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A note on Nullstellensatz over finite fields

Sudhir R. Ghorpade

Abstract. We give an expository account of Nullstellensatz-like results when
the base field is finite. In particular, we discuss the vanishing ideal of the
affine space and of the projective space over a finite field. As an application,
we include an alternative proof of Ore’s inequality for the number of points of
affine hypersurfaces over finite fields.

1. Introduction

Hilbert’s Nullstellensatz, or Hilbert’s Zero Point Theorem, is a classical result
of fundamental importance in commutative algebra and algebraic geometry. This
result is only valid when the base field is C, the field of complex numbers, or
more generally an algebraically closed field. In fact, when the base field is C,
it can be viewed as a remarkable generalization of the Fundamental Theorem of
Algebra. There are two versions, commonly known as Weak Nullstellensatz and
Strong Nullstellensatz, which can be stated as follows.

Weak Nullstellensatz: Let k be an algebraically closed field. If I is a nonunit
ideal of the polynomial ring k[X1, . . . , Xn], then I has a ‘zero’, i.e., there exists
(α1, . . . , αn) ∈ kn such that f(α1, . . . , αn) = 0, for each f ∈ I.

This result is usually deduced from the assertion, also referred to as a Nullstel-
lensatz, that every maximal ideal of k[X1, . . . , Xn] is of the form (X1−α1, . . . , Xn−
αn) for some α1, . . . , αn ∈ k, provided of course k is algebraically closed. On the
other hand, the Weak Nullstellensatz together with a well-known “trick of Rabi-
nowitsch”, implies the following version.

Strong Nullstellensatz: Let k be an algebraically closed field and let f1, . . . , fm
be any polynomials in k[X1, . . . , Xn]. If f ∈ k[X1, . . . , Xn] is such that f vanishes
at every common zero in kn of f1, . . . , fm, then

fr = g1f1 + · · ·+ gmfm for some g1, . . . , gm ∈ k[X1, . . . , Xn] and r ≥ 0.

The above statement is close to the original version of the theorem as it appears
in Hilbert’s 1893 paper [11, §3] on the complete systems of invariants. Hilbert
calls this a third general theorem in the theory of algebraic functions, continuing
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Theorems I and III of his 1890 paper [10, §I, III] on the theory of algebraic forms.
These latter theorems being what we now call Hilbert’s basis theorem and Hilbert’s
syzygy theorem. A translation into English of Hilbert’s papers on invariant theory
is now available (cf. [12]) and one can access more easily the writings of a master.
Nowadays, (Strong) Nullstellensatz is more commonly stated in the language of
vanishing ideals of affine algebraic varieties and we recall this version in § 2.1 below.
We also recall analogous result for projective varieties that one calls Projective
Nullstellensatz. Most modern textbooks on commutative algebra contain a proof
of Hilbert’s Nullstellensatz, and we refer to Eisenbud’s book [8] which has five
different proofs, and to [1,17,19,24] for a sampling of alternative proofs. See also
the article by Goel, Patil and Verma [9] in this volume and the older article by
Laksov [15] where some variations of Hilbert’s Nullstellensatz are discussed.

A trivial consequence of Strong Nullstellensatz is that if k is an algebraically
closed field and if f ∈ k[X1, . . . , Xn] vanishes on all of kn, then f is the zero
polynomial. We will refer to it as Very Weak Nullstellensatz, or in short,
VWN. To deduce it from Strong Nullstellensatz, it suffices to take m = 1 and f1
to be the zero polynomial. The VWN is, in fact, valid if k is any infinite field,
and can be proved easily using induction on n and noting that a polynomial in one
variable of degree d with coefficients in a field k has at most d roots in k.

On the other hand, even the VWN is not true if the base field is finite, say
the finite field Fq with q elements. Indeed, there are nonzero polynomials such as
Xq

i −Xi that vanish on all of Fn
q . Nonetheless one has the following result, which

may be viewed as an analogue of (Very Weak) Nullstellensatz over finite fields.

