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Abstract. We present a way to view the cyclic homology of Connes in terms

of the graph homology of Kontsevich, and justify this viewpoint by the follow-
ing example. A result of Loday-Quillen and Tsygan computes the stable Lie
algebra homology of gl(A), matrices over an algebra A, in terms of the cyclic

homology of A. As a generalization, for an operad P, we compute the stable
Lie algebra homology of vector fields on the standard P-manifold in terms of
a graph homology of P. When P = A, one recovers the previous result by
noting that gl(A) is the space of vector fields on the standard A-manifold. The

symplectic and orthogonal cases are also briefly discussed.
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1. Introduction

The goal of this paper is to show a way to view cyclic homology of algebras in the
setting of graph homology of operads. We explain this by the following example.

1.1. Lie algebra of matrices and cyclic homology. Cyclic (co)homology first
appeared in the work of Connes [3]. Almost immediately after, the cyclic homology
of an algebra A was shown to be the primitive part of the Lie algebra homology
of matrices by Loday-Quillen [16, 17] and Tsygan [23, 4]. Later Loday-Procesi
[15] proved the analogue for symplectic and orthogonal matrices. This material is
reviewed in Section 2, with these three results written as three cases of Theorem 1.

1.2. Lie algebra of symplectic vector fields and graph homology. A few
years later, Kontsevich introduced graph homology [12, 13]. Using similar methods
as above, he computed the homology of the Lie algebra of vector fields on certain
noncommutative manifolds. He proved that

Theorem. HLie
∗

(

The Lie algebra of symplectic vector
fields on the standard P-manifold

)

= Graph homology of P,

for P = c, a, l, the commutative, associative and Lie operads. His method extended
to any cyclic/reversible operad P, see Conant-Vogtmann [2] or Mahajan [18]. The
graph homology as required in the above result was defined for any cyclic operad P

by Markl [19], following a general construction of Getzler-Kapranov [9]. We would
also like to mention the work on Ginzburg on symplectic operad geometry [10],
which is relevant to the left hand side of the theorem. The result of Loday-Procesi
on symplectic matrices mentioned above can be seen as a special case of the above
theorem.

At this point, it is natural to ask whether there is an orthogonal, or more simply,
a general linear analogue of the above theorem. We present the answer in Section
3, see Theorem 2. Now all three results on cyclic homology mentioned above can
be seen as a special case of this general theorem.

In Section 4, we recall the definitions of the graph complexes that we require. In
the next two sections, we outline the proof of Theorem 2. Though there are no new
ideas in this paper, we hope that it clarifies the relation between cyclic homology
and graph homology as also the original proofs.

1.3. Conventions and references. For an operad P, it seems customary to as-
sume that P[0] = 0 and also many times that P[1] = K, the base field of charac-
teristic 0. We do not make these assumptions since they are unnecessary for our
purposes. However, we do assume that P[j] is finite dimensional for all j ≥ 0.

The main reference for this paper is [18], where the reader will often be re-
ferred for skipped details. Apart from the references already mentioned above, the
following give useful supplementary material.

- Bergeron-Labelle-Leroux [1] for species.
- Markl-Schnider-Stasheff [20], Ginzburg-Kapranov [11], Getzler-Kapranov
[8], Voronov [24], Fresse for operads.

- Fuks [5], Weibel [25, Chapter 7] for Lie algebra homology.
- Loday [14, Chapter 9], Fulton-Harris [6], Weyl [26] for invariant theory.
- McDuff-Salamon [21] for symplectic geometry.
- Gerlits [7] for graph homology.
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2. Three Lie algebras for an associative algebra A

In this section, we recall a result on the stable homology of three families of Lie
algebras of matrices over an associative algebra. A detailed account can be found
in Loday [14, Chapter 10].

Let A be an associative algebra with a unit.

Definition 2.1. gln(A) = Lie algebra of n× n matrices over A.

Now let A be an algebra with an involution ∗ : A → A. For α ∈ gln(A), let
α† ∈ gln(A) be defined by (α†)ij = (αji)

∗.

Definition 2.2. sp2n(A) = Lie algebra of symplectic 2n× 2n matrices over A. In
other words,

sp2n(A) =

{(

α β
γ δ

)

∈ gl2n(A)
∣

∣ α, β, γ, δ ∈ gln(A), α = −δ†, β = β†, γ = γ†
}

.

Definition 2.3. on(A) = Lie algebra of orthogonal n×n matrices over A. In other
words,

on(A) = {α ∈ gln(A)
∣

∣ α† = −α}.

More conceptual definitions of sp2n(A) and on(A) are given in Lemmas 2 and 3
in Section 3.

Let gl(A), sp(A) and o(A) denote the limit of the above three Lie algebras as
n→ ∞. The homology HLie

∗ of these Lie algebras can be computed by the following
theorem.

Theorem 1. Let A be an algebra with an unit.

(A) HLie
∗ (gl(A),K) = Λ(HC∗−1(A)).

(C) HLie
∗ (sp(A),K) = Λ(HD∗−1(A)).

(B +D) HLie
∗ (o(A),K) = Λ(HD∗−1(A)).

For the last two parts, one needs the algebra A to have an involution. In the
right hand side, HC∗ and HD∗ refer to cyclic and dihedral homology respectively
and Λ is the signed symmetric functor. Part (A) of the above theorem is due to
Loday-Quillen [16, 17] and Tsygan [23, 4] and Parts (C) and (B + D) are due to
Loday-Procesi [15].

3. Three Lie algebras for an operad P

The Lie algebras of Section 2 can be seen as special cases of more general con-
siderations, which we discuss in this section.

3.1. General linear case. Let P be an operad with a unit u. Let Vn be a vector
space over K with basis x1, . . . , xn. Then the free P-algebra on Vn is given by

P ◦Vn =
⊕

j≥0

(P[j]⊗ V
⊗j
n )Σj

,

where the symmetric group Σj acts on V
⊗j
n by permuting the factors.

It is useful to consider a P-algebra as the space of functions on a P-manifold.
For the above example, one says that P ◦Vn are the polynomial functions on Xn,
the “standard P-manifold of dimension n”. The constant functions are P[0], while
Vn are the coordinate functions.
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Definition 3.1. Der(P ◦Vn) = Lie algebra of derivations of P ◦Vn = Lie algebra
of “vector fields on Xn”.

