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Abstract. In this paper, we introduce dioperads and present their basic the-

ory. Roughly, dioperads generalize operads in the same way that dialgebras
generalize algebras. We explain the notion of a dioperad algebra and show
that the space of derivations of a dioperad algebra forms a Leibniz algebra.

As a primary motivation, we propose a connection between Leibniz homol-
ogy of the space of derivations of the free Leibniz algebra and a certain graph
complex associated to a dioperad. This provides a generalized setting for work
of Loday-Cuvier [3] and Frabetti [6]. We also propose a similar setting in sym-

plectic and orthogonal dioperad geometry for the homology of the appropriate
Leibniz algebras. This is a conjectured dioperad analogue of the main result in
Mahajan [15], which builds on work of Loday-Quillen [11, 12], Tsygan [18, 5],
Loday-Procesi [10], Kontsevich [8, 7], Conant-Vogtmann [2] and Mahajan [14].
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1. Introduction

In this paper, we introduce dioperads and present their basic theory. Roughly,
dioperads generalize operads in the same way that dialgebras generalize algebras
[9]. In this section, we give our motivation for studying this concept. It is not
required to understand the rest of the paper.

1.1. The Lie algebra of vector fields on operad manifolds. Let P be an
operad, K be a field of characteristic 0, and V be a vector space over K of dimension
n. Let Der(gln,P) be the Lie algebra of derivations of the free P algebra P ◦V, and
let Der(gl,P) be the colimit as n goes to ∞. One may interpret Der(gln,P) as the
Lie algebra of vector fields on the standard P manifold of dimension n. Recall the
following theorem from [15].

Theorem 1. Let P be an operad with an unit.

(A) HLie
∗ (Der(gl,P),K) = Λ(H∗(C(gl,P))).

(C) HLie
∗ (Der(sp,P),K) = Λ(H∗(C(sp,P))).

(B +D) HLie
∗ (Der(o,P),K) = Λ(H∗(C(o,P))).

In this statement, HLie
∗ denotes Lie homology, C(gl,P) is a certain graph complex

associated to P, and Λ is the signed symmetric functor. Parts (C) and (B+D), for
which one needs P to be cyclic/reversible, are the symplectic and orthogonal cases.
The isomorphism in this theorem is not just a vector space isomorphism but an
isomorphism of graded Hopf algebras. Part (C) of the above theorem was initiated
by Kontsevich [8, 7], and completed by Conant-Vogtmann [2] and Mahajan [14].

Every associative algebra A gives rise to an operad Ao defined by Ao[I] = A if I
is a singleton and zero otherwise. Further Der(gl,Ao) is the Lie algebra of matrices
gl(A). The above theorem then specialises to the following.

Theorem 2. Let A be an algebra with an unit.

(A) HLie
∗ (gl(A),K) = Λ(HC∗−1(A)).

(C) HLie
∗ (sp(A),K) = Λ(HD∗−1(A)).

(B +D) HLie
∗ (o(A),K) = Λ(HD∗−1(A)).

In this statement, HC∗ and HD∗ refer to cyclic and dihedral homology respec-
tively. Parts (C) and (B + D), for which one needs A to have an involution, are
the symplectic and orthogonal cases. Part (A) of the above theorem is due to
Loday-Quillen [11, 12] and Tsygan [18, 5] and Parts (C) and (B + D) are due to
Loday-Procesi [10].

1.2. From Lie to Leibniz algebras. A Leibniz algebra is a vector space equipped
with a bracket [ , ] which satisfies the Leibniz relation

[x, [y, z]] = [[x, y], z]− [[x, z], y].

We do not impose anti-symmetry; thus Leibniz algebras generalize Lie algebras.
They have a homology theory, denoted HLeib

∗ , where the chain complex is con-
structed using tensor powers of the Leibniz algebra. The historical motivation for
Leibniz algebras comes from the following result due to Loday-Cuvier [3, 4].

Theorem 3. Let A be an algebra with an unit.

(A) HLeib
∗ (gl(A),K) = T (HH∗−1(A)).

where HH∗ refers to Hochschild homology, and T is the tensor power functor.
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In other words, replacing Lie by Leibniz has the effect of replacing cyclic by
Hochschild homology. Different proofs of the above computation can be found in
Lodder [13], Oudom [17] and Frabetti [6]. In light of this discussion, it is natural
to ask for a Leibniz analogue of Theorem 1. Accordingly, we propose the following.

Conjecture 1. Let P be an operad with an unit.

(A) HLeib
∗ (Der(gl,P),K) = T (H∗(Ĉ(gl,P))).

(C) HLeib
∗ (Der(sp,P),K) = T (H∗(Ĉ(sp,P))).

(B +D) HLeib
∗ (Der(o,P),K) = T (H∗(Ĉ(o,P))).

In this statement the graph complexes Ĉ∗ are an appropriate lift of the complexes
C∗ in Theorem 1. In particular, the symplectic and orthogonal cases of Theorem 3
which are not in the literature, are also taken care of.

1.3. From operads to dioperads. The categories of associative, diassociative,
Lie and Leibniz algebras assemble into a commutative diagram as below.

As Lie

Dias Leib

This diagram indicates that Theorem 3 needs to be generalized. Namely, Leibniz
homology must be related to an appropriate homology theory of dialgebras rather
than algebras. This was done by Frabetti [6], where more details can be found. Her
result is as follows.

Theorem 4. Let D be an dialgebra with a bar unit.

(A) HLeib
∗ (gl(D),K) = T (HHS∗−1(D)),

where HHS∗ is one generalization of Hochschild homology to dialgebras.

One would now like to appropriately generalize Conjecture 1. Namely, we would
like to replace P by another object Y such that the space, say Der(gl,Y), is a Leibniz
algebra which is not necessarily a Lie algebra. This leads us to the concept of a
dioperad, which is explained in Sections 2, 3 and 4. The main conjecture can be
stated as follows.

Conjecture 2. Let Y be a dioperad with a bar unit.

(A) HLeib
∗ (Der(gl,Y),K) = T (H∗(Ĉ(gl,Y))).

(C) HLeib
∗ (Der(sp,Y),K) = T (H∗(Ĉ(sp,Y))).

(B +D) HLeib
∗ (Der(o,Y),K) = T (H∗(Ĉ(o,Y))).

The Leibniz algebras in the statement above are defined in Sections 5 and 6, while
the graph complexes are defined in Section 7. The isomorphism in this theorem is
an isomorphism of groups in the category of graded Zinbeil coalgebras. For Parts
(C) and (B +D), one needs Y to be reversible.

Remark. By following the pattern of proof in Theorem 1, which is adequately ex-
plained in [15], one can reduce the Leibniz homologies to homologies of certain
disconnected graph complexes. However at this step, there is a gap in my under-
standing. I do not understand how one identifies the primitive elements in the
disconnected graph complex with the connected piece. This is the reason why
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Conjectures 1 and 2 are stated as conjectures and not theorems. The claim [6,
Proposition 2.13] by Frabetti just appears false to me.

2. Species, operads and dioperads

In this section, we give a brief introduction to species and operads and then
define dioperads. The main reference for the first part is [14]. We also recall the
notion of operad bimodules which is central to the construction of dioperads. We
write S, P and Y for the categories of species, operads and dioperads respectively.

2.1. Species. A detailed treatment on species can be found in the book by Berg-
eron, Labelle and Leroux [1]. We write S for the category of species. Let Set be
the category of finite sets with bijections as the morphisms. Let K be a field of
characteristic zero, and let Vect be the category of vector spaces over K.

Definition 2.1. A species Q is a functor

Set −→ Vect .

We denote the image of a set I by Q[I] and say that Q[I] is the space of Q-structures
on the set I. An element of Q[I] can be schematically drawn as

a b

d c

∈ Q[I] for I = {a, b, c, d}.

The arms attached to the disc are labelled by elements of I, while the disc specifies
the Q-structure on its arms. By definition, a bijection I → J induces an isomor-
phism Q[I] → Q[J ]. In the schematic notation, this map relabels the arms using
elements of J .

An alternative definition of species is given in Definition 5.1.

Definition 2.2. A morphism between the species P and Q is a natural transfor-
mation between the functors P and Q.

2.2. Examples of species. We now give some examples of species. In each of
them, Q[∅] = 0.

• u[I] = k if I is a singleton and zero otherwise.
• c[I] = k.
• a[I] is the K-span of the set of linear orders on the set I.
• s[I] is the K-span of the set of nonempty subsets of the set I.
• Perm[I] is the K-span of the set I.
• p[I] is the K-span of the set of partitions of the set I.

From the species u, c, a and s, one can construct related species as below. This
connection will be made clear in Section 4.

• uu[I] = k if I has two elements and zero otherwise.
• cc[I] = k if I has two or more elements and zero otherwise.
• aa[I] is the K-span of the set of cyclic orders on the set I.
• ss[I] is the K-span of the set of partitions of the set I into two parts.
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The species aa in the picture notation is as follows, with the arc indicating the
cyclic order.

a b

d c

∈ aa[I] for I = {a, b, c, d}.

The reader may devise similar pictures for the other examples.

2.3. Operads. A detailed treatment on operads can be found in the book by Markl,
Shnider and Stasheff [16]. We write P for the category of operads.

Definition 2.3. An operad P is a species with a substitution rule

P[I]⊗ P[J ]→ P[(I \ {y}) ∪ J ] for y ∈ I,

denoted ←−
y

which is

(i) compatible with the morphisms in the source category, and
(ii) associative.