Affine Fq-Nullstellensatz: Let f ∈ Fq[X1, . . . , Xn] and let Γq denote the
ideal of Fq[X1, . . . , Xn] generated by Xq

1 −X1, . . . , X
q
n −Xn. Then:

(i) f vanishes at every point of Fn
q if and only if f ∈ Γq.

(ii) Let f1, . . . , fm be polynomials in Fq[X1, . . . , Xn]. If f vanishes at every
common zero of f1, . . . , fm in Fn

q , then

f = g1f1 + · · ·+ gmfm + γ for some g1, . . . , gm ∈ Fq[X1, . . . , Xn] and γ ∈ Γq.

Note that (i) is a special case of (ii) and also that in (ii), one doesn’t have to take
a power of f (unlike in Strong Nullstellensatz). In other words, if I is an ideal
of Fq[X1, . . . , Xn], then I + Γq is automatically a radical ideal of Fq[X1, . . . , Xn].
The above result is not new and goes back at least to Terjanian [23]. An excel-
lent account is available in the article (in French) of Joly [13]; see also Delsarte,
Goethals, and MacWilliams[7, § 1]. A more modern reference is Kreuzer and Rob-
biano [14, § 6.2A]. However, in the experience of the author, the result is not as
widely known as it should be. Moreover, an analogue of (i) in the projective case
that gives an explicit description of homogeneous polynomials that vanish on all of
Pn(Fq), appears to be known to even fewer algebraists. This is of a relatively recent
vintage and may be attributed to Mercier and Rolland [18] (see also Remark 3.4).
We thus provide in this article a self-contained account of these Nullstellensatz-like
results in the setting of finite fields. Our proof of the projective analogue of (i)
above uses the notion of projective reduction developed in [3] and is a little sim-
pler than the original proof of Mercier and Rolland. We will also point out that a
straightforward analgoue of (ii) in the projective case is not possible. In the affine
case, the Affine Fq-Nullstellensatz can be useful to deduce the so called affine Fq-
footprint bound for estimating the number of Fq-rational points of affine algebraic
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varieties defined over Fq. We outline this and show how such a bound can be used
to deduce a classical inequality for the number of points of affine hypersurfaces
defined over Fq.

As indicated in the abstract, this is an expository article, and we have made an
attempt to keep it fairly self-contained. The results given here are not new, but are
somewhat scattered in the literature not all of which is easily available in English.
The proofs given here of some of the results (especially in Section 3) appear to be
simpler and more natural than those available elsewhere in the literature.

2. The Affine Case

In the first subsection, we set up some basic notation and recall preliminaries
about affine varieties. The notion of reduced polynomials is discussed in the next
subsection and a couple of auxiliary results are proved here. These are then used
in § 2.3 to prove the result described in the Introduction as the Affine Fq- Nullstel-
lensatz, and, in fact, a slightly more general version of it. Finally, in § 2.4, we give
an application to a classical inequality due to Ore. Our exposition in subsections
2.2 and 2.3 closely follows Joly [13, Ch. 2], while the proof of Lemma 2.6 in § 2.3
is adapated from Carvalho’s notes [4, § 3].

2.1. Preliminaries. Let k be a field and let n be a nonnegative integer. Also,
let S := k[X1, . . . , Xn] be the ring of polynomials in n variables X1, . . . , Xn with
coefficients in k. We denote by An

k (or simply, An if the reference to k is clear from
the context) the space of n-tuples of elements of k. Given any I ⊆ S, we let

Z(I) := {a = (a1, . . . , an) ∈ An
k : f(a1, . . . , an) = 0 for all f ∈ I}.