Example 1. Let P = c, the commutative operad, that is, c[n] = K for n > 0
and c[0] = 0. A c-manifold is same as a manifold and the standard c-manifold of
dimension n is Rn. The space c ◦Vn is the algebra of polynomials in x1, . . . , xn with
no constant terms and Der(c ◦Vn) are polynomial vector fields on R

n that vanish
at the origin.

If one wants to get all the polynomial functions and vector fields on R
n then one

can consider P = 1 + c, that is, (1 + c)[n] = K for all n ≥ 0.

Example 2. Let A be an associative algebra with a unit. Then Ao is an operad
with Ao[1] = A and Ao[n] = 0 for n 6= 1. In this case, Ao ◦Vn = A⊗Vn, the
“polynomial functions on the standard A-manifold”. A quick check shows that

Lemma 1. Der(Ao ◦Vn) ∼= gln(A).

Hence, gln(A) is the Lie algebra of “vector fields on the standard A-manifold”.
As a special case, set A to be the base field K. Then P is the unit operad u.

Corollary. Der(u(Vn)) ∼= gln.

Thus, gln is the Lie algebra of “vector fields on the standard u-manifold”.

3.2. Symplectic case. The reference for this material is [18, Sections 2-7], where
the reader can find complete definitions, also see (6.2-6.3). Let P be a reversible
operad and Q = PP be its associated mated species. It is the image of P under the
mating functor

Mating Functor : Pr −→ S,

where Pr and S are the categories of reversible operads and species respectively.
Let V2n be a vector space over K with basis p1, . . . , pn, q1, . . . , qn. In this setting,
it is more natural to consider

(1) Q ◦V2n =
⊕

j≥0

(Q[j]⊗ V
⊗j
2n )Σj

,

instead of P ◦V2n, as functions on the “standard P-manifold X2n”. One can also
define the space of differential forms Ω(Q ◦V2n) on X2n along with Lie derivative
and contraction operators Lξ, iξ for ξ ∈ Der(P ◦V2n), any vector field on X2n.
Further, X2n carries the standard (alternating) symplectic form

ω =
∑

i

dpi ∧ dqi ∈ Ω2(Q ◦V2n),

making it a symplectic P-manifold.

Definition 3.2. Der(P ◦V2n, ω) is the Lie algebra of “symplectic vector fields on
X2n”. More precisely,

Der(P ◦V2n, ω) = {ξ ∈ Der(P ◦V2n)
∣

∣ Lξω = 0}.

An alternate description is given in Lemma 7.

Example 3. Returning to Example 1, for P = 1 + c, the mated species Q =
1+c. The standard P-manifold X2n is the Euclidean space R2n. The space Q ◦V2n
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consists of polynomial functions on R
2n with Q[0] being the constants; Ω(Q ◦V2n)

are differential forms on R
2n with

ω =
∑

i

dpi ∧ dqi ∈ Ω2(R2n).

The space Der(P ◦V2n) is the Lie algebra of (polynomial) vector fields on R
2n, while

Der(P ◦V2n, ω) is the Lie subalgebra of symplectic vector fields on R
2n, with the

usual definition of the Lie derivative.

Example 4. Returning to Example 2, let A be an associative algebra with a unit
and with an involution ∗ : A → A. Then Ao is a reversible operad. The mated
species Q is given by Q[2] = A and Q[n] = 0 for n 6= 2. The nontrivial element
π ∈ Σ2 acts on Q[2] by π(a) = a∗.

Lemma 2. Der(Ao ◦V2n, ω) ∼= sp2n(A).

Proof. We know from Example 2 that Der(Ao ◦V2n) ∼= gl2n(A). Under this iso-

morphism, the element

(

α β
γ δ

)

∈ gl2n(A) corresponds to the derivation ξ ∈

Der(Ao ◦V2n) given by

ξ(pj) =
∑

i

αij ⊗ pi + γij ⊗ qi, ξ(qj) =
∑

i

βij ⊗ pi + δij ⊗ qi.

Let us compute Lξω.

Lξ(
∑

j dpj ∧ dqj) =
∑

i,j αij ⊗ (dpi ∧ dqj) + γij ⊗ (dqi ∧ dqj)

+
∑

i,j β
∗
ij ⊗ (dpj ∧ dpi) + δ∗ij ⊗ (dpj ∧ dqi).

Now using the relation a⊗ (dx ∧ dy) = −a∗ ⊗ (dy ∧ dx), one obtains

Lξω = 0 ⇐⇒ αij + δ∗ji = 0, γij = γ∗ji, βij = β∗
ji.

The lemma follows from Definitions 2.2 and 3.2. �

Hence sp2n(A) is the space of “symplectic vector fields on the standard 2n di-
mensional A-manifold”. As a special case, set A to be the base field K. Then P is
the unit operad u.

Corollary. Der(u(V2n), ω) ∼= sp2n.

Thus, sp2n is the Lie algebra of “symplectic vector fields on the standard 2n
dimensional u-manifold”.

3.3. Orthogonal case. This is an odd version of the symplectic case. Let P be a
reversible operad and Q = PP its associated mated species as before. Let V−

n be a
super vector space over K of dimension (0|n), with basis θ1, θ2, . . . , θn. Then the
free P-superalgebra on V

−
n is given by

P ◦V−
n =

⊕

j≥0

(P[j]⊗ (V−
n )

⊗j)Σj
,

where the symmetric group Σj acts on (V−
n )

⊗j by permuting the factors via the
sign representation.

Here, one can let X−
n be the “standard P-supermanifold of dimension (0|n)”.

Then P ◦V−
n are the polynomial functions on X−

n , with V
−
n being the coordinate

functions and Der(P ◦V−
n ) is the Lie superalgebra of “vector fields on X−

n ”. One
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can also define without difficulty, differential forms, Lie derivatives, etc in the super-
context (more details in Section 6.2). The supermanifold X−

n carries a symmetric
two tensor

ρ =
∑

i

dθi ⊗ dθi ∈ Ω2(Q ◦V−
n ).

Definition 3.3. Der(P ◦V−
n , ρ) is the Lie superalgebra of “orthogonal vector fields

on X−
n ”. More precisely,

Der(P ◦V−
n , ρ) = {ξ ∈ Der(P ◦V−

n )
∣

∣ Lξρ = 0}.