An element of P[I] can be schematically drawn as

a
b

c
d

∈ P[I] for I = {a, b, c, d},

with the arrow indicating the presence of a substitution rule. One thinks of a, b, c, d
as four inputs and the arrow as an output. The substitution rule allows us to
substitute the output of one element q into a specified input, say y, of another
element p. This can be shown as

x

p y

z

a
b

q

c
d

7→

x a
b

p q
y

c
z d

For shorthand, we say that p q
y

maps to p ←−
y

q. It is convenient many

times to drop y from the notation, and say that p q maps to p← q. We do

not distinguish between q → p and p← q.
The first condition says that substitution commutes with relabelling of the in-

puts. The second condition says that if we perform two substitutions, one after the
other, then the order in which we do them does not matter. Equivalently,

(1) p←− q ←− r, and

q

p

r

are well defined. As a shorthand, we say that

(2) p q r
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is well defined, without specifying the arrowheads. The convention is that the
arrowheads either both point to the left or to the right or to the centre.

Definition 2.4. A unit in an operad P is a map u → P of species such that
p← u = p and u← p = p for p ∈ P[I] for any finite set I.

Definition 2.5. A morphism between operads P and Q is a map of species which
commutes with the respective substitution maps.

2.4. Examples of operads. We now give examples of operads using some of the
examples of species in (2.2).

• The unit operad is the species u with substitution given by the canonical

map k ⊗ k
∼=
−→ k.

• The commutative operad is the species c with substitution defined in the
same way as for u.

x

y

z

a

b
7→

x
a

y

b

z

=

x
a

b

z

Each figure represents the unit element 1 ∈ c[I] ∼= k, for appropriate I.
• The associative operad is the species a of linear orders with the following
substitution rule.

x

y

z

a

b

7→

x
a

y

b
z

=

x
a

b
z

• The permutative operad is the species Perm with the following substitution
rule. Let i ∈ Perm[I] and j ∈ Perm[J ] be elements of I and J respectively.
Define

i
y
←− j =

{
i if i 6= y,
j if i = y.

More information on this operad can be found on [9, page 105].

2.5. Operad bimodules. Now we discuss bimodules over an operad along with
some examples. These will be useful for constructing dioperads.

Definition 2.6. For an operad P, a P-bimodule is a species M with maps

P[I]⊗M[J ]

M[I \ {y} ∪ J ] for y ∈ I,

M[I]⊗ P[J ]

both denoted ←−
y

which are

(i) compatible with the morphisms in the source category, and
(ii) associative, in the sense explained below.
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We denote the image of p⊗m in the first map by p←− m, and the image of m⊗ p
in the second map by m ←− p, dropping y from the notation as usual. Then the
second condition above says that

p m q and p q m

are well defined, the convention on the arrowheads being as in Equation (2).

2.6. Examples of operad bimodules. By definition, P is a bimodule over itself.
One can use trees to construct other interesting examples of bimodules. For the
terminology on trees, we follow [16].

Definition 2.7. A tree is a finite connected contractible graph. We will modify
the standard convention according to which all edges in a graph have two adjacent
vertices and delete some of the vertices with only one adjacent edge. This means
that some edges will have only one adjacent vertex. We call these edges external
edges. The edges which are adjacent to two vertices will be called internal edges.
A rooted tree is a tree with a distinguished external edge called the root. The
remaining external edges are called leaves. We direct a rooted tree by pointing the
edges towards the root.

Definition 2.8. A standard tree is a tree with no external edges. Similarly, a
standard rooted tree is a tree with exactly one external edge called the root. For
a rooted tree T , let st(T ) be the standard rooted tree obtained by deleting all the
external edges of T , except the root. And let st(T ) be the standard tree obtained
by deleting all the external edges of T .

Definition 2.9. A tree of type T (P) is the rooted tree T , with a P-structure
specified on the set of incoming edges at each vertex of T . We now define a species
T (P). For any finite set I, let T (P)[I] be the space spanned by all trees of type
T (P), with leaves labelled by elements of I, subject to the linearity condition at
each vertex.

Note that for c, the commutative operad, T (c)[I] is the space spanned by T ,
with leaves labelled by elements of I.

Example 1. Now fix a standard rooted tree t and an operad P. Define t(P) to be
the species, where t(P)[I] is the direct sum over all T (P)[I] such that st(T ) = t.
Then t(P) is a P-bimodule as below.

We illustrate with t =

•

•

•

. Let m =

r

q

s

∈ t(P), with q, r and s

being the P-structures at the three vertices of t. Then

p←− m :=

r

(p←− q)

s

and

m←− p :=

r

(q ←− p)

s

or

(r ←− p)

q

s

or

r

q

(s←− p)
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depending on the input of m in which we substitute p.
Note that •(P) = P. This gives the usual bimodule structure on P. Now let t′

be a standard rooted tree obtained by contracting some of the internal edges of t.
This induces a map t(P)→ t′(P) of P-bimodules. In particular, contracting all the
internal edges gives a map t(P) → P of P-bimodules. In the example above, this

map sends

r

q

s

to

r

q

s

.

Remark. In the above construction, instead of a standard rooted tree, one can fix
a standard tree t, and define a P-bimodule t(P) by using the map st instead of st.

Example 2. We apply the previous example to P = c, the commutative operad.
We note that

• •(c) = • •(c) = s,

the subset species. This should be clear from the following picture.

x

z

a

b

←→

x

z

a

b
←→

x

z

a

b

The last two diagrams show the subset species in picture notation. We leave it to
the reader to make the c-bimodule structure on s explicit. The map s → c is the
forgetful map. We now explain the general case.

Definition 2.10. Let Treek, respectively Treek be the set of standard rooted trees,
respectively standard trees, with k+1 vertices. Let Confk, respectively Confk be
the combinatorial configuration of k disjoint circles in the plane, respectively on
the sphere.

An element of Confk divides the plane into k + 1 regions. Put a vertex in
each region, and draw an edge between vertices in adjacent regions. This gives a
standard rooted tree, with the root corresponding to the vertex lying in the unique
unbounded region. In fact, this procedure gives a bijection

(3) Treek ←→ Confk, and Treek ←→ Confk.

For a standard rooted tree t, let C(t) be the corresponding configuration. We now
describe t(c). An element of t(c)[I] consists of C(t) along with points labelled by
elements of I, such that the points do not lie on any of the circles and each of the
disc-like regions contains at least one point.

t =

• •

• •

• • w

x

y z

a

b

For example, the box above shows an element of t(c)[{a, b, x, y, z, w}], for t as above.
Apart from the unbounded region with two points, there are three disc-like regions
each with one point, and two annulur regions, one of which is empty.
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Example 3. For an operad P with a unit, using the idea in Example 1, we note
that P ◦P is a P-bimodule, with the substitution map P ◦P → P being a map of
P-bimodules. This idea can also be extended to higher iterates, namely P ◦P ◦P,
and so on.

Example 4. We note that c ◦ c = p, the partition species. Hence p is a c-bimodule
with the map p→ c being the forgetful map.

2.7. Dioperads. The concept of a dioperad merges the notion of an operad and a
dialgebra. We write Y for the category of dioperads.

Definition 2.11. A dioperad Y is a species with two substitution rules

Y[I]⊗ Y[J ]→ Y[I \ {y} ∪ J ] for y ∈ I,

denoted
⊣
←−
y

and
⊢
←−
y

which

(i) are compatible with the morphisms in the source category, and
(ii) satisfy the following associative axioms.

p ⊣ (q ⊢ r) = p ⊣ (q ⊣ r) = (p ⊣ q) ⊣ r

p ⊢ (q ⊣ r) = (p ⊢ q) ⊣ r

p ⊢ (q ⊢ r) = (p ⊢ q) ⊢ r = (p ⊣ q) ⊢ r

Note that as written these are exactly the axioms for a dialgebra. However the
above notation requires some explanation.

We write p
⊣
←−
y

q, respectively p
⊢
←−
y

q, for the image of p ⊗ q under the rule

⊣
←−
y

, respectively
⊢
←−
y

. For a picture, we draw

p
⊣
←−
y

q =

x a

b

p q
y

⊣

c

z d

As with operads, it is convenient to drop y from the notation. We follow the
convention that

(4) p
⊢
←− q = q

⊣
−→ p.

The notation, say p ⊣ q, is then ambiguous and can mean either p
⊣
←− q or p

⊣
−→ q.

The convention used in the second condition above is as follows.
In each identity, the arrows either all point to the left or to the right or to the

centre. For example, the identity p ⊣ (q ⊢ r) = p ⊣ (q ⊣ r) gives

p
⊣
←− (q

⊢
←− r) = p

⊣
←− (q

⊣
←− r)

p
⊣
−→ (q

⊢
−→ r) = p

⊣
−→ (q

⊣
−→ r)

p
⊣
−→ (q

⊢
←− r) = p

⊣
−→ (q

⊣
←− r)

Note that these axioms are identical to those obtained from the identity (r ⊢ q) ⊢
p = (r ⊣ q) ⊢ p.
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From the axioms obtained by using arrows that point to the centre, we see that
among the expressions

(5)

q⊣

p

r⊣

q⊣

p

r⊢

q⊢

p

r⊢

the first two are well defined whereas the third one is not. We also have the axiom

q
⊣

1p

r⊢

2
=

q
⊢

1p

r⊢

2

where the letters 1 and 2 specify the order of substitution.

Definition 2.12. A bar unit in a dioperad Y is a map u→ Y of species such that

p
⊣
←− u = p and u

⊢
←− p = p for p ∈ Y. So it is only assumed that u substitutes

trivially from the bar side.

Remark. It is clear that a dioperad for which
⊣
←− and

⊢
←− coincide is same as an

operad.

Definition 2.13. A morphism of dioperads is a map Y → Z of species, which

commutes with the substitution rules
⊣
←− and

⊢
←−.

2.8. Examples of dioperads. We now give some examples of dioperads.

Example 5. LetK ∈ s[I] and L ∈ s[J ] be nonempty subsets of I and J respectively.
Define

K
⊢
←−
y

L = L, K
⊣
←−
y

L =

{
K if y 6∈ K,
K ∪ J if y ∈ K.

This gives a dioperad structure on the subset species s defined in (2.2). This is part
of a general construction explained below in Example 9.

Example 6. Every dialgebra D is a dioperad, which we denote by Ddo, defined by
Ddo[I] = D if I is a singleton and zero otherwise. More precisely, we have a functor
do : D → Y, where D is the category of diagebras. This functor has an adjoint
da : Y → D that sends a dioperad Y to the dialgebra Y[1].