Given a subfield F of k, we call a subset Z of An
k an affine algebraic variety defined

over F if Z = Z(I) for some I ⊆ F [X1, . . . , Xn]. This is equivalent to saying
that Z = Z(I) for some ideal I of S generated by finitely many polynomials in
F [X1, . . . , Xn]. If Z is an affine algebraic variety defined over F and if K is a field
extension of F such that K is a subfield of an algebraic closure k of k (so that F,K
and k are subfields of k), then we denote by Z(K) the set of K-rational points of
Z, i.e., Z(K) := {a ∈ An

K : f(a) = 0 for all f ∈ I}. Given a subset Z of An
k , we let

I(Z) := {f ∈ S : f(a) = 0 for all a ∈ Z},
and we note that I(Z) is an ideal of S; it is called the vanishing ideal of Z. It
is not difficult to see that if Z is an affine algebraic variety defined over k, then
Z(I(Z)) = Z. On the other hand, Strong Nullstellensatz can be stated as follows.

(2.1) I(Z(I)) =
√
I if k is algebraically closed and I is any ideal of S.

By considering an ideal I of S such that Z(I) = ∅, we obtain the Weak Nullstellen-
satz, whereas by considering the special case Z(I) = An

k , we can deduce the VWN.
As noted in the Introduction, the latter is valid (and rather easily proved) more
generally when k is an infinite field that is not necessarily algebraically closed.

2.2. Reduction. Fix a finite field Fq with q elements (so that q is a prime

power) and an algebraic closure Fq of Fq (in fact, we can take Fq to be ∪n≥1Fqn).

Let k be a subfield of Fq containing Fq (or equivalently, k is an algebraic extension
of Fq). As before, let S := k[X1, . . . , Xn].

A polynomial f ∈ S is said to be reduced if degXi
f ≤ q−1 for each i = 1, . . . , n.

The set of all reduced polynomials in S will be denoted by R. Clearly, R is a vector
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space over k and the monomials Xi1
1 · · ·Xin

n , where 0 ≤ ij ≤ q − 1 for j = 1, . . . , n,
form a k-basis ofR. In particular, dimR = qn. Note that if n = 0, then R = S = k.

Lemma 2.1. If f ∈ R is such that f(a) = 0 for all a ∈ An(Fq), then f is the
zero polynomial. In other words, R ∩ I(An(Fq)) = {0}.

Proof. The case when n = 0 is trivial. Suppose n > 0 and the result holds for
polynomials in n−1 variables. Let f ∈ R be such that f(a) = 0 for all a ∈ An(Fq).
Since f is reduced, we can write f = f(X1, . . . , Xn) as

f = f0X
q−1
n +f1X

q−2
n +· · ·+fq−1 where fi ∈ k[X1, . . . , Xn−1] for i = 0, 1, . . . , q−1.

Now for any fixed (a1, . . . , an−1) ∈ An−1(Fq), the polynomial f(a1, . . . , an−1, Xn)
in k[Xn] has degree ≤ q − 1 and has at least q roots in k. Hence it must be the
zero polynomial. Consequently, fi(a1, . . . , an−1) = 0 for all i = 0, 1, . . . , q − 1 and
(a1, . . . , an−1) ∈ An−1(Fq). So by the induction hypothesis, each fi is the zero
polynomial, and therefore, so is f . �

Now let us define Γq(k) to be the ideal of S = k[X1, . . . , Xn] generated by
Xq

1 −X1, . . . , X
q
n−Xn. Clearly, Γq(k) ⊆ I(An(Fq)), and so Lemma 2.1 implies that

(2.2) R ∩ Γq(k) = {0}.
Lemma 2.2. Every f ∈ S can be uniquely written as f = g+ γ for some g ∈ R

and γ ∈ Γq(k). In other words, S = R⊕ Γq(k).

Proof. The uniqueness is clear from (2.2) since both R and Γq(k) are clearly
vector spaces over k. To prove the existence, it suffices to take f to be a monomial,
say f = Xi1

1 · · ·Xin
n . If f is not reduced, then ij ≥ q for some j ∈ {1, . . . , n}. Note

that
X

ij
j = X

ij−q
j (Xq

j −Xj +Xj) ≡ X
ij−(q−1)
j (mod Γq(k)).