Example 5. Returning to Example 4, let A be an associative algebra with a unit
and with an involution ∗ : A → A. Then Ao is a reversible operad.

Lemma 3. Der(Ao ◦V
−
n , ρ)

∼= on(A).

Proof. We know from Example 2 that Der(Ao ◦V
−
n )

∼= gln(A). Replacing Vn by
V
−
n does not matter, since Ao ◦V

−
n = A⊗V

−
n is concentrated in degree 1; hence

Der(Ao ◦V
−
n , ρ) is a Lie algebra (as opposed to a Lie superalgebra), all derivations

being of degree 0.
Under the above isomorphism, the element α ∈ gln(A) corresponds to the deriva-

tion ξ ∈ Der(Ao ◦V
−
n ) given by

ξ(θj) =
∑

i

αij ⊗ θi.

Let us compute Lξρ.

Lξ(
∑

j

dθj ⊗ dθj) =
∑

i,j

αij ⊗ dθi ⊗ dθj + α∗
ij ⊗ dθj ⊗ dθi.

Now using the relation a⊗ dθ ⊗ dψ = a∗ ⊗ dψ ⊗ dθ, one obtains

Lξρ = 0 ⇐⇒ 2(αij + α∗
ji) = 0.

The lemma follows from Definitions 2.3 and 3.3. �

Hence on(A) is the space of “orthogonal vector fields on the standard (0|n)
dimensional A-supermanifold”. As a special case, set A to be the base field K.
Then P is the unit operad u.

Corollary. Der(u(V−
n ), ρ)

∼= on.

Thus, on is the Lie algebra of “orthogonal vector fields on the standard (0|n)
dimensional u-supermanifold”.

3.4. Main theorem. For an operad P, we have defined three families of Lie alge-
bras Der(P ◦Vn), Der(P ◦V2n, ω) and Der(P ◦V−

n , ρ), the last being a Lie superal-
gebra. Let Der(gl,P), Der(sp,P) and Der(o,P), denote the limit of these families
as n→ ∞. Their homology HLie

∗ can be computed as follows.

Theorem 2. Let P be an operad with an unit.

(A) HLie
∗ (Der(gl,P),K) = Λ(H∗(C(gl,P))).

(C) HLie
∗ (Der(sp,P),K) = Λ(H∗(C(sp,P))).

(B +D) HLie
∗ (Der(o,P),K) = Λ(H∗(C(o,P))).

For the last two parts, one needs P to be reversible. The right hand sides
are certain graph complexes associated to P (see Section 4) and Λ is the signed
symmetric functor. For Part (A), one can say the following.
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Corollary. If P[0] = 0 then HLie
∗ (Der(gl,P),K) = Λ(HC∗−1(P[1])).

Proof. If P is an operad with a unit then P[1] is an associative algebra with a unit;
hence it makes sense to talk of the cyclic homology of P[1]. And if P[0] = 0 then the
graph complex C(gl,P) coincides with Connes’ complex for computing the cyclic
homology of P[1], see Lemma 4. �

If P = A for A an associative algebra (Example 2) then in Theorem 2, the
left hand sides specialize to gl(A), sp(A) and o(A) respectively (see Lemmas 1,
2 and 3) while the right hand sides specialize to cyclic and dihedral homology
of A respectively; thus one recovers Theorem 1. Part (A) of Theorem 1 is more
transparent from the above corollary.

As already mentioned, Kontsevich proved Theorem 2, Part (C) for P = c, a, l, the
commutative, associative and Lie operads. In [18, Theorem 4, Proposition 4], the
theorem is proved for any reversible operad in the category of Sets, and full credit
is given to Kontsevich for the ideas involved. In [2, Corollary 5], it is proved for
any cyclic operad without restriction, with a different but isomorphic Lie algebra
in the left hand side. In [2, 18], it is assumed that P[0] = 0 and a further reduction
is done on the graph complex C(sp,P), see [2, Proposition 14], or [18, Proposition
5].

4. Graph homology

In this section, we give the definitions of the graph complexes that occur in
Theorem 2. More details on some of it can be found in [18, Sections 8-9], where
plenty of examples are discussed.

Definition 4.1. A graph is a 1 dimensional CW complex. For a graph Γ, we
denote the set of vertices by V (Γ), the set of edges by E(Γ), the set of ends of an
edge e by V (e) and the set of edges incident at a vertex v by E(v).

Definition 4.2. For a set S, let K S be the vector space over K which has the
elements of S as a basis. Let S = S0 ⊔ S1 be a super set of cardinality (k|l). Then
W = W0 ⊕W1 = K S is a super vector space of dimension (k|l), with W0 = K S0
and W1 = K S1. Define the super determinant detW to be the one dimensional

quotient of W⊗(k+l) with the relations:

• A (k + l) tensor of elements of S is zero if there is repetition of elements.
• Switching adjacent factors s, s′ in a (k+ l) tensor of elements of S incurs a
minus sign except when both s, s′ ∈ S1, in which case the sign is positive.

Note that if S1 is empty then detW = ΛkW. We will be in this case, except for
Definition 4.7, where the super version is necessary.

4.1. P-graph. Let P be an operad. A P-graph is a directed graph Γ such that for
every vertex v, there is exactly one outgoing edge and a P-structure is specified on
the set of incoming edges at v.

Figure 1 shows a P-graph with 5 vertices and 5 edges. The edges are drawn
broken to emphasize that the graph is made of 5 operad elements with p1, p2 ∈ P[0],
p3, p4 ∈ P[2] and p5 ∈ P[1]. Recall from [18, Section 2.2], that the generic picture



CYCLIC HOMOLOGY AND GRAPH HOMOLOGY 7

p1 p3 p4 p2

p5

Figure 1. P-graph.

for an element in, say, P[4] is

1

2

4

3

Remark. The underlying graph Γ of a P-graph is a polygon with trees attached to
each vertex.

If P[0] = 0 then there are no valence 1 vertices and the trees are necessarily empty.
Hence Γ, in this case, is just a polygon and the P-graph uses only the P[1] part of
the operad P.