This is the analogue of the pair of adjoint functors o : A → P and a : P → A,
defined in the same way as above, where A is the category of associative algebras.

Example 7. Let F be any ideal in Y, that is, a subspecies of Y with maps

⊢
←−,

⊣
←− : Y[I]⊗ F[J ]

F[I \ {y} ∪ J ] for y ∈ I,

⊢
←−,

⊣
←− : F[I]⊗ Y[J ]
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restricted from Y. Then Y /F is a dioperad with the maps
⊣
←− and

⊢
←− induced

from the quotient map Y → Y /F.

Example 8. Every operad P is a dioperad, which we denote by Pdo, for which
⊣
←−

and
⊢
←− coincide. More precisely, we have a functor do : P → Y.

Let Y be a dioperad and set

Yo := Y /F(Y), F(Y) := 〈p
⊣
←− q − p

⊢
←− q | p ∈ Y[I], q ∈ Y[J ]〉,

where F(Y) is an ideal in Y. Then Yo is an operad, since by construction the induced

maps
⊣
←− and

⊢
←− coincide. This defines a functor o : Y → P, which is the left

adjoint to the functor do.

Example 9. Let A be an associative algebra, M a A-bimodule, and M→ A a map
of A-bimodules. Then M has the structure of a dialgebra. This construction is due
to Loday. In [9, page 72], Frabetti shows that all dialgebras can be achieved in this
way. We now extend these ideas to dioperads.

Let P be an operad, M be a P-bimodule and ϕ : M→ P be a map of P-bimodules.
Then M is a dioperad defined as follows.

m
⊣
←− n := m←− ϕ(n), m

⊢
←− n := ϕ(m)←− n for m,n ∈ M .

Further a diagram
M N

P
of P-bimodules induces a map M→ N of dioperads.

We now show that all dioperads arise in this way. Let Y be a dioperad and Yo

be its associated operad. Then Y is a Yo-bimodule via

p←− [q] := p
⊣
←− q, [p]←− q := p

⊢
←− q for p, q ∈ Y,

and with this structure Y → Yo is a map of Yo-bimodules. Note that if we apply
our construction to M = Y and P = Yo then we recover the dioperad Y.

Applying the construction to Example 1:

Lemma 1. For P a operad and t a standard rooted tree, the species t(P) is a
dioperad. Further the edge contraction map t(P)→ t′(P) is a map of dioperads.

The same statement holds for any standard tree.

Applying this lemma to Example 2 shows that the subset species s is a dioperad.
This dioperad structure was discussed in Example 5.

Similarly, applying the construction to Example 3 shows that P ◦P is a dioperad.
As a special case, Example 4 shows that the partition species p is a dioperad.

Exercise 1. Make the dioperad structure on p explicit.

3. Operads and dioperads revisited

In this section, we give the categorical perspective on operads and dioperads.
This involves the notion of a monoid in a monoidal category, which is adequately
explained in [16, Chapter 1, Section 1.1]. The categorical viewpoint will be useful
later for defining dioperad algebras.
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3.1. Operads as monoids. Recall that S is the category of species.

Definition 3.1. Let P and Q be species such that Q[∅] = 0. Define P ◦Q to be the
species

(P ◦Q)[I] =
⊕

π a partition of I

P[π]⊗

(⊗

J∈π

Q[J ]

)
.

This definition can be extended to the case when Q[∅] 6= 0; see [16, Definition 1.63].
We denote an element of (P ◦Q)[I] by

p⊗ {q1, . . . , qn},

by which we understand that there is a partition I = J1 ⊔ · · · ⊔ Jn, with qi ∈ Q[Ji]
and p ∈ P[{J1, . . . , Jn}]. It is also useful to have a picture in mind for P ◦Q. We
draw, for example,

p⊗ {q1, q2, q3} =

a
q1

c

p q2 d

b
q3

e

∈ (P ◦Q)[{a, b, c, d, e}].

Observe that the product ◦ defines a monoidal structure on S, with the species u

as the unit.

The following is an equivalent formulation of operads.

Definition 3.2. An operad is a monoid in S for the ◦ product. Explicitly, an
operad is a species P with

• a map ⇐= : P ◦P→ P of species such that

P ◦(P ◦P)
∼=

id ◦(⇐=)

(P ◦P) ◦ P
(⇐=)◦id

P ◦P

⇐=

P ◦P
⇐=

P

commutes. We use the shorthand

(6) ⇐= (⇐=) = (⇐=)⇐=

for the above commutative diagram. We denote the image of p⊗{q1, . . . , qn}
under this map by p⇐= {q1, . . . , qn}.

• a map u
i
−→ P such that the composite maps

(7) P
∼=
−→ u ◦P

i◦id
P ◦P

⇐=
−→ P and P

∼=
−→ P ◦ u

id ◦i
P ◦P

⇐=
−→ P

are the identity.

Lemma 2. For a unital operad, Definition (2.3+2.4) and Definition 3.2 are equiv-
alent.
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Proof. If P is an operad in the sense of Definition 2.3 then the substitution rule in
P defines a map ⇐= : P ◦P→ P of species that sends p⊗ {q1, . . . , qn} to

p⇐= {q1, . . . , qn} := (. . . ((p ←−
J1

q1) ←−
J2

q2) . . . ←−
Jn

qn).

From Equation (1), the order of substitution of the qi’s does not matter, as required.
For a picture notation, we say

a
q1

c

p q2 d

b
q3

e

p⊗ {q1, q2, q3}

maps to

a
q1

c

p q2 d

b
q3

e

p⇐= {q1, q2, q3}

Further Equation (1) also shows that Equation (6) holds. And the map u
i
−→ P

from Definition 2.4 shows that the composite maps in Equation (7) are the identity.
This shows that P is a monoid in S as claimed in Definition 3.2.

Conversely, starting with Definition 3.2, we use the unit map u → P from the
monoid structure of P to define a substitution rule as follows. For p ∈ P[I] and
q ∈ P[J ], we set,

p ←−
y

q := p⇐= {u, . . . , u, q},

where in the right hand side, we use the partition of I \ {y} ⊔ J , whose one part
is J and the rest are singletons. It is then straightforward to verify Definition
(2.3+2.4). �

3.2. Dioperads as similar to dimonoids. In analogy with operads, it is tempt-
ing to say that a dioperad Y is a dimonoid in S for the ◦ product, that is, we have
two maps

⊣
⇐=,

⊢
⇐= : Y ◦Y → Y

which satisfy the dialgebra axioms, see [9, page 11]. However the situation is more
complicated. The difficulty is as follows.

Starting with Definition 2.11, given p ⊗ {q1, . . . , qn}, we need to define p
⊣
⇐=

{q1, . . . , qn} and p
⊢
⇐= {q1, . . . , qn}. The logical thing is to set them to be

(. . . ((p
⊣
←−
J1

q1)
⊣
←−
J2

q2) . . .
⊣
←−
Jn

qn) and (. . . ((p
⊢
←−
J1

q1)
⊢
←−
J2

q2) . . .
⊢
←−
Jn

qn)

respectively. However Equation (5) says that only the first expression above is well
defined.

We propose the following solution to this problem.

Definition 3.3. We recall [16, Definition 3.27]. Let P, Q and R be three species.
Define P ◦(Q,R) to be the subspecies of P ◦(Q⊕R) consisting of terms with just
one tensor factor from R. And using this, define

P ⋄Q := P ◦(Q,Q).
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We denote an element of (P ⋄Q)[I] by

p⊗ {q1, . . . , qi , . . . .qn},

where the circled entry belongs to the second factor of Q in P ◦(Q,Q). For a picture
notation, we draw, for example,

p⊗ {q1, q2 , q3} =

a
q1

c

p • q2 d

b
q3

e

∈ (P ⋄Q)[{a, b, c, d, e}],

with the bullet indicating the second factor of Q.

We make a few observations.

- There is no isomorphism P ⋄(Q ⋄R)→ (P ⋄Q) ⋄R, see Definition 3.4 below.
However there is an isomorphism P ⋄(Q ◦R)→ (P ⋄Q) ◦ R.

- There is a natural transformation P ⋄Q → P ◦Q of species which forgets
the bullet.

- We have P ⋄Q = (P×Perm) ◦ Q, where Perm is the permutative operad
defined in (2.4). In this language, the natural transformation above forgets
the Perm factor.

- The unit species u is only a left unit for the ⋄ product. More precisely, we
have u ⋄P = P while P ⋄u = P×Perm.

Definition 3.4. We define an associator P ⋄(Q ⋄R) → (P ⋄Q) ⋄ R that sends, for
example,

p⊗
{
q1 ⊗ {r11, r12 }, q2 ⊗ { r21 , r22, r23}, q3 ⊗ { r31 , r32}

}

to (
p⊗ {q1 ⊗ q2 ⊗ q3}

)
⊗ {r11, r12, r21 , r22, r23, r31, r32}.

For definiteness, we have taken p ∈ P[3], q1 ∈ Q[2], q2 ∈ Q[3] and q3 ∈ Q[2]. Also
we have written q2 ⊗ { r21 , r22, r23} instead of

q2 ⊗ { r21 , r22, r23}

for notational simplicity. The associator satisfies the Maclane pentagon condition,
see [16, page 37]. However it is neither one to one nor onto. Hence the ⋄ product
does not define a monoidal category. However one can still define monoids and
dimonoids using the associator.

We can now give an equivalent formulation of dioperads. It turns out to be
stronger than the notion of a dimonoid in S with the ⋄ product.

Definition 3.5. A dioperad is a species Y with two maps of species

⊣
⇐=,

⊢
⇐= : Y ⋄Y → Y,

which we abbreviate to ⊣ and ⊢, such that

(i) the map ⊣ factors through the quotient Y ⋄Y → Y ◦Y, and
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(ii) the following axioms hold.