Hence f ≡ Xi1
1 · · ·Xij−1

j−1 X
ij−(q−1)
j X

ij+1

j+1 · · ·Xin
n (mod Γq(k)). Continuing in this

way, we see that f ≡ g(mod Γq(k)) for some reduced monomial g. �
2.3. Affine Fq-Nullstellensatz. We will continue to use the notation and

terminology in § 2.1 and § 2.2. The Affine Fq-Nullstellensatz stated in the Intro-
duction is a special case of the theorem below with k = Fq, where Z(Fq) coincides
with Z(I).

Theorem 2.3. Let k be an algebraic extension of Fq. Then:

(i) I(An(Fq)) = Γq(k).
(ii) If Z is an affine algebraic variety in An

k defined over Fq and Z = Z(I) for
some ideal I of S generated by polynomials in Fq[X1, . . . , Xn], then

I(Z(Fq)) = I + Γq(k).

Proof. (i) The inclusion Γq(k) ⊆ I(An(Fq)) is obvious. To prove the reverse
inclusion, suppose f ∈ I(An(Fq)). By Lemma 2.2, we can write f = g + γ for some
g ∈ R and γ ∈ Γq(k). But then g = f−γ vanishes on An(Fq) and so by Lemma 2.1,
g = 0. Thus f ∈ Γq(k).

(ii) Let I be an ideal of S generated by polynomials in Fq[X1, . . . , Xn] and let
Z = Z(I). Evidently, I+Γq(k) ⊆ I(Z(Fq)). To prove the reverse inclusion, first note
that by Hilbert basis theorem, I = 〈f1, . . . , fr〉 for some f1, . . . , fr ∈ Fq[X1, . . . , Xn].
Let us consider

g := 1−
(
1− fq−1

1

)
· · ·

(
1− fq−1

r

)
and h := 1− g.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

NULLSTELLENSATZ OVER FINITE FIELDS 27

It is clear that g, h ∈ Fq[X1, . . . , Xn] and g ∈ I. Moreover,

g(a) =

{
0 if a ∈ Z(Fq)

1 if a ∈ An(Fq) \ Z(Fq)
and h(a) =

{
1 if a ∈ Z(Fq)

0 if a ∈ An(Fq) \ Z(Fq).

Now let f ∈ I(Z(Fq)). Then fg ∈ I and fh ∈ I(An(Fq)). Since g + h = 1, we see
from (i) above that f = fg + fh ∈ I + Γq(k). Thus I(Z(Fq)) = I + Γq(k). �

Remark 2.4. An immediate corollary of part (ii) of the above theorem is that
for any ideal I of S generated by polynomials in Fq[X1, . . . , Xn], the ideal I+Γq(k)
is a radical ideal. This particular fact can also be deduced from Seidenberg’s Lemma
given in Article 92 of [21].

2.4. Application to Affine Hypersurfaces over Finite Fields. Let k be
an arbitrary field and as before, let S denote the polynomial ring k[X1, . . . , Xn].
Also, let M denote the set of all monomials in S (including the constant monomial
1). Fix a monomial order on M, i.e., a total order � on M satisfying (i) 1 � μ for
all μ ∈ M and (ii) μ1 � μ2 ⇒ νμ1 � νμ2 for all μ1, μ2, ν ∈ M. For 0 �= f ∈ S,
let in�(f) denote the largest monomial (w.r.t. �) appearing in f with a nonzero
coefficient; this is called the leading monomial or the initial monomial of f (w.r.t.
�). For any subset I of S, define the footprint of I to be the set Δ(I) of all
monomials in M that are not divisible by the leading monomials of any nonzero
element of I, i.e.,

Δ(I) := {μ ∈ M : in�(f) � μ for all f ∈ I with f �= 0}.
If I ⊆ S is finite, say I = {f1, . . . , fr}, then we may write Δ(I) as Δ(f1, . . . , fr).

The following result due to Buchberger is classical and is easily derived from
the division algorithm (w.r.t. �) in S. See, for example, Prop. 1 in Ch. 5, § 3 of
[5].

