hilbert’s Zahlbericht, which was meant as a report to the
German Mathematical Society on the status of Algebraic Number Theory
in 1895. This report contained several original contributions by Hilbert and
perhaps started the subject of Class Field Theory. The Zahlbericht is now
available in English [9].

6. The relation with ramification is perhaps the most important applica-
tion of discriminant in Number Theory. However, the classical discriminant
A = b? — 4ac of a quadratic also comes up in the following important and
classical question.

Given an integer A, what are the possible binary quadratic forms ax? +
bxy + cy? with integer coefficients a, b, c, for which A = b* — 4ac? Can we
classify them?

This was studied by Legendre and Gauss, and the notions of class num-
ber and genera were developed by Gauss for classifying binary quadratic
forms with a given discriminant. For an exposition of the basics of this
theory, one may consult the texts of Baker [1] or Flath [4]. For a beautiful
introduction to some modern developments motivated by this problem, we
refer to Serre’s Singapore lecture [20].

7. The discriminant also makes an unexpected appearance in questions
related to the generalization of the so called Waring’s problem. For example,
it is shown in [12] that if K is a number field and n, k are integers with
n > k > 2, then every nxn matrix over Ok is a sum of k-th powers of
matrices over O if and only if the discriminant dx of K is coprime to k.
Moreover, when this condition is met, seven powers always suffice.
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