4.2. Oriented P-graph. We will use the letter Γ to denote a P-graph as well as
its underlying graph.

Definition 4.3. An orientation σ of a graph Γ is an element of the one-dimensional
vector space detKV (Γ). We say that (Γ, σ) is an oriented P-graph. A way to
represent an orientation σ is to order the vertices of Γ. An odd permutation of the
labels on the vertices reverses the orientation to −σ.

4.3. Graph complex C(gl,P). We now define the chain complex C(gl,P).

Definition 4.4. The kth chain group of C(gl,P), which we denote Ck(gl,P), is
the vector space over K generated by all oriented connected graphs (Γ, σ) with k
vertices, upto automorphism, subject to vertex linearity and the relation (Γ, σ) =
−(Γ,−σ).

3 1 4

2

= −

4 1 3

2

This is illustrated in the picture above.

Definition 4.5. The boundary map ∂E : Ck(gl,P) → Ck−1(gl,P) is defined using
edge contractions. We do not contract loops. More precisely, we have

∂E(Γ, σ) =
∑

e∈E(Γ)

(Γ/e, σ/e),
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where Γ/e is the graph Γ with the edge e contracted using operad substitution, and
σ/e is obtained the following way: let v1 and v2 be the ends of the edge e. Choose
a representative of σ where v1 and v2 have labels 1 and 2 respectively, and e points
from v1 to v2. Give the new vertex arising from the contraction of e the label 1,
and subtract 1 from the label of each of the other vertices.

An equivalent way to describe σ/e is the following: if the labels on the endpoints
of e are i < j, collapse e, label the resulting vertex i, decrease the labels greater
than j by one, and multiply this orientation by (−1)j if e points from i to j, and
by (−1)j+1 if it points from j to i.

The associativity property of operad substitution and the choice of sign imply
that ∂2E = 0. This defines the chain complex C(gl,P) = (C∗(gl,P), ∂E).

Lemma 4. If P[0] = 0 then the complex C(gl,P), upto a shift in grading, is iso-
morphic to Connes’ complex for the cyclic homology of P[1].

4.4. Q-graph. Let Q be any species. Define a Q-graph to be a graph Γ such that
for every vertex v of Γ, a Q-structure is specified on the set of half-edges incident to
v. Figure 2 shows a Q-graph with 4 vertices and 7 edges, drawn using the generic

Figure 2. Q-graph.

picture of a species as explained in [18, Section 2.1].

4.5. Oriented Q-graph. We define two different notions of orientation for a Q-
graph.

Definition 4.6. An orientation σ of a Q-graph Γ is an element of the one di-
mensional vector space detKV (Γ) ⊗

⊗

e∈E(Γ) detKV (e). We say that (Γ, σ) is an

oriented Q-graph. There is another notion of orientation of a graph equivalent to
the above; see Thurston [22] for details.

A way to represent an orientation is to order the vertices and orient each edge of
the graph. An odd permutation of the labels on the vertices reverses the orientation,
and a single change of the orientation of one edge reverses it as well. An even number
of these transformations produces an orientation equivalent to the original one.

Definition 4.7. Consider V (Γ) as a super set with vertices of even (resp. odd)
degree as the even (resp. odd) part. An odd orientation σ− of a Q-graph Γ is an
element of the one-dimensional vector space detKV (Γ)⊗

⊗

v∈V (Γ) detKE(v). We

say that (Γ, σ−) is an odd oriented Q-graph.

A way to represent an odd orientation is to order the vertices and for every
vertex, order the edges incident on it. Switching adjacent labels on the vertices,
reverses the orientation unless both vertices have odd degree. And for a vertex, an
odd permutation of the labels on the edges incident to it reverses the orientation.
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4.6. Graph complexes C(sp,P) and C(o,P). We assume that Q is a mated
species, that is Q = PP for a reversible operad P.

Definition 4.8. The kth chain group of C(sp,P), which we denote Ck(sp,P), is
the vector space over K generated by all connected oriented Q-graphs (Γ, σ) with k
vertices, upto automorphism, subject to vertex linearity and the relation (Γ, σ) =
−(Γ,−σ). The boundary map ∂E : Ck(sp,P) → Ck−1(sp,P) is defined exactly as
in Definition 4.5, except that an edge is contracted using a mating, rather than an
operad substitution. This is where one uses that Q is a mated species.

Definition 4.9. The chain complex C(o,P) is defined similarly to C(sp,P), using
connected odd oriented Q-graphs. The induced orientation σ−/e is obtained the
following way: let v1 and v2 be the ends of the edge e. Choose a representative
of σ− where v1 and v2 have labels 1 and 2 respectively, the edge e has label 1 for
both v1 and v2; give the new vertex arising from the contraction of e the label 1,
and subtract 1 from the label of each of the other vertices; shift up the labels on
the edges that were incident to v2, and multiply by the sign (−1)|v1|.

Lemma 5. For the operad P = A as in Example 4, the complexes C(sp,P) and
C(o,P) are isomorphic. And upto a shift in grading, they are isomorphic to the
complex (C(A)/(1 − t, 1 − y), b), see Loday [14, Section 5.2.8], that computes the
dihedral homology of A.

This is a simple check. At some point in the sequel, we will need to work with
disconnected graphs. We will denote the corresponding chain complexes by G(gl,P),
G(sp,P) and G(o,P).

5. Proof of Theorem 2, part (A)

Recall that Vn is the vector space overK with basis x1, x2, . . . , xn and Der(P ◦Vn)
is the Lie algebra of derivations of the free P-algebra P ◦Vn. Put gn = Der(P ◦Vn)
and g = Der(gl,P) for the limit as n→ ∞. We restate the result that we are trying
to prove.

Theorem 3. HLie
∗ (g,K) = Λ(H∗(C(gl,P))), with C(gl,P) as defined in (4.3).

Proof. We repeat the proof in Loday-Quillen [17] idea for idea, rewriting it in a
way that is serves as a toy model for the proof in Kontsevich [12] for Theorem 2,
Part (C). Before starting the actual proof, we need a little preparation.

5.1. Lie algebra gn. As in [18, Section 5.1], we represent a monomial in the free
P-algebra P ◦Vn by a picture of the form

x1
x4

x2
x1

∈ P ◦Vn with p ∈ P[4] and xi ∈ Vn .