Proposition 2.5. {μ+ I : μ ∈ Δ(I)} is a k-basis of S/I for any ideal I of S.

We can use this and a variant of Lagrange interpolation to derive a useful bound
for the number of Fq-rational points of affine algebraic varieties defined over Fq.

Lemma 2.6 (Affine Fq-Footprint Bound). Let k be an algebraic extension of Fq

and let I be an ideal of S := k[X1, . . . , Xn] generated by some nonzero polynomials
f1, . . . , fr ∈ Fq[X1, . . . , Xn]. Also let Z = Z(I) denote the corresponding affine
algebraic variety in An

k defined over Fq. Then

|Z(Fq)| ≤
∣∣Δ(f1, . . . , fr)

∣∣ ,
where Δ(f1, . . . , fr) := {μ ∈ M : μ is reduced and in�(fi) � μ for i = 1, . . . , r}.

Proof. If Z(Fq) is empty, then there is nothing to prove. Thus, assume that
Z(Fq) is nonempty. Let Iq := I + Γq(k). Clearly, Z(Iq) = Z(Fq). Hence Z(Iq) is a
nonempty finite subset of An

k ; in particular, Iq �= S. Write Z(Iq) = {a1, . . . , am},
where ai �= aj for 1 ≤ i < j ≤ m. Write ai = (ai1, . . . , ain) for i = 1, . . . ,m. Fix
i ∈ {1, . . . ,m}. Then for each j ∈ {1, . . . ,m} with j �= i, there is tj ∈ {1, . . . , n}
such that aitj �= ajtj . Consider

pi(X1, . . . , Xn) =
∏

1≤j≤m

j �=i

Xtj − ajtj
aitj − ajtj

.
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The polynomials p1, . . . , pm ∈ Fq[X1, . . . , Xn] thus obtained have the property that
pi(aj) = δij for i, j = 1, . . . ,m. Moreover, Iq = I(Z(Fq)), by part (ii) of Theo-
rem 2.3. Hence if

∑m
j=1 λjpj ∈ Iq for some λ1, . . . , λm ∈ k, then by evaluating at

ai, we obtain λi = 0 for i = 1, . . . ,m. It follows that {p1 + Iq, . . . , pm + Iq} is a
k-linearly independent subset of S/Iq. Thus, by Proposition 2.5, we see that

|Z(Fq)| = m ≤ dimk S/Iq = |Δ(Iq)| ≤ |Δ(f1, . . . , fr, X
q
1 −X1, . . . , X

q
n −Xn)| .

Finally, since in�(X
q
i − Xi) = Xq

i for each i = 1, . . . , n, it is clear that μ ∈ M is
reduced if and only if in�(X

q
i − Xi) � μ for all i = 1, . . . , n. This readily implies

that Δ(f1, . . . , fr, X
q
1 −X1, . . . , X

q
n −Xn) = Δ(f1, . . . , fr). �

As a corollary, we shall deduce an inequality that according to [16, p. 320],
goes back at least to Ore (1922) and provides an effective bound on the number of
Fq-rational points of an affine hypersurface defined over Fq in terms of its degree.
It can also be viewed as a multivariable generalization of the elementary fact that
a univariate polynomial of degree d with coefficients in a field has at most d roots
in that field. The generalization is of course possible when the base field is finite.

Corollary 2.7 (Ore’s Inequality). Let f ∈ Fq[X1, . . . , Xn] be a nonzero poly-
nomial of degree d and let Z = Z(f) be the corresponding variety in An

k , where k
is any algebraic extension of Fq. Then

|Z(Fq)| ≤ dqn−1.