⊣ (⊣,⊢) = ⊣ (⊢,⊣) = (⊣) ⊣

⊢ (⊢,⊣) = (⊢) ⊣

⊢ (⊣,⊢) = (⊢) ⊢ = (⊣) ⊢

The notation used above is similar to the one used in Equation (6). For example,
the map (⊢) ⊣ is the composite map

(Y ⋄Y) ⋄ Y
⊢◦ id

Y ⋄Y
⊣
−→ Y .

However the notation of the form ⊣ (⊣,⊢) still requires some explanation. It stands
for the composite map

Y ⋄(Y ⋄Y) = Y ◦(Y ⋄Y,Y ⋄Y)
id ◦(⊣,⊢)

Y ◦(Y,Y)
⊣
−→ Y,

Note that in condition (ii), whenever there are two maps inside a bracket, they are
always different. We denote the image of p ⊗ {q1, . . . , qi , . . . , qn} under the map,

say
⊢
⇐=, by the notation p

⊢
⇐= {q1, . . . , qi , . . . , qn}.

Definition 3.6. A bar unit in a dioperad Y is a map u
i
−→ Y of species such that

the composite maps

Y
∼=
−→ u ⋄ Y

i⋄id
Y ⋄Y

⊢
−→ Y and (Y×Perm)

∼=
−→ Y ⋄u

id ⋄i
Y ⋄Y

⊣
−→ Y

are the identity and the projection on the first factor respectively. So it is only
assumed that u substitutes trivially from the bar side.

Remark. It is clear that condition (i) of Definition 3.5 implies that a dioperad for

which
⊣
⇐= and

⊢
⇐= coincide is same as an operad.

Lemma 3. For a bar unital dioperad, Definitions (2.11+2.12) and (3.5+3.6) are
equivalent.

Proof. If Y is a dioperad in the sense of Definition 2.11 then the substitution rules

in Y define two maps
⊣
⇐=,

⊢
⇐= : Y ⋄Y → Y of species that send p ⊗ {q1, q2 , q3},

for example, to

a
q1

⊣
c

p q2
⊣

d

b
q3

⊣

e

p
⊣
⇐= {q1, q2 , q3}

and

a
q1

⊣
c

p q2
⊢

d

b
q3

⊣

e

p
⊢
⇐= {q1, q2 , q3}

respectively. From Equation (5), these are well defined, that is, the order of sub-
stitution of the qi’s does not matter. It is clear from the definition that the map
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⊣
⇐= factors through the quotient Y ⋄Y → Y ◦Y. The axioms in condition (ii) in
Definition 3.5 are routine to check. For example, the axiom

⊣
⇐= (

⊣
⇐=,

⊢
⇐=) =

⊣
⇐= (

⊢
⇐=,

⊣
⇐=)

follows from repeated shuffling of the tensor factors and use of the axiom

p
⊣
←− (q

⊢
←− r) = p

⊣
←− (q

⊣
←− r).

Further the bar unit map in Definition 2.12 satisfies the bar unit axioms in Definition
3.6. This shows that Y is a dioperad in the sense of Definition (3.5+3.6).

Conversely, starting with Definition (3.5+3.6), we use the bar unit map u → Y

to define a substitution rule as follows. For p ∈ Y[I] and q ∈ Y[J ], we set,

p
⊣
←−
y

q := p
⊣
⇐= {u, . . . , u, q } = . . . = p

⊣
⇐= { u , . . . , u, q}

p
⊢
←−
y

q := p
⊢
⇐= {u, . . . , u, q },

where in the right hand sides, we use the partition of I \ {y}⊔ J , whose one part is
J and the rest are singletons. Note that in the first definition, the position of the
circle does not matter, while in the second definition, the circle is on q. The main
part now is to check the axioms in condition (ii) in Definition 2.11. We give two
typical illustrations. For definiteness, let p ∈ Y[3], q ∈ Y[3] and r ∈ Y[2].

The axiom ⊣ (⊣,⊢) = ⊣ (⊢,⊣) says that

p
⊣
⇐=

{
u

⊣
⇐= u , q

⊢
⇐= { r , u, u} , u

⊣
⇐= u

}

= p
⊣
⇐=

{
u

⊢
⇐= u , q

⊣
⇐= { r , u, u} , u

⊢
⇐= u

}
,

which we may also write as

p
⊣
⇐=





u
⊣
⇐= u

q ⊢
⇐=





r
u
u





u
⊣
⇐= u





= p
⊣
⇐=





u
⊢
⇐= u

q ⊣
⇐=





r
u
u





u
⊢
⇐= u





.

This implies that p
⊣
←− (q

⊢
←− r) = p

⊣
←− (q

⊣
←− r).

We now illustrate the first part of Equation (5). Note that

p
⊣
⇐= (q, u, r) = p

⊣
⇐= ( q , u, r) = p

⊣
⇐= (q, u, r ).

Using the axiom ⊣ (⊢,⊣) = (⊣) ⊣, the middle term is equal to

p
⊣
⇐=

{
q ⊣
⇐= {u, u , u} , u

⊢
⇐= u , u

⊢
⇐= r

}

=
{
p

⊣
⇐=

{
q , u, u

}} ⊣
⇐= {u, u , u, u, r}

=
{
p

⊣
⇐= {q, u, u}

}
⊣
⇐= {u, u, u, u, r}
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Again using the same axiom, or by symmetry, the last term is equal to

p
⊣
⇐=

{
u

⊢
⇐= q , u

⊢
⇐= u , r

⊣
⇐= { u , u}

}

=
{
p

⊣
⇐= {u, u, r }

}
⊣
⇐= {q, u, u , u}

=
{
p

⊣
⇐= {u, u, r}

}
⊣
⇐= {q, u, u, u}

Comparing the last two expressions shows that r
⊢
−→ p

⊣
←− q is well defined as

required. �

3.3. Comparison between dioperads and dimonoids.

Lemma 4. A bar unital dioperad satisfies the following additional axioms.

⊣ (⊢,⊢) = ⊣ (⊣,⊣) = (⊣) ⊣

⊢ (⊣,⊣) = (⊢) ⊣

⊢ (⊢,⊢) = (⊢) ⊢ = (⊣) ⊢

Note that whenever there are two maps inside a bracket, they are identical.
Equivalently, every dioperad is a dimonoid in S for the ⋄ product.

The converse to the above lemma is false.

4. Reversible dioperads

In this section, we recall briefly the notion of a reversible operad and the con-
struction of the mating functor. The main reference for this part is [14]. Then we
discuss the corresponding notions for a dioperad along with examples. We write Pr

and Yr for the categories of reversible operads and reversible dioperads respectively.

4.1. Reversible operads. To define a reversible operad, one needs to treat the
output of an operad element on par with its inputs. This requires a slight change of
perspective. We replace the category Set with the equivalent category of pointed
sets Setp defined as follows. An object of Setp is a pair of disjoint sets (I, U), where
U is a singleton. A morphism between (I, U) and (J, V ) is a bijection between I
and J .

Definition 4.1. A species Q is equivalently a functor

Setp −→ Vect .

We denote the image of (I, U) by Q[I, U ].
An operad P is a species P with a substitution rule

P[I, U ]⊗ P[J, V ]→ P[(I \ V ) ∪ J, U ] for V ⊆ I,

with the same constraints as in Definition 2.3. An element of P[I, U ] can be schemat-
ically drawn as

a
b

y

c
d

∈ P[I, U ] for I = {a, b, c, d} and U = {y},
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with the output labelled by the unique element of U . So the notation p ←−
y

q now

means that the label of the output of q is y and it is fed to an input of p whose
label is again y.

Definition 4.2. A reversible operad is a operad P such that for each object (I, {y})
in Setp and x ∈ I, there exist reversal maps

rx,y : P[I, {y}]→ P[(I \ {x}) ∪ {y}, {x}],

which satisfy the two conditions below. One visualises the reversal rule as

rx,y




a

y p x

z


 =

a

y p x

z

,

namely, it allows one to switch the output with any given input.

(1) We require ry,x ◦ rx,y = id and rx,y ◦ ry,z = rx,z. It follows from these two
relations that the composite of a sequence of reversals is either the identity
map or a single reversal.

(2) Reversal is compatible with substitution. That is,

rx,z(p ←−
y

q) =





rx,z(p) ←−
y

q if x is an input of p,

rx,y(p) −→
y

ry,z(q) if x is an input of q.

Here y labels one of the inputs of p as well as the output of q and z labels
the output of p.

Among the examples in (2.4), the operads u, c and a are reversible, whereas
Perm is not reversible. The reversal rule for the associative operad a is as follows.

rx,y




a

y x

z


 =

a

y x

z

Definition 4.3. A morphism between reversible operads P and Q is a map of
operads between P and Q which commutes with the respective reversal maps.

4.2. Reversible dioperads. As suggested by the present discussion, in order to
define a reversible dioperad, we must also modify our perspective on dioperads.
Accordingly, a dioperad Y is a species with two substitution rules

Y[I, U ]⊗ Y[J, V ]→ Y[I \ V ∪ J, U ] for V ⊆ I,

with the same constraints as in Definition 2.11.

Definition 4.4. A reversible dioperad is a dioperad Y such that for each object
(I, {y}) in Setp and x ∈ I, there exist reversal maps

rx,y : Y[I, {y}]→ Y[(I \ {x}) ∪ {y}, {x}],

which satisfy the two conditions below.

(1) We require ry,x ◦ rx,y = id and rx,y ◦ ry,z = rx,z.
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(2) Reversal is compatible with substitution. That is,

rx,z(p
⊣
←−
y

q) =





rx,z(p)
⊣
←−
y

q if x is an input of p,

rx,y(p)
⊣
−→
y

ry,z(q) if x is an input of q.

And similarly with ⊣ replaced by ⊢. Here y labels one of the inputs of p as
well as the output of q and z labels the output of p.

It may appear at first glance that the conditions for ⊣ and ⊢ are independent.
However this is not true, as is clear from the substitution convention defined in
Equation (4).