To get a general element of P ◦Vn, we take linear combinations of monomials.
Now gn = Der(P ◦Vn) ∼= Hom(Vn,P ◦Vn) ∼= V

∗
n⊗P ◦Vn. Hence to get an

element of gn, we take an operad element p and label its inputs by elements of Vn
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and its output by an element of V∗
n, as shown below.

f ⊗

x1
x4

x2
x1

=

x1
x4

f

x2
x1

∈ gn with f ∈ V
∗
n .

And to get a general element of gn, we take linear combinations of these. One can
describe the bracket on gn in this notation. We illustrate by an example.







x1

f p

x2

, g q x2






= f(x2)





x1
g

x2



 −

g(x1)







x2

f

x2






− g(x2)







x1

f

x2






.

In the first term on the right, p is substituted into q and in the next two, q is
substituted into each input of p. For each term, we pick a coefficient given by
contracting an element of V

∗ with an element of V, along with the appropriate
sign.

5.2. Lie subalgebra gln. Since the free P-algebra P ◦Vn is graded,

(2) gn =
⊕

j≥0

V
∗
n⊗(P[j]⊗ V

⊗j
n )Σj

=
⊕

j≥0

g
j
n.

is a graded Lie algebra, the (j − 1)st graded piece being g
j
n. Note that the grading

begins in degree −1. The space of degree 0 (linear) derivations of P ◦Vn, namely
V
∗
n⊗P[1]⊗ Vn, is a Lie subalgebra of gn. Since the operad P has a unit u,

gln = Hom(Vn,Vn) = V
∗
n⊗u[1]⊗ Vn

is a Lie subalgebra of the space of linear derivations of P ◦Vn.

Proposition 1. The adjoint action of gln on gn coincides with the one induced by
the usual action of gln on Vn and trivial action on the P[j]’s.

The proof is a straightforward check.

5.3. Lie algebra homology and (co)invariant theory. We now start the proof
of the theorem. The Lie algebra homology HLie

∗ (gn,K) can be computed using the
Chevalley-Eilenberg complex (Λ∗

gn, ∂), where Λ
k
gn is the kth exterior power of gn.

The reductive Lie subalgebra gln acts on gn (adjoint action) and hence on Λkgn.
It is well-known that the adjoint action commutes with the boundary operator ∂.

Proposition 2. The maps ϕ and ψ in the diagram

(Λ∗
gn)

gln φ
−→ Λ∗

gn
ψ

−→ (Λ∗
gn)gln

are both quasi-isomorphisms, that is, they induce an isomorphism on homology.
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The proof is a standard argument that we skip. This proposition is the main
tool in the proof. As vector spaces, (Λkgn)

gln ∼= (Λkgn)gln . The next step is to
construct explicitly a space Gk(gl,P) isomorphic to the above spaces, along with an
explicit description of the diagram

(3) Gk(gl,P)
φ

−→ Λkgn
ψ

−→ Gk(gl,P).

In the remainder of this section, we will denote Gk(gl,P) simply by Gk.

5.4. Basis for the space of (co)invariants Gk. This problem can be solved by
looking at a simpler problem first.

5.4.1. The first stage. Consider the gln module M = (V∗
n)

⊗i ⊗ (Vn)
⊗j . We would

like an explicit understanding of the diagram

(4) Mgln i
−→M

p
−→Mgln .

From classical invariant theory of gln, one knows that if i 6= j then Mgln = 0.
Hence from now on, we only consider the case i = j. And for dimVn > i, the space
Mgln ∼= KΣi.

The map i : KΣi →֒M .
An element π ∈ Σi specifies a bijection between the i copies of V∗

n and the i
copies of Vn in M . We represent this by a directed chord diagram with 2i vertices
labelled 1, 2, . . . , i, 1∗, 2∗, . . . , i∗ and i directed edges connecting them. The edges
are directed away from the ∗ vertices. For example, for π = (123) ∈ Σ3, written in
the cycle notation, we draw

1∗ 2∗ 3∗

1 2 3

.

Each vertex in the chord diagram represents a tensor factor, in the order given by
the vertex labelling. For each edge, we put a xi at the head of the arrow and a x∗i
at the tail. We then sum over all possibilities to get the invariant. In the above
example, the invariant is

∑

1≤i,j,k≤n

x∗i ⊗ x∗j ⊗ x∗k ⊗ xk ⊗ xi ⊗ xj .

The map p :M ։ KΣi.
One can describe the map p in diagram (4) by dualising i to get a map M∗ →

(KΣi)
∗ and then using the identificationsM ∼=M∗ (remember i = j) and (KΣi)

∗ ∼=
KΣi. The resulting map p :M ։ KΣi is given by

p(m) =
∑

π∈Σi

〈m,π〉 π,

where 〈m,π〉 is obtained by writing the tensor factors of m on the corresponding
vertices of the chord diagram for π and contracting elements of V∗ with V along an
edge. For example,

〈f ⊗ g ⊗ h⊗ x⊗ y ⊗ z, (123)〉 = f(y)g(z)h(x).
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5.4.2. Second stage. Now we go back to the problem of describing diagram (3).
With notation as in equation (2), observe that

Λkgn =
⊕

k1 + k2 + . . . + kr = k, ki ≥ 1

0 ≤ j1 < j2 < . . . < jr

(

Λk1gj1n ⊗ · · · ⊗ Λkrgjrn
)

.

For a fixed choice of the numbers kt, jt for 1 ≤ t ≤ r, the summand on the right
hand side is LΣ, the quotient of the space

L =

r
⊗

t=1

(V∗
n⊗P[jt]⊗ V

⊗jt
n )⊗kt

by the group
Σ = ×rt=1((Σjt × . . .× Σjt)× Σkt),

with the Σkt ’s permuting the factors in the respective tensor summand via the sign
representation (because of the wedges).

From Proposition 1, the adjoint action of gln on L ⊂ Λkgn coincides with the
action of gln on L induced from the usual action on Vn (and V

∗
n) and the trivial

action on the P[j]’s. One can check that the actions of gln and Σ on L commute.
Hence,

(LΣ)
gln ∼= (Lgln)Σ and (LΣ)gln

∼= (Lgln)Σ.

Note that

Lgln ∼= Lgln 6= 0 ⇐⇒

r
∑

t=1

kt(jt − 1) = 0 ⇐⇒
The number of copies of V and V

∗

occurring in L are equal.