Proof. The inequality is trivial if d ≥ q because then dqn−1 ≥ |An(Fq)| ≥
|Z(Fq)|. Assume that d < q. This implies, in particular, that f is reduced. Fix
a monomial order � on the set M of all monomials in S := k[X1, . . . , Xn], and

write in�(f) = Xi1
1 · · ·Xin

n , where i1, . . . , in are nonnegative integers such that
i1 + · · ·+ in ≤ d. Note that 0 ≤ ij ≤ d ≤ q − 1 for j = 1, . . . , n. By Lemma 2.6,

|Z(Fq)| ≤ |Δ(f)| =
∣∣{μ ∈ M : μ is reduced and Xi1

1 · · ·Xin
n � μ}

∣∣ .
Now a monomial μ = Xj1

1 · · ·Xjn
n is reduced and is divisible by Xi1

1 · · ·Xin
n if and

only if it ≤ jt ≤ q − 1 for all t = 1, . . . , n. The number of such monomials is
therefore (q − i1) · · · (q − in). An easy induction on n shows that

(q−i1) · · · (q−in) ≥ qn−(i1+ · · ·+in)q
n−1 whenever 0 ≤ ij < q for j = 1, . . . , n.

Since the number of reduced monomials in M is clearly qn, it follows that

|Z(Fq)| ≤ |Δ(f)| ≤ qn −
(
qn − dqn−1

)
= dqn−1,

where we have used the fact that i1 + · · ·+ in ≤ d. �

3. Projective Version

In this section, we will try to develop projective analogues of the results in the
first three subsections of Section 2. Our treatment will, in fact, be very parallel to
that in §2.1-2.3.
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3.1. Preliminaries. Let k be a field. The projective n-space over k will be
denoted by Pn

k and it is the set of equivalence classes of elements of the set kn+1 \
{0} w.r.t. the equivalence relation ∼ given by proportionality, i.e., for all a =
(a0, a1, . . . , an) and b = (b0, b1, . . . , bn) in kn+1 \ {0},

a ∼ b ⇐⇒ there is λ ∈ k such that ai = λbi for all i = 0, 1, . . . , n.

We may denote by [a0 : a1 : · · · : an] the equivalence class of (a0, a1, . . . , an) in
kn+1 \ {0}. We let S be the polynomial ring k[X0, X1, . . . , Xn] in n+ 1 variables.
Given a subset I of S consisting of homogeneous polynomials, we let

V(I) := {[a0 : a1 : · · · : an] ∈ Pn
k : f(a0, a1, . . . , an) = 0 for all f ∈ I} .

Given a subfield F of k, we call a subset V of Pn
k a projective algebraic vari-

ety defined over F if V = V(I) for some subset I of homogeneous polynomials
in F [X0, X1, . . . , Xn]. This is equivalent to saying that V = V(I) for some ho-
mogeneous ideal I of S generated by finitely many homogeneous polynomials in
F [X0, X1, . . . , Xn]. If V a projective algebraic variety defined over F and if K is a
field extension of F such that K is a subfield of an algebraic closure k of k, then
we denote by V (K) the set of K-rational points of V , i.e.,

V (K) := {[a0 : · · · : an] ∈ Pn
K : f(a0, . . . , an) = 0 for all homogeneous f ∈ I}.

Given a subset V of Pn
k , the vanishing ideal of V is defined to be the ideal I(V ) of

S generated by the homogeneous polynomials in S that vanish at every point of V .
It is not difficult to see that if V is any projective algebraic variety defined over k,
then V(I(V )) = V , while the projective analogue of (2.1) is the following.

Projective Nullstellensatz: If k is algebraically closed and if I is any ho-
mogeneous ideal of S, then

√
I ⊇ 〈X0, X1, . . . , Xn〉 if V(I) is empty, whereas

I(V(I)) =
√
I if V(I) is nonempty.

In particular, we see that there are nonunit homogeneous ideals of S that have
no ‘zero’ in Pn

k , even when k is algebraically closed. Thus a straightforward analogue
of the Weak Nullstellensatz isn’t quite true for projective varieties. On the other
hand, the other special case V(I) = Pn

k still yields the projective analogue of VWN,
which says that if k is algebraically closed, then the only homogeneous polynomial
that vanishes on all of Pn

k is the zero polynomial. As before, this is valid more
generally (and proved rather easily) when k is any infinite field. But when k is a
finite field, such a result is not true and we discuss next what happens in this case.