Definition 4.5. A morphism between reversible dioperads Y and Z is a map of
dioperads between Y and Z which commutes with the respective reversal maps.

4.3. Examples of reversible dioperads. We now look at the examples of diop-
erads in (2.8) and see which of them are reversible.

Example 10. The subset dioperad discussed in Example 5 is reversible. For K ⊆ I
and x ∈ I, define

rx,y(K) =

{
(I \K) ∪ {y} if x ∈ K,

K if x 6∈ K.

One can check that this satisfies the required conditions.

rx,y




a x

y b




=

a x

y b

The above picture illustrates the first case.

Example 11. An involution r on a dialgebra D is a map r : D→ D such that

r(a ⊣ b) = r(b) ⊢ r(a), and r(a ⊢ b) = r(b) ⊣ r(a).

Now let Ddo be the dioperad associated to D, as in Example 6. Then Ddo is reversible
if and only if D has an involution.

This is the analogue to the fact that the operad Ao is reversible if and only if
the associative algebra A has an involution.

Example 12. We now refer to Example 8. If P is a reversible operad then the

associated dioperad Pdo, for which
⊣
←− and

⊢
←− coincide, is a reversible dioperad.

This is clear from the definitions. Conversely, let Y be a reversible dioperad. Then
the reversal maps of Y preserve the ideal F(Y) and hence the quotient Yo is a
reversible operad. Thus we obtain an induced pair of adjoint functors

do : Pr → Yr and o : Yr → Pr.

Example 13. We now discuss reversibility for the dioperad constructed using a
standard tree; see the remark after Example 9. It will be clear from the discussion
below that a standard rooted tree is not relevant here.

Lemma 5. Let t be a standard tree and P be a reversible operad. Then the dioperad
t(P) is reversible.
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Proof. We illustrate with t = • • •. Let (I, U) = ({a, b, c, x}, {y}) and

y p q r a

c x b

∈ t(P)[I, U ],

where p, q and r refer to elements of P. Then the reversal map rx,y applied to the
above element gives

y r(p) r(q) r a

c x b

∈ t(P)[(I \ {x}) ∪ {y}, {x}].

Namely, using the reversal maps of P, we reverse those elements of P, which lie on
the path joining x and y. The root of the tree so produced is labelled by x. It is
now straightforward to check that the dioperad t(P) is reversible. �

Applying this lemma to t = • • and P = c, we get the reversal rules for the
subset dioperad s written in Example 10.

Now we describe explicitly the reversal rules for t(c), for any standard tree t.
Let C(t) be the configuration of circles on the sphere corresponding to t under the
bijection of Equation (3). An element of t(c)[I, U ] then consists of C(t) along with
points labelled by elements of I ∪ U , such that the points do not lie on any of the
circles and each of the disc-like regions contains at least one point. Further the
point labelled by the element of U is marked as special. The reversal map rx,y,
with y ∈ U , applied to the above element, changes the marking from y to x, keeping
the rest of the configuration untouched.

4.4. The mating functor. We now discuss a crucial ingredient for (di)operad
geometry.

Definition 4.6. Define a species Q starting with a reversible operad P as follows.
For any finite set K, let

Q[K] =
⊕

I⊔J=K

P[I, U ]⊗ P[J, U ],

subject to the two relations below.

(R1) p⊗ q = q ⊗ p

(R2) (p→ q)⊗ r = p⊗ (r(q)← r).

The set U is any singleton, all choices being considered equivalent. We interpret
the tensor sign as a mating, and say that p⊗ q is a mating of p and q. We show it
as

x a

y p q

z b

with two opposing arrowheads in the centre. For a shorthand we write p q.
The symmetry of relation (R1) is built into this notation.

This defines the mating functor

Pr −→ S.
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It maps the operads u, c and a to the species uu, cc and aa respectively.

a c x

b w

=

a c

x

b w

The above picture illustrates the associative case. In general, we use the notation
that the operad P maps to the species Q = PP. We refer to PP as the mated species
of P.

Definition 4.7. Define a species Z starting with a reversible dioperad Y as follows.
For any finite set K, let

Z[K] =
⊕

I⊔J=K

Y[I, U ]⊗ Y[J, U ]⊗ k{⊣,⊢},

subject to the two relations below. The set U is any singleton, all choices being

considered equivalent. We denote p⊗q⊗ ⊣ by the notation p
⊣

q and p⊗q⊗ ⊢

by the notation p
⊢

q, in analogy with the operad situation.

(R1) p
⊣

q = q
⊢

p

(R2)

(p
⊣
−→ q)

⊢
r = (p

⊢
−→ q)

⊢
r = p

⊢
(r(q)

⊢
←− r).

(p
⊢
−→ q)

⊣
r = p

⊢
(r(q)

⊣
←− r).

(p
⊣
−→ r(q))

⊣
r = p

⊣
(q

⊣
←− r) = p

⊣
(q

⊢
←− r).

It follows from relation (R1) that the first and third lines of relation (R2) are
equivalent. However as written the similarity with the dialgebra axioms is evident.

This defines the mating functor

Yr −→ S.

As an example, it maps the dioperad s to the species ss. The isomorphism is as
follows. Let K ∈ s[I] and L ∈ s[J ] be nonempty subsets of I and J respectively.
Then

K
⊣

L = {K, (I ∪ J) \K}.

Note that the right hand side is a partition of I ∪ J into two parts, which is an
element of ss[I ∪ J ]. As an example,

a c x

⊣

b w

=

a c

x

b w

In general, we use the notation that the dioperad Y maps to the species Z = YY.
We refer to YY as the mated species of Y.

Exercise 2. For a standard tree t and a species Q, define the species t(Q) appro-
priately such that for a reversible operad P, the mating functor maps the dioperad
t(P) to the species t(PP). In particular, for t = •, we obtain that the dioperad Pdo

maps to the species PP.
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4.5. The partial derivative. An element of Z[K] can be expressed as a mating
in many ways, using the relations (R1) and (R2). A mating of the form

p
⊣

u,

with the element of the unit operad on the bar side is called a trivial mating. Such
matings play an important role in the concept of a partial derivative for a mated
species, which we define below.

Proposition 1. Let Y be a reversible dioperad and Z = YY be its mated species.
For w ∈ K and q ∈ Z[K], there is a unique element p = ∂q

∂w
∈ Y[K \ a] such that

q =
∂q

∂w
⊣

u,

where u ∈ u[{w}].

This is the dioperad analogue of [14, Proposition 1]. We refer to ∂q
∂w

as the
operad element obtained by cutting q at the input w.

Proof. There are two parts to the proposition. The first one is the existence of ∂q
∂w

,
which means that every mating can be expressed as a trivial mating. To prove this,

say q = r
⊢

s and w is an input of s. Then

q = r
⊢

s

= r
⊢

(s
⊣
←− u) (u is a bar unit)

= (r
⊢
←− s)

⊣
u (Relation (R2))

= p
⊣

u (Setting p = r
⊢
←− s)

The case q = r
⊣

s is handled similarly.
The second part is to show the uniqueness of ∂q

∂w
. Suppose that

q = p1
⊣

u = p2
⊣

u.

This means that one can obtain p2
⊣

u from p1
⊣

u by successive ap-
plications of relation (R2). Now the reduction lemma below says that this can be
done in one step. This implies that p1 = p2. �

Reduction lemma. Let Y be a reversible dioperad. The result obtained by two

successive applications of relation (R2) to the trivial mating p
⊣

u can, in
fact, be obtained by a single application of (R2).

Proof. This involves a straightforward case analysis, which we omit. The reader
may consult the proof of the operad version of this lemma in [14, Section 3.4]. �

5. Dioperad algebras

In this section, we briefly recall the notions of an operad algebra, its derivations,
and the free operad algebra. We then discuss the corresponding notions for a
dioperad.
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5.1. Operad algebras. Let Σn be the symmetric group on n letters. For any
species Q, we write Q[n] as a shorthand for Q[{1, 2, . . . , n}]. Since Q is a functor,
each element π of Σn induces a map Q(π) : Q[n] → Q[n]. In fact, one sees that
Q[n] is a Σn-module.

Definition 5.1. A species can be equivalently defined as a sequence Q[0], Q[1],
Q[2], . . ., where Q[n] is a Σn-module.

Definition 5.2. For Q a species and A a vector space, define

Q ◦ A =
⊕

j≥0

(
Q[j]⊗ A⊗j

)
Σj

,

the space of coinvariants, where Σj acts on Q[j] as above and on A⊗j by permuting
the tensor factors.

This definition matches the ◦ product in S if we regard A as a species concen-
trated in degree 0. Hence we may denote an element of Q ◦A by q ⊗ {a1, . . . , aj}.
For a picture, we draw

a2 a1

q

a1 a3

∈ Q ◦A .

Definition 5.3. Let P be an operad. A P-algebra is a vector space A with a map
⇐= : P ◦A→ A such that the equation

⇐= (⇐=) = (⇐=)⇐=

holds as a map from P ◦P ◦A to A. The above notation is as in Equation (6). We
denote the image of p ⊗ {a1, . . . , an} under this map by p ⇐= {a1, . . . , an}. For a
picture, we draw

a1

p a2

a3

p⊗ {a1, a2, a3}

maps to

a1

p a2

a3

p⇐= {a1, a2, a3}

We also require that the composite map

A
∼=
−→ u ◦A −→ P ◦A

⇐=
A

is the identity.
A morphism between P-algebras A and B is a linear map A→ B which commutes

with the respective ⇐= maps.
We denote by P-alg the category of P-algebras.

Definition 5.4. A derivation ξ of the P-algebra A is a linear map ξ : A→ A such
that

ξ (q ⇐= {a1, . . . , aj}) =

j∑

i=1

q ⇐= {a1, . . . , ξ(ai), . . . , aj}.
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Alternatively, for any linear map ξ : A→ A, we define ξ̃ : P ◦A→ P ◦A by

ξ̃ (q ⊗ {a1, . . . , aj}) =

j∑

i=1

q ⊗ {a1, . . . , ξ(ai), . . . , aj}.