In this case, a typical element of (Lgln)Σ is obtained by tensoring a chord diagram
(as in the first stage) by

t
⊗

r=1

P[jt]
⊗kt

and then moding out by the action of Σ. This is precisely an oriented P-graph
(4.2). Hence, one sees that (Lgln)Σ ∼= (Lgln)Σ is spanned by oriented P-graphs,
each having k vertices with kt vertices of degree jt + 1, for 1 ≤ t ≤ r. It follows
that

Gk ∼= (Λkgn)
gln ∼= (Λkgn)gln

is the span of oriented P-graphs with k vertices. The description of the maps
ϕ : Gk →֒ Λkgn and ψ : Λkgn ։ Gk given below follow from those of i and p in the
first stage.

The map ϕ : Gk →֒ Λkgn.
Let (Γ, σ) ∈ Gk be an oriented P-graph with k vertices. Choose a representative

for σ, that is, order the vertices of Γ. Each vertex of the graph represents a wedge
factor, in the order given by the vertex labelling. For each edge, we put a xi at the
head of the arrow and a x∗i at the tail. This is called a state of the edge. And a
state of the graph is a choice of a state for every edge. Summing over all states of
Γ gives the required element in Λk(gn).

The map ψ : Λkgn ։ Gk.
Let g1 ∧ . . .∧ gk ∈ Λk(gn), with gi ∈ g

mi
n . Choose a bijection between the copies

of V∗ and the copies of V. It exists only if
∑k
i=1(mi+1) = 0. If this is not the case

then the element maps to zero. Using the picture representation for elements of gn
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suggested before, one sees that such a bijection gives an oriented P-graph with a
coefficient given by contracting elements of V∗ with V. We sum over all bijections
to get the element of Gk.

5.5. Conclusion of the proof. Proposition 2 says that HLie
∗ (gn,K) can be com-

puted using either the chain complex of gln invariants or coinvariants. So far, we
have treated them on an equal footing and obtained a description of the chain
groups Gk, which are same in both cases and the maps i and p. However, from now
on, coinvariants are much nicer to work with. Let G(gl,P) = (G∗, ∂) be the chain
complex with chain groups Gk and boundary operator ∂ : Gk → Gk−1 defined at the
end of Section 4.

Lemma 6. The map ψ : (Λ∗
gn, ∂) → (G, ∂) is a chain map, that is, the following

diagram commutes.

Λkgn
ψ

∂

Gk

∂

Λk−1
gn

ψ
Gk−1

.

This follows directly from the definitions of the maps involved. Using Proposition
2, we conclude that HLie

∗ (gn,K) stabilises as n→ ∞ and

HLie
∗ (gn,K) ∼= H∗(G∗, ∂).

Observe that (G∗, ∂) is a differential graded commutative and cocommutative Hopf
algebra with connected oriented P-graphs as the space of primitive elements and
product given by disjoint union. It is easy to check that the induced structure on
homology is same as the Hopf algebra structure on HLie

∗ (gn,K). This finishes the
proof.

�

Remark. The map ϕ : (G∗, ∂) → (Λ∗
gn, ∂) is not a chain map. There is a different

boundary map for G, which depends on n, for which it is a chain map. Hence ϕ is
less useful than ψ for stability purposes and plays no role in the proof.

6. Proof of the rest of Theorem 2

In this section, we outline the proof of Theorem 2, parts (C) and (B +D). Our
main goal is to point out the similarities and differences with the proof of part (A)
and for part (C), clarify some steps in the proofs given in [2, 18].

6.1. Proof of Theorem 2, Part (C).

6.1.1. Lie algebra g
ω
2n. One would like to describe the Lie algebra gω2n = Der(P ◦V2n, ω)

using pictures, in a way similar to gn. This is done by using ideas from symplectic
operad geometry, as below. There are some details in (6.2-6.3).

Lemma 7. There is a split short exact sequence of Lie algebras

(5) 0 → Q[0] →֒ Q ◦V2n ։ Der(P ◦V2n, ω) → 0,
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Table 1.

A C B+D

Linear Lie algebra h gln sp2n on

h module M (V∗
n)

⊗i ⊗ (Vn)
⊗j (V2n)

⊗i (V−
n )

⊗i

Chord diagrams KΣi KCi KC−
i

Lie algebra gn g
ω
2n g

ρ
n

(Co)invariants Gk(gl,P) Gk(sp,P) Gk(o,P)

with the bracket on the space of functions Q ◦V2n on X2n (see equation (1)) given
by the Poisson bracket

(6) {F,H} =
n
∑

i=1

∂F

∂pi
⊗
∂H

∂qi
−
∂F

∂qi
⊗
∂H

∂pi
, for F,H ∈ Q ◦V2n .

The precise meaning of this formula is explained in [18, Sections 5.1-5.3]. The
above map Q ◦V2n ։ Der(P ◦V2n, ω) is given by H 7→ ξH , where ξH(pi) =

∂H
∂qi

and

ξH(qi) = − ∂H
∂pi

. With these conventions, it is a Lie algebra anti-homomorphism.

The reader may be familiar with the above short exact sequence in (commutative)
symplectic geometry (Example 3), where it says that the Lie algebra of Hamiltonian
functions on (R2n, ω) with the Poisson bracket is a central extension of the Lie
algebra of Hamiltonian vector fields on (R2n, ω) by the constants. Note that since
H1(R2n) = 0, the space of symplectic and Hamiltonian vector fields coincide. This
fact continues to hold in the operad setting, see equation (7).

6.1.2. Symplectic Lie algebra sp2n. Since P has an unit u, by the Corollary to
Lemma 2 and arguments as in (5.2), the symplectic Lie algebra sp2n is a Lie sub-
algebra of gω2n. For more clarity, one can draw the following commutative diagram.

Der(u(V2n)) = gl2n g2n = Der(P ◦V2n)

Der(u(V2n), ω) = sp2n g
ω
2n = Der(P ◦V2n, ω) .

Applying Lemma 7 to the unit operad u, which satisfies u[0] = 0, one obtains:

Corollary. There is a Lie algebra anti-isomorphism uu(V2n)
∼=
−→ sp2n.

Proposition 3. The sequence in equation (5) is a sequence of sp2n modules with
the adjoint action on g

ω
2n and the action on Q ◦V2n induced by the usual action of

sp2n on V2n and the trivial action on the Q[j]’s.