3.2. Projective reduction. We follow [3] to outline here a projective ana-
logue of the notion of reduction that was discussed in § 2.2. In this section, let k be
an algebraic extension of Fq and let S := k[X0, X1, . . . , Xn]. Given a nonnegative
integer d, let Sd denote the set of homogeneous polynomials in S of degree d (in-
cluding the zero polynomial). We will denote by M the set of all monomials in S.
A monomial μ ∈ M is said to be projectively reduced if either μ = 1 or μ �= 1 and
degXi

μ ≤ q − 1 for 1 ≤ i < �μ, where �μ is the index of the last variable appearing
in μ, i.e., �μ := max{� ∈ {0, 1, . . . , n} : X� | μ}. Given a nonnegative integer d, we
let Rd denote the set of k-linear combinations of projectively reduced monomials
in M of degree d. Clearly Rd is a finite dimensional vector space over k and its
elements may be called projectively reduced homogeneous polynomials of degree d.
The next two results are projective analogues of Lemmas 2.1 and 2.2.
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Lemma 3.1. Let d be a nonnegative integer. If f ∈ Rd is such that f(P ) = 0 for
all P ∈ Pn(Fq), then f is the zero polynomial. In other words, Rd∩I(Pn(Fq)) = {0}.

Proof. The case when n = 0 is trivial. Suppose n > 0 and the result holds
for homogeneous polynomials of degree d in k[X0, X1, . . . , Xn−1]. Let f ∈ Rd ∩
I(Pn(Fq)). By separating terms involving Xn, we can write

f(X1, . . . , Xn) = g(X0, . . . , Xn−1) + h(X0, . . . , Xn)

where g ∈ k[X0, . . . , Xn−1] and h ∈ k[X0, . . . , Xn] are homogeneous of degree
d such that the last variable in each of the monomials appearing in h (with a
nonzero coefficient) is Xn. Considering points [a0 : · · · : an] of Pn(Fq) such that
an = 0, we deduce from the induction hypothesis that g(X0, . . . , Xn−1) is the
zero polynomial. On the other hand, the dehomogenization h(X0, . . . , Xn−1, 1)
is a reduced (and not necessarily homogeneous) polynomial in k[X0, . . . , Xn−1]
that vanishes on An(Fq). Hence by Lemma 2.1, h(X0, . . . , Xn−1, 1) is the zero
polynomial. Since h is a homogeneous polynomial divisible by Xn, it follows that
h is also the zero polynomial. �

Now let us define Γ∗
q(k) to be the ideal of S generated by the

(
n+1
2

)
Fermat

polynomials Xq
i Xj −XiX

q
j , where 0 ≤ i < j ≤ n. Clearly, Γ∗

q(k) is a homogeneous

ideal of S and Γ∗
q(k) ⊆ I(Pn(Fq)). For any d ≥ 0, we let Γ∗

q(k)d := Γ∗
q(k)∩Sd. From

Lemma 3.1, we see that

(3.1) Rd ∩ Γ∗
q(k)d = {0} for every nonnegative integer d.

Lemma 3.2. Let d be a nonnegative integer and let f ∈ Sd. Then f = g + γ
for unique g ∈ Rd and γ ∈ Γ∗

q(k)d. Consequently, Sd = Rd ⊕ Γ∗
q(k)d.

Proof. The uniqueness is clear from (3.1) since bothRd and Γ∗
q(k)d are clearly

vector spaces over k. To prove the existence, it suffices to take f to be a nonconstant
monomial of degree d, say f = Xi0

0 · · ·Xi�
� , where � is the index of the last variable

in f so that i� > 0. If f is not projectively reduced, then � ≥ 1 and ij ≥ q for some

j ∈ Z with 0 ≤ j < �. Now observe that X
ij
j Xi�

� can be written as

X
ij−q
j Xi�−1

�

(
Xq

jX� −XjX
q
� +XjX

q
�

)
≡ X

ij−(q−1)
j X

i�+(q−1)
� (mod Γ∗

q(k)).