A derivation ξ of the P-algebra A is a linear map ξ : A→ A such that

P ◦A
ξ̃

⇐=

P ◦A

⇐=

A
ξ

A

commutes. A good shorthand for this diagram is

(8) ( ⇐= ) ξ = ⇐= ( ξ̃ ).

The space of derivations of A, denoted Der(A), forms a Lie algebra for the bracket

(9) [ξ, η] := ξ ◦ η − η ◦ ξ.

One needs to use the identity [ξ̃, η̃] = [̃ξ, η] to prove this fact.

5.2. The free operad algebra.

Definition 5.5. For P an operad and V a vector space, let P ◦V be the P-algebra
given by

P ◦(P ◦V)
∼=
−→ (P ◦P) ◦ V

⇐=◦ id
P ◦V .

This defines a functor

P ◦(−) : Vect −→ P-alg,

which is called the free functor.
We denote the Lie algebra Der(P ◦V) by the notation Der(gln,P), where n is the

dimension of V.

Proposition 2. The free functor is the left adjoint to the forgetful functor

P-alg −→ Vect .

In other words, P ◦V is the free P-algebra on V.

One may phrase the above proposition by the following universal property.
Given a P-algebra A and a linear map F : V → A, there is a unique map of

P-algebras F̌ : P ◦V→ A which extends F .
It is defined as the composite map

F̌ : P ◦V
id ◦F

P ◦A
⇐=

A .

It is a good exercise to check that this is a map of algebras.

Proposition 3. A derivation on P ◦V is uniquely determined by its value on V.
That is,

Hom(V,P ◦V)
∼=
−→ Der(P ◦V).
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Proof. The above map extends F ∈ Hom(V,P ◦V) to a derivation F̂ of P ◦V as
follows. We illustrate it on an example.

F̂




v1

p

v2


 =

F (v1)

p

v2

+

v1

p

F (v2)

And by definition, F̂ sends P[0], the degree 0 part of P ◦V, to 0. The inverse map
restricts a derivation ξ to

ξ |V : V
∼=
−→ u ◦ V −→ P ◦V

ξ
−→ P ◦V .

�

Definition 5.6. The Lie structure on Hom(V,P ◦V) induced by the above isomor-
phism is given by

(10) [F,G] = F̂ ◦G− Ĝ ◦ F.

A pictorial description of this can be given by writing Hom(V,P ◦V) ∼= V∗⊗(P ◦V),
as explained at the end of this section.

5.3. Dioperad algebras.

Definition 5.7. Let Y be an dioperad. A Y-algebra is a vector space A with two
maps

⊣
⇐=,

⊢
⇐= : Y ⋄A→ Y,

which we abbreviate to ⊣ and ⊢, such that

(i) the map ⊣ factors through the quotient Y ⋄A→ Y ◦A, and
(ii) the following axioms hold as a map from Y ⋄(Y ⋄A) to A.

⊣ (⊢,⊢) = ⊣ (⊣,⊣) = (⊣) ⊣

⊢ (⊣,⊣) = (⊢) ⊣

⊢ (⊢,⊢) = (⊢) ⊢ = (⊣) ⊢

The notation used above is same as the one used in Definition 3.5. We denote

the image of p ⊗ {a1, . . . , ai , . . . , an} under the map, say
⊢
⇐=, by the notation

p
⊢
⇐= {a1, . . . , ai , . . . , an}. For a picture, we draw

a1

p •a2

a3

p⊗ {a1, a2 , a3}

maps to

a1

p • a2

a3

p⇐= {a1, a2 , a3}

We also require that the composite map

A
∼=
−→ u ⋄A −→ Y ⋄A

⊢
A

is the identity.
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A morphism between Y-algebras A and B is a linear map A→ B which commutes
with the respective ⊣ and ⊢ maps.

We denote by Y-alg the category of Y-algebras.

Remark. The unit condition implies that the map
⊢
⇐= is surjective. It is not clear

whether the map
⊢
⇐= is surjective in general. But if it is surjective then one can

derive useful results; see Lemma 6.

Definition 5.8. A derivation (ξ⊢, ξ⊣) of the Y-algebra A is a pair of linear maps

ξ⊢, ξ⊣ : A→ A

which satisfy the conditions below. First we define ξ̃⊢, ξ̃⊣ : Y ⋄A→ Y ⋄A by

ξ̃⊢
(
q ⊗ {a1, . . . , al , . . . , aj}

)
=

∑j
i=1 q ⊗ {a1, . . . , ξ(ai) , . . . , aj}.

ξ̃⊣
(
q ⊗ {a1, . . . , al , . . . , aj}

)
=

∑j
i=1 q ⊗ {a1, . . . , ξ(ai), . . . , al , . . . , aj}.

Note that ξ̃⊢ factors through the quotient Y ⋄A→ Y ◦A, whereas ξ̃⊣ does not. We
require that the following five diagrams commute.

Y ⋄A
ξ̃⊣

⊣

Y ⋄A

⊣

A
ξ⊣

A

Y ⋄A
ξ̃⊣

ξ̃⊢

Y ⋄A

⊣

Y ⋄A
⊣

A

Y ⋄A
ξ̃⊣

⊢

Y ⋄A

⊢

A
ξ⊣

A

Y ⋄A
ξ̃⊢

⊢

Y ⋄A

⊢

A
ξ⊢

A

Y ⋄A
⊣

⊢

A

ξ⊢

A
ξ⊢

A

In the shorthand of Equation (8), we may write

⊣ ( ξ̃⊢ ) = ⊣ ( ξ̃⊣ ) = ( ⊣ ) ξ⊣

⊢ ( ξ̃⊣ ) = ( ⊢ ) ξ⊣

⊢ ( ξ̃⊢ ) = ( ⊢ ) ξ⊢ = ( ⊣ ) ξ⊢

for these diagrams. They bring out the similarity with the dialgebra axioms.
The space of derivations of A, denoted Der(A), is a vector space via

a · (ξ⊣, ξ⊢) := (a · ξ⊣, a · ξ⊢) for a ∈ k.

Further it forms a Leibniz algebra for the bracket

(11) [(ξ⊣, ξ⊢), (η⊣, η⊢)] := ([ξ⊣, η⊣], [ξ⊢, η⊣]),
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where in the right hand side, [ , ] is the usual commutator, as in Equation (9). The
fact that a bracket of this kind defines a Leibniz algebra is straightforward. The
more interesting part is to check that

(ξ⊣, ξ⊢), (η⊣, η⊢) ∈ Der(A) =⇒ ([ξ⊣, η⊣], [ξ⊢, η⊣]) ∈ Der(A).

One needs to use the identities [ξ̃⊣, η̃⊣] = ˜[ξ⊣, η⊣] and [ξ̃⊢, η̃⊣] = ˜[ξ⊢, η⊣] to prove
this fact.

Remark. We use the same notation [ , ] for the Lie and Leibniz commutator. The
meaning should be understood from the context.

Lemma 6. If the map Y ⋄A
⊣
−→ A is surjective then for ξ, η ∈ Der(A), we have

ξ⊢ ◦ η⊣ = ξ⊢ ◦ η⊢.

Proof. The proof follows from the following commutative diagram.

A
η⊣

A

ξ⊢

Y ⋄A
η̃⊢

⊣

⊣

Y ⋄A

⊣

⊣

A

A
η⊢

A

ξ⊢

The derivation axioms imply that each of the little square commutes. �

5.4. The free dioperad algebra.

Definition 5.9. For Y a dioperad and V a vector space, let Y ◦V be the Y-algebra
given by

⊣ : Y ⋄(Y ◦V)
∼=
−→ (Y ⋄Y) ◦ V

⊣◦ id
Y ◦V .

⊢ : Y ⋄(Y ◦V)
∼=
−→ (Y ⋄Y) ◦ V

⊢◦ id
Y ◦V .

It is clear that a dioperad axiom for Y in Lemma 4 implies the corresponding algebra
axiom for Y ◦V. Similarly the bar unit of Y implies the bar unit axiom for Y ◦V.
This defines a functor

Y ◦(−) : Vect −→ Y-alg,

which is called the free functor.
We denote the Leibniz algebra Der(Y ◦V) by the notation Der(gln,Y), where n

is the dimension of V.

Remark. By definition, the composite map

Y ◦V ∼= Y ⋄(u ◦V) −→ Y ⋄(Y ◦V)
⊣
−→ Y ◦V

is the identity. This shows that the map
⊣
⇐= is surjective for Y ◦V. In particular,

Lemma 6 applies.

Proposition 4. The free functor is the left adjoint to the forgetful functor

Y-alg −→ Vect .

In other words, Y ◦V is the free Y-algebra on V.
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One may phrase the above proposition by the following universal property.
Given a Y-algebra A and a linear map F : V → A, there is a unique map of

Y-algebras F̌ : Y ◦V→ A which extends F .
It is defined as the composite map

F̌ : Y ◦V
id ◦F

Y ◦A
⊣

A .

Note that the domain Y ◦A forces the second map to be ⊣. The axioms ⊣ (⊣,⊣) =
(⊣) ⊣ and ⊢ (⊣,⊣) = (⊢) ⊣ in Definition 5.7 applied to the Y-algebra A show that
F̌ is a map of Y-algebras. The bar unit of Y shows that F̌ is unique.

Proposition 5. A derivation on Y ◦V is uniquely determined by its value on V.
That is,

Hom(V,Y ◦V)
∼=
−→ Der(Y ◦V).

Proof. In analogy with the proof of Proposition 3, one can extend F : V → Y ◦V
to two maps F̂⊣, F̂⊢ : Y ◦V→ Y ◦V as follows. We illustrate it on an example.