For a detailed discussion, see [18, Section 5.4].

6.1.3. The rest of the proof. The homology of the Lie algebra Q ◦V2n, which upto
the abelian part Q[0], is the Lie algebra g

ω
2n, can be computed using the method in

(5.3-5.5). Table 1 explains the analogy.
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From classical invariant theory of sp2n, for n large enough, KCi ∼= (V⊗i
2n)

sp2n ∼=
(V⊗i

2n)sp2n is the span of oriented chord diagrams on i vertices. For a definition and
also a description of the map i : KCi → M , see [18, Sections 12.3.1-12.3.2]. Now
consider the non-degenerate anti-symmetric bilinear form on V2n given by

(pi, qi) = 1 = −(qi, pi),

other pairings on basis elements being zero. This induces an sp2n module isomor-
phism V2n

∼= (V2n)
∗ given by the bilinear form, which further induces M ∼= M∗.

One can now describe the map p : M → KCi by dualising i to get a map
M∗ → (KCi)

∗ and then using the identifications M ∼= M∗ and (KCi)
∗ ∼= KCi.

The resulting map p is given by

p(m) =
∑

π∈Ci

〈m,π〉 π,

where 〈m,π〉 is obtained by writing the tensor factors of m on the corresponding
vertices of the oriented chord diagram for π and contracting elements along an edge
using the bilinear form, in the order specified by the edge direction.

Following the procedure as in (5.4.2), one obtains

Gk(sp,P) ∼= (Λkgωn)
sp2n ∼= (Λkgωn)sp2n

as the span of oriented Q-graphs with k vertices and maps ϕ : Gk(sp,P) → Λkgωn
and ψ : Λkgωn → Gk(sp,P). One then shows that ψ is a chain map and the rest of
the proof works as before.

Remark. The word “coinvariant” and the map p is missing in [2, 18]. The maps i
and ϕ, related to invariants are desribed in [18, Sections 12.3.1-12.3.2,12.4.1] and
[2, Sections 2.5.1,2.5.4]. As we know, the proof cannot proceed without the map ψ.
In [18, Sections 13.1-13.3], ψ is defined using ϕ∗ and certain nondegenerate pairings
M ′ on Λkgωn and A on Gk(sp,P) (which we now realise is similar to the way the
map p is defined from i). Unfortunately, this method works only for operads in the
category of Sets, and so the proof holds only for this case. In [2, Section 2.5.2], ψ is
defined directly and coincides with the map obtained above. In either paper, since
ψ is not seen as a map to coinvariants, more work is necessary to show that is a
quasi-isomorphism.

6.2. Operad supergeometry. To understand the orthogonal case, one needs to
do supermathematics, which we briefly present here. It is the superversion of the
material in [18, Section 6], where more details can be found.

Let P be an operad with a unit u. Let W be a super vector space of dimension
(k|l) and P(W) be the free P-superalgebra on W. One can regard P(W) as functions
on X, which is the “standard P-supermanifold of dimension (k|l)”.

Definition 6.1. The space Ω(P(W)) is the free differential P-superalgebra on W.
More explicitly,

Ω(P(W)) = P(W⊕ΠW) = The free P-superalgebra on W⊕ΠW,

where Π is the functor on super vector spaces that switches parity and the odd
superderivation d : Ω(P(W)) → Ω(P(W)) sends W isomorphically onto ΠW and
ΠW to 0. It follows that d2 = 0.

Definition 6.2. For any P-superalgebra A, let Der(A) be the Lie superalgebra of
derivations of A. In particular, this defines Der(P(W)) and Der(Ω(P(W))).
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For ξ ∈ Der(P(W)), we define the Lie derivative Lξ ∈ Der(Ω(P(W))) and the
contraction operator iξ ∈ Der(Ω(P(W))) by the formulas

Lξ(w) = (−1)|ξ|ξ(w), Lξ(dw) = dξ(w) and iξ(w) = 0, iξ(dw) = (−1)|ξ|ξ(w),

for every w ∈ W and where |ξ| denotes the superdegree of ξ. The operators Lξ
and iξ have superdegrees |ξ| and |ξ| + 1 respectively. For ξ, η ∈ Der(P(W)), the
following commutation relations hold.

[d, iξ] = Lξ, [iξ, iη] = 0, [Lξ, iη] = i[ξ,η], [Lξ, Lη] = L[ξ,η].

Apart from the supergrading, Ω(P(W)) has a Z grading given by the number of
occurrences of elements of ΠW. Denote Ωi(P(W)) for the ith graded part. Then
Ω0(P(W)) = P(W). With respect to this grading, the operators Lξ, iξ and d have
degrees 0, −1 and 1 respectively. Using the above formulas, one can show that

(7) Hi(Ω(P(W)), d) =







0 if i > 0,

P[0] if i = 0.

6.3. Reversible operad supergeometry. Let P be a reversible operad and Q =
PP be its associated mated species. Then one defines

(8) Q(W) =
⊕

j≥0

(Q[j]⊗W
⊗j)Σj

, Ω(Q(W)) =
⊕

j≥0

(Q[j]⊗ (W⊕ΠW)⊗j)Σj
.

These objects can also be seen as the images of P(W) and Ω(P(W)) under the
mating functor

{P -superalgebras} → {Super vector spaces}.

This is the superversion of the functor λ defined by Getzler-Kapranov [8]. For
ξ ∈ Der(P(W)), one gets super linear maps Lξ, iξ, d : Ω(Q(W)) → Ω(Q(W)) of
superdegrees |ξ|, |ξ| + 1 and 1 respectively, with d2 = 0 by functoriality. Also,
Ω(Q(W)) has a Z grading with Ω0(Q(W)) = Q(W), and the operators Lξ, iξ and
d have degrees 0, −1 and 1 respectively, with respect to this grading. Explicit
definitions can be given as in [18, Section 6]. The same proof as before shows that
equation (7) holds with P replaced by Q. The importance of having the objects in
equation (8) is that one can then do symplectic and orthogonal geometry as below.

6.3.1. Symplectic operad geometry. Set W = V2n, a super vector space of dimension
(2n|0) with basis p1, . . . , pn, q1, . . . , qn. Since the operad P has a unit u, one can
define

ω =
∑

i

dpi ∧ dqi ∈ Ω2(Q ◦V2n).