This implies that

f ≡ Xi1
1 · · ·Xij−1

j−1 X
ij−(q−1)
j X

ij+1

j+1 · · ·Xi�+(q−1)
� (mod Γ∗

q(k)).

Continuing in this way, we see that f ≡ g(mod Γ∗
q(k)) for some projectively re-

duced monomial g of degree d. Moreover, γ := f − g is necessarily a homogeneous
polynomial in Γ∗

q(k) of degree d. �

3.3. Vanishing Ideal of Projective Spaces over Finite Fields. We will
continue to use the notation and terminology in § 3.1 and § 3.2. The following result
is a slightly more general version of a theorem of Mercier and Rolland [18, Thm.
2.1]; in fact, it corresponds precisely to [3, Cor. 2.6]. The proof, however, is different
from that in [18] or [3].

Theorem 3.3. Let k be an algebraic extension of Fq. Then

I(Pn(Fq)) = Γ∗
q(k).
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Proof. The inclusion Γ∗
q(k) ⊆ I(Pn(Fq)) is obvious. For the reverse inclusion,

let f be a homogeneous polynomial of degree d such that f ∈ I(Pn(Fq)). By
Lemma 3.2, we can write f = g + γ for some g ∈ Rd and γ ∈ Γ∗

q(k)d. But then
g = f − γ vanishes on Pn(Fq) and so by Lemma 3.1, g = 0. Thus f ∈ Γ∗

q(k). �
Remark 3.4. The result in Theorem 3.3 when k = Fq has been stated by

Bayer-Fluckiger and Serre in [2, Lem. 7.2.4], where the proof is left to the reader.
As noted earlier, a complete proof was given by Mercier and Rolland [18, Thm.
2.1]. Another proof that uses part (i) of Theorem 2.3 appears in the paper of
Renteŕıa and Tapia-Recillas [20, Prop. 8]. It may be noted that although [20]
was published in 1997 and [18] in 1998, the former was received by the journal in
March 1996 and the latter in January 1995. Moreover, [18] is included among the
references of [20].

Unlike in the affine case, it is not true that if I is a homogeneous ideal of S,
then I(V(I)) = I+Γ∗

q(k). In fact, while I(V(I)) is a radical ideal, the ideal I+Γ∗
q(k)

need not be a radical ideal even when I is a radical ideal of S. To illustrate this,
we reproduce the following example from [3, Ex. 3.8].

Example 3.5. Suppose n = 1 and f(X0, X1) := Xq
0X1 −X0X

q
1 +Xq+1

0 . Con-
sider the principal homogeneous ideal I = 〈f(X0, X1)〉 of k[X0, X1]. Note that
I is a radical ideal of S = k[X0, X1] because S is a UFD and f does not have
a multiple root in P1(k). Indeed, f(X0, X1) = X0g(X0, X1) where g(X0, X1) :=

Xq−1
0 X1 −Xq

1 +Xq
0 does not have [0 : 1] as a root and also no multiple root of the

form [1 : a] since the derivative with respect to X1 of g(1, X1) is never zero. On the

other hand, I +Γ∗
q(k) = I + 〈Xq

0X1 −X0X
q
1 〉 contains X

q+1
0 , but does not contain

X0 (since every nonzero element of I +Γ∗
q(k) has degree ≥ q+ 1). Thus I +Γ∗

q(k)
is not a radical ideal even though I is a radical ideal.

Remark 3.6. The nonavailability of a straightforward analogue of part (ii) of
Theorem 2.3 in the projective case makes it harder to find a suitable analogue of
the affine Fq-footprint bound (Lemma 2.6). Nonetheless, it is shown in [3] how
a useful projective Fq-footprint bound can be obtained, and as an application an
inequality due to Serre for the number of points of projective hypersurfaces is
deduced. This inequality is, in fact, a not-so-straightforward projective analogue of
Ore’s inequality given in Corollary 2.7; see [6] for more on this.
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