F̂⊣




v1

p

v2


 =

F (v1)

⊣
p

v2

+

v1

p

F (v2)

⊣

And similarly F̂⊢ is defined with ⊢ instead of ⊣. And by definition, F̂ sends Y[0],

the degree 0 part of Y ◦V, to 0. It is routine to check that (F̂⊣, F̂⊢) ∈ Der(Y ◦V).
For example, the repeated use of the dioperad axiom

p ⊢ (q ⊢ r) = (p ⊢ q) ⊢ r = (p ⊣ q) ⊢ r

on Y yields the derivation axiom

⊢ (
˜̂
F⊢ ) = ( ⊢ ) F̂⊢.

This defines the map, say L, in the proposition. The inverse map, say M , sends
(ξ⊣, ξ⊢) to

ξ⊢ |V : V
∼=
−→ u ◦ V −→ Y ◦V

ξ⊢−→ Y ◦V .

One needs to check that L and M are inverses of each other. The bar unit of Y
shows that M ◦ L = id. And L ◦M = id follows from the derivation axioms

⊣ ( ξ̃⊢ ) = ( ⊣ ) ξ⊣ and ⊢ ( ξ̃⊢ ) = ( ⊣ ) ξ⊢.

�

Definition 5.10. The Leibniz structure on Hom(V, (Y ◦V)) induced by the above
isomorphism is given by

(12) [F,G] = F̂⊢ ◦G− Ĝ⊣ ◦ F.

One can describe this bracket pictorially by using the isomorphism

Hom(V,Y ◦V) ∼= V∗⊗(Y ◦V).
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An element of Hom(V,Y ◦V) is then an operad element p, with its inputs labelled
by elements of V and its output by an element of V∗, as shown below.

f ⊗ (p⊗ {x1, x3, x1}) =

x1

f p x3

x1

∈ V∗⊗(Y ◦V) with f ∈ V∗ .

We illustrate the Leibniz bracket on V∗⊗(Y ◦V) by an example.




x1

f p

x2

, g q x2


 = f(x2)




x1

g q
⊣
←− p

x2


 −

g(x1)




x2

f p
⊢
←− q

x2


 − g(x2)




x1

f p
⊢
←− q

x2


 .

In the first term on the right, p is substituted into q and in the next two, q is
substituted into each input of p. For each term, we pick a coefficient given by
contracting an element of V∗ with an element of V, along with the appropriate
sign.

6. Dioperad geometry

In this section, we explain the geometry behind the dioperad constructions in
Section 5, and how concepts about manifolds can be used to develop these ideas fur-
ther. Further, we explain the basic setting for symplectic and orthogonal geometry
for a reversible dioperad, by borrowing facts about symplectic manifolds.

6.1. Dioperad manifolds. We begin with an informal discussion. Let Y be a
dioperad. For our intuition, we assume that there exists a category of Y-manifolds
and an equivalence of categories

Y-manifolds ←→ Y-alg .

We view a Y-algebra, say A, as the algebra of functions on a Y-manifold, say X.
This allows us to interpret algebraic objects associated to A as familiar geometric
notions of X. For example, one can view Der(A) as vector fields on X, denoted by
X(X).

To go a step further, one must define differential forms on X, denoted by Ω(A).
Classically, these are functions on ΠTX, which is the total space of the odd tangent
bundle to X. This suggests that we must also assume an equivalence of categories

Y-supermanifolds ←→ Y-superalg,

under which ΠTX and Ω(A) correspond to each other. The differential d on Ω(A)
satisfies the Leibniz rule and hence is a superderivation. So one can view this as a
vector field on ΠTX, that is, as an element of X(ΠTX).

The basic objects of interest are summarised in the table below.
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Geometric objects Algebraic objects

X Y ◦V Z ◦V
X(X) Der(Y ◦V) Der(Z ◦V)
ΠTX Ω(Y ◦V) Ω(Z ◦V)

X(ΠTX) Der(Ω(Y ◦V)) Der(Ω(Z ◦V))

We repeat that the geometric objects in the first column do not exist; their role is
to aid our intuition. If Y is reversible then there are two algebraic candidates for a
given geometric notion and they are both useful. Since X corresponds to the free
Y-algebra on V, we call it the standard Y-manifold on V. If V is a super vector
space, as will be the case in orthogonal geometry, then we call X the standard
Y-supermanifold on V.

6.2. Dioperad supergeometry. The material in Section 5 generalizes to super-
spaces, which we briefly record.

Definition 6.1. A super vector space A is a Z2-graded vector space A = A0⊕A1.
We refer to A0 and A1 as the even and odd parts of A respectively. An even (resp.
odd) map between A and B is a linear map between A and B which preserves (resp.
switches) the grading. And Hom(A,B) is the direct sum of the spaces of even and
odd maps. We write SuperVect for the category of super vector spaces.

Definition 6.2. For a super vector space A, let Q ◦A be as in Definition 3.1, but
where Σj acts on A⊗j by permuting the factors using the Koszul rule of signs.
Namely, for a transposition π = (i, i+ 1) ∈ Σj , we have

π(. . .⊗ ai ⊗ ai+1 ⊗ . . .) = (−1)|ai||ai+1| (. . .⊗ ai+1 ⊗ ai ⊗ . . .),

where | · | refers to the degree of the element.
Note that Q ◦A is a super vector space. We denote an element of Q ◦A by

q⊗{a1, . . . , aj}⊗ [b1, . . . , bk]. The ai’s and bi’s belong to the even and odd part of
A respectively. The square brackets indicate that permuting the bi’s incurs a sign,
namely the sign of the permutation. For a picture, we draw

a2 b1

q

1

2
a1 b3

= −

a2 b1

q

2

1
a1 b3

∈ Q ◦A .

The first picture stands for q ⊗ {a1, a2} ⊗ [b1, b3].

Proceeding along these lines, for a dioperad Y, we define Y-superalg, the cat-
egory of Y-superalgebras. Further the space of superderivations Der(A) of a Y-
superalgebra A is a Leibniz superalgebra. Propositions 4 and 5 continue to hold
in the super setting. Namely, Y ◦W is the free Y-superalgebra on the super vector
space W, and Hom(W,Y ◦W) ∼= Der(Y ◦W).

Let W be a supe vector space of dimension (k|l). In what follows, we denote by
X the standard Y-supermanifold on W, with x1, . . . , xk and θ1, . . . , θl as the even
and odd coordinates respectively.

Definition 6.3. We now define one notion of differential forms on X. Let

Ω(Y ◦W) := Y ◦(W⊕ΠW) = The free Y-superalgebra on W⊕ΠW,
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where Π is the functor on SuperVect that switches parity. Let

d ∈ Hom(W⊕ΠW,Ω(Y ◦W))

send W isomorphically onto ΠW ∼= (u[1]⊗ΠW) and send ΠW to 0. Then d defines

an odd superderivation (d̂⊣, d̂⊢) on Ω(Y ◦W). For simplicity, we denote this again

by d. Since u is a unit only on the bar side, d̂⊣ and d̂⊢ are different operators. It

follows from the definition that d̂2⊣ = 0. To give an illustration of how d̂⊣ works,

θ1

p

2

1

x1

dx2

p⊗ {x1} ⊗ [dx2, θ1]

d̂⊣7−→

θ1

p

3

1

2

dx1

dx2

p⊗ [dx1, dx2, θ1]

−

dθ1

p

1

x1

dx2

p⊗{x1, dθ1}⊗ [dx2]

Observe that for d̂⊢, the term p
⊢
←− u would enter the picture.

Apart from the Z2-grading, Ω(Y ◦W) has a Z-grading given by the number of
occurrences of elements of ΠW. We write Ωi(Y ◦W) for the ith graded part. Note

that Ω0(Y ◦W) = Y ◦W. Thus we obtain a chain complex (Ω∗(Y ◦W), d̂⊣), whose
homology is computed in Proposition 6.

Remark. One can also define the space Ω(Y ◦W) by an universal property as the
free differential Y-superalgebra on W.

Definition 6.4. Let ξ ∈ Der(Y ◦W) be a vector field on X. It gives rise to two
vector fields, namely Lξ and iξ, on ΠTX as follows. We define the Lie derivative
Lξ ∈ Der(Ω(Y ◦W)) and the contraction iξ ∈ Der(Ω(Y ◦W)) by specifying them on
W⊕ΠW as below.

Lξ(w) = (−1)|ξ|ξ(w), Lξ(dw) = d̂⊣(ξ(w)) and iξ(w) = 0, iξ(dw) = (−1)|ξ|ξ(w),

for every w ∈ W and where |ξ| denotes the degree of ξ. The operators Lξ and iξ
have degrees |ξ| and |ξ|+ 1 respectively.

Lemma 7. For vector fields ξ, η ∈ Der(Y ◦W), the following Leibniz super com-
mutation relations hold.

[iξ, d] = Lξ, [iξ, iη] = 0, [Lξ, iη] = i[ξ,η], [Lξ, Lη] = L[ξ,η].

Proof. To prove this lemma, it is better to regard the super vector fields as elements
of Hom(W⊕ΠW,Ω(Y ◦W)). From the super-version of Equation (12), we have

[iξ, d] = (îξ)⊢ ◦ d− (−1)|ξ|+1 d̂⊣ ◦ iξ

From Definition 6.4, the formula above, and d̂2⊣ = 0, we obtain

[iξ, d](w) = (−1)|ξ|ξ(w) and [iξ, d](dw) = d̂⊣(ξ(w)),

which is same as Lξ(w) and Lξ(dw) respectively. This proves the first formula. The
remaining proofs are similar. �

Proposition 6. We have

Hi(Ω∗(Y ◦W), d̂⊣) =

{
0 if i > 0,

Y[0] if i = 0.
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Proof. Consider the linear Euler vector field e ∈ Der(Y ◦W), defined by e(w) = w
for w ∈ W. Then Le(w) = w and Le(dw) = dw and hence Le is the Euler vector

field on ΠTX. With respect to the Z-grading on Ω(Y ◦W), the operators (L̂e)⊣,

(̂ie)⊣ and d̂⊣ have degrees 0, −1 and 1 respectively. It is clear that for degree

greater than 0, the operator (L̂e)⊣ is invertible, and induces an isomorphism on
cohomology. On the other hand, one half of Cartan’s formula (the first formula in
Lemma 7), namely,

[(̂iξ)⊣, d̂⊣] = (L̂ξ)⊣

for ξ = e shows that it induces the zero map on cohomology. So we conclude

that the chain complex (Ω∗(Y ◦W), d̂⊣) is exact for degree greater than 0. The

computation for degree 0 follows from the fact that the kernel of (L̂e)⊣ is precisely
Y[0]. �

6.3. The mating functor for algebras. Let Y be a reversible dioperad and
Z = YY be its mated species.

Definition 6.5. We define the mating functor

Y-alg −→ Vect,

that maps a Y-algebra A to the vector space

A⊗A⊗k{⊣,⊢},

subject to the two relations below. We denote a⊗ b⊗ ⊣ by the notation a
⊣

b

and a⊗ b⊗ ⊢ by the notation a
⊢

b.

(R1) a
⊣

b = b
⊢

a

(R2)

({a1, . . . , ai , . . . , aj}
⊣

=⇒ p)
⊢

b

= ({a1, . . . , ai , . . . , aj}
⊢

=⇒ p)
⊢

b

= ai
⊢

(r(p)
⊢
⇐= {a1, . . . , b , . . . , aj}).

({a1, . . . , ai , . . . , aj}
⊢

=⇒ p)
⊣

b

= ai
⊢

(r(p)
⊣
⇐= {a1, . . . , b , . . . , aj}).

The notation used is as in Definition 5.7. As a pictorial illustration of the first part
of relation (R2),

a2
⊢

a1
⊣

•
p

a3
⊢

b
⊢

({a1, a2 , a3}
⊢

=⇒ p)
⊢

b

=

a2
⊢

a1
⊣

p

•
a3

⊢
b

⊢

a2
⊢

(r(p)
⊢
⇐= {a1, b , a3})

We denote the image of the Y-algebra A under the mating functor by the notation
AA and call it the mated vector space of A.
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Exercise 3. For a vector space V, show that the mating functor maps the free
Y-algebra Y ◦V to the vector space YY ◦V. As an example,

v1 v3 v1

⊣

v3 v2

=

v1 v3

v1

v3 v2

which shows the mating for the free algebra of the dioperad s.
We regard v ∈ V as an element of Y ◦V via V ∼= u ◦V → Y ◦V. Show that for

v1, v2 ∈ V, we have

v1
⊢

v2 = v1
⊣

v2.

In this case, we drop ⊢ and ⊣ from the notation and denote the above unambiguously
by v1 v2.

Definition 6.6. Let A be a Y-algebra and AA be its mated vector space. Further
let (ξ⊢, ξ⊣) ∈ Der(A). This defines a pair of operators ξ⊢, ξ⊣ : AA→ AA as follows.

ξ⊣(a
⊢

b) = ξ⊣(a)
⊢

b + a
⊢

ξ⊣(b)

ξ⊢(a
⊢

b) = ξ⊢(a)
⊣

b + a
⊢

ξ⊢(b)

One can check that they respect the relations (R1) and (R2). Let Der(AA) consists
of pairs (ξ⊢, ξ⊣) of such operators. Then Der(AA) is a Leibniz algebra with bracket
given by Equation (11) and the surjection Der(A) → Der(AA) is a map of Leibniz
algebras.

Exercise 4. Define the super-version of the mating functor

Y-superalg −→ Vect,

and show that it sends Y ◦W to Z ◦W. Also generalize the second claim in Exercise
3. Further show that Definition 6.6 can be extended to superalgebras. In particular,
this defines a map Der(Y ◦W)→ Der(Z ◦W) of Leibniz superalgebras.

Definition 6.7. We now define the second notion of differential forms on X. Let

Ω(Z ◦W) := Z ◦(W⊕ΠW).

Applying the above exercise with W replaced by W⊕ΠW, we observe that the mat-
ing functor sends Ω(Y ◦W) to Ω(Z ◦W). Further we have a map Der(Ω(Y ◦W))→
Der(Ω(Z ◦W)) of Leibniz superalgebras. For ξ ∈ Der(Y ◦W), this yields d, Lξ, iξ ∈
Der(Ω(Z ◦W)), which satisfy the commutation relations of Lemma 7. By analo-

gous reasoning, we obtain a chain complex (Ω∗(Z ◦W), d̂⊣), whose degree zero part
is Z ◦W and whose homology is given by

Hi(Ω∗(Z ◦W), d̂⊣) =

{
0 if i > 0,

Z[0] if i = 0.

The picture illustration for the map d̂⊣ is as shown in Definition 6.3, except that
there is no output arrow.
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6.4. The partial derivative for algebras. We now define and state the diop-
erad analogues of some basic facts about partial derivatives on manifolds. The
justification for the claims made is given by Proposition 1.

Definition 6.8. The spaces Z ◦W and Y ◦W can both be interpreted as functions
on X. For 1 ≤ i ≤ k and 1 ≤ j ≤ l, we define partial derivatives

∂

∂xi

,
∂

∂θj
: Z ◦W→ Y ◦W

as follows.

x1 θ1

q

b

c

a

d
x2 x1

∂
∂x17−→

θ1

∂q
∂a

x2 x1

+

x1 θ1

∂q
∂c

x2

Namely, to define ∂q
∂x1

, we cut the inputs of q attached to x1, one at a time. For
clarity, we have also indicated the labels on the inputs of q.

θ2 θ1

q

b

2

c

a

1

d

3

θ1 x2

∂
∂θ17−→ −

θ2

∂q
∂b

1

2

θ1 x2

+

θ2 θ1

∂q
∂d

2

1

x2

Namely, to define ∂q
∂θ1

, we cut the inputs attached to θ1, one at a time, first reorder-
ing the numbers so that the input being cut has number 1 and then shifting down
the numbers of the remaining inputs.

Lemma 8. A one form on X, that is, an element of Ω1(Z ◦W), can be uniquely
written as ∑

i

dxi
⊢

ai +
∑

j

dθj
⊢

bj .

Further for a function on X, that is, an element H ∈ Z ◦W, we have

d̂⊣(H) =
∑

i

dxi
⊢ ∂H

∂xi

+
∑

j

dθj
⊢ ∂H

∂θj
.

Note that the bar is always on the side of the diferentials.

Exercise 5. For the subset dioperad s, make the above ideas explicit.

6.5. Symplectic dioperad geometry. We specialise to W = V2n, a super vec-
tor space of dimension (2n|0) with basis p1, . . . , pn, q1, . . . , qn. There are no odd
coordinates. Using the even number of even coordinates, we define the symplectic
form

ω :=

n∑

i=1

dpi dqi ∈ Ω2(Z ◦V2n)

This defines a symplectic dioperad manifold (X,ω). The unambiguity of the no-
tation follows from Exercises 3 and 4. Observe that the super-version of relation
(R1) implies that

dpi dqi = − (dqi dpi).
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Hence the order of dpi and dqi is important.

Definition 6.9. Let now define the Leibniz algebra of symplectic, or equivalently,
Hamiltonian vector fields on (X,ω). Let

Der(Y ◦V2n, ω) := {ξ ∈ Der(Y ◦V2n) | (L̂ξ)⊢ ω = 0}.

We note that the bracket on Der(Y ◦V2n) restricts to the above subspace. This
follows from the following part of Lemma 7.

(L̂[ξ,η])⊣ = (L̂ξ)⊢ ◦ (L̂η)⊢ − (L̂η)⊣ ◦ (L̂ξ)⊢.

For the expression on the right, we also made use of Lemma 6.
We also denote the Leibniz algebra Der(Y ◦V2n, ω) by the notation Der(sp2n,Y).

Definition 6.10. We interpret the space Z ◦V2n as Hamiltonian functions on the
symplectic dioperad manifold (X,ω). We define the Poisson bracket

{ , } : Z ◦V2n⊗Z ◦V2n → Z ◦V2n

using the formula

{F,H} :=

n∑

i=1

∂F

∂pi

⊣ ∂H

∂qi
−

∂F

∂qi

⊣ ∂H

∂pi

This defines a Leibniz structure on Z ◦V2n.

Proposition 7. There is a split short exact sequence of Leibniz algebras

0→ Z[0] →֒ Z ◦V2n ։ Der(Y ◦V2n, ω)→ 0.

With our conventions below, the second map is an anti-Leibniz map.

We now outline the proof of the above proposition, which imitates the standard
proof in classical symplectic geometry.

Lemma 9. The map Der(Y ◦V2n) → Ω1(Z ◦V2n) which sends ξ to (îξ)⊢ ω is an
isomorphism.

Proof. We have the chain of equalities

(îξ)⊢ ω =
∑n

i=1 (îξ)⊢ (dpi dqi)

=
∑n

i=1 dpi
⊢

ξ(qi) + dqi
⊢

ξ(pi). (Definition 6.6)

This shows that (îξ)⊢ ω is determined by ξ(pi) and ξ(qi), which also determine ξ.
The result now follows from Lemma 8. �

It follows from Cartan’s formula (first formula in Lemma 7) that

ξ ∈ Der(Y ◦V2n, ω) ⇐⇒ d̂⊣((îξ)⊢ ω) = 0.

Hence under the isomorphism of Lemma 9, symplectic vector fields correspond to
closed 1 forms. Define Hamiltonian vector fields to be the ones that correspond to

exact 1 forms. However, Definition 6.7 says that H1(Ω∗(Z ◦V2n), d̂⊣) = 0. Hence
the Hamiltonian and symplectic vector fields coincide in this case. This defines the
short exact sequence in Proposition 7. For the second map, H 7→ ξH is defined by
the equation

d̂⊣(H) = (îξH )⊢ ω.
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Writing both one forms in the unique expression of Lemma 8, we derive the Hamil-
tonian equations

(13) ξH(pi) =
∂H

∂qi
and ξH(qi) = −

∂H

∂pi
.

It remains to check that the second map is an anti-Leibniz morphism. This