There is an isomorphism Der(P ◦V2n)
∼=
−→ Ω1(Q ◦V2n) between vector fields and 1

forms given by ξ → iξω. By usual arguments and using equation (7), with Q for P,
one can prove Lemma 7.
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6.3.2. Orthogonal operad geometry. Set W = V
−
n , a super vector space of dimension

(0|n) with basis θ1, . . . , θn. One can define

ρ =
∑

i

dθi ⊗ dθi ∈ Ω2(Q(V−
n )).

There is an isomorphism Der(P(V−
n ))

∼=
−→ Ω1(Q(V−

n )) given by ξ → (−1)|ξ|

2 iξρ. By
arguments, as in the symplectic case, one then derives Lemma 8 and so forth, see
below. The conventions are made such that dH =

∑

i dθi ⊗
∂H
∂θi

.

6.4. Proof of Theorem 2, Part (B + D). With the disccussion in (6.2-6.3), it
is fairly clear that one can repeat the proof of Part (C) with appropriate sign
corrections.

6.4.1. Lie algebra g
ρ
n. We write down the analogue of Lemma 7 and also describe

the Lie algebra Q(V−
n ).

Lemma 8. There is a split short exact sequence of Lie superalgebras

(9) 0 → Q[0] →֒ Q(V−
n ) ։ Der(P(V−

n ), ρ) → 0,

with the Poisson bracket on Q(V−
n ) given by

(10) {F,H} = (−1)|F |
n
∑

i=1

∂F

∂θi
⊗
∂H

∂θi
, for F,H ∈ Q(V−

n ).

The above map Q(V−
n ) ։ Der(P(V−

n ), ρ) is given by H 7→ ξH , where ξH(θi) =
∂H
∂θi

.

We represent a monomial in Q(V−
n ) by the picture

(11)

θ1

θ1

θ2

θ4

1

23

4
= −

θ1

θ1

θ2

θ4

1

32

4
∈ Q(V−

n ).

In other words, we attach a θi to each input of an element of Q and also order
the inputs in the sense of orientation, that is, an even permutation of the order
leaves an element unchanged while an odd permutation gives its negative. To get
a general element of Q(V−

n ), we take linear combinations of monomials. A similar
pictorial description can be given for the elements of P(V−

n ).

Cutting and Mating.
As for the symplectic case [18, Section 5], the Poisson bracket on Q(V−

n ) in
equation (10) can be described pictorially by a cutting and mating process. We
define ∂

∂θi
: Q(V−

n ) −→ P(V−
n ) by showing how it works on a schematic example.

θ1

θ1

θ2

θ4

1

32

4
∂

∂θ17−→ −

θ1

θ2

θ4

1

32

+

θ1 θ2

θ4

1

2

3

.

Namely, to define ∂
∂θ1

, we cut the inputs with label θ1, one at a time, first reordering
the labels so that the input being cut has label 1 and then shifting down the labels
of the remaining inputs.
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Now, we illustrate the Poisson bracket by an example.










θ1

θ1

θ4

θ2
12

3

4

, θ2

θ3

θ3

1

2

3











=

θ1

θ1

θ4

θ3

θ3

1

2

3

4

5

.

In the above example, there is only one mating possible. It is shown by an edge
with two opposing arrowheads in the centre. Note that the labels on the inputs
coming from the second term got pushed up.

6.4.2. Orthogonal Lie algebra on. Since P has an unit u, by the Corollary to Lemma
3 and as in (5.2) and (6.1.2), the orthogonal Lie algebra on is a Lie subalgebra of
g
g
n. Applying Lemma 8 to the unit operad u, which satisfies u[0] = 0, one obtains:

Corollary. There is a Lie algebra isomorphism uu(V−
n )

∼=
−→ on.

Proposition 4. The sequence in equation (9) is a sequence of on modules with the
adjoint action on g

ρ
n and the action on Q(V−

n ) induced by the usual action of on on
V
−
n and the trivial action on the Q[j]’s.

6.4.3. The rest of the proof. The homology of the Lie superalgebra Q(V−
n ), which

upto the abelian part Q[0], is the Lie superalgebra g
ρ
n, can be computed using the

method in (5.3-5.5). Note that one now needs to start with the super version of
the Chevalley-Eilenberg complex. We will use the notation as in Table 1.

From classical invariant theory of on, for n large enough, KC−
i

∼= ((V−
n )

⊗i)on ∼=
((V−

n )
⊗i)on is the span of chord diagrams on i vertices. The map i : KC−

i → M
is as follows. Each vertex in the chord diagram represents a tensor factor, in the
order given by the vertex labelling. For each edge, we put a θi at either end and
then sum over all possibilities to get the invariant. For example,

4

25

1 6

3

gives the invariant
∑

1≤i,j,k≤n

θi ⊗ θj ⊗ θk ⊗ θj ⊗ θi ⊗ θk.

Now consider the non-degenerate symmetric bilinear form on V
−
n given by

(θi, θi) = 1,

other pairings on basis elements being zero. This induces an on module isomorphism
V
−
n
∼= (V−

n )
∗ given by the bilinear form, which further induces M ∼= M∗. One can

now describe the map p : M → KC−
i by dualising i to get a map M∗ → (KC−

i )
∗

and then using the identifications M ∼= M∗ and (KC−
i )

∗ ∼= KC−
i . The resulting

map p is given by

p(m) =
∑

π∈C−
i

〈m,π〉 π,

where 〈m,π〉 is obtained by writing the tensor factors of m on the corresponding
vertices of the chord diagram for π and contracting elements along an edge using
the bilinear form.

Following the procedure as in (5.4.2), one obtains

Gk(o,P) ∼= (Λkgρn)
on ∼= (Λkgρn)on
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as the span of odd oriented Q-graphs with k vertices, and the rest of the proof is
similar.

References

[1] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-like structures, Cam-
bridge University Press, Cambridge, 1998, Translated from the 1994 French original by Mar-

garet Readdy, With a foreword by Gian-Carlo Rota. 1

[2] James Conant and Karen Vogtmann, On a theorem of Kontsevich, arXiv:math.QA/0208169.

1, 6, 13, 15
[3] Alain Connes, Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris Sér. I Math.

296 (1983), no. 23, 953–958. 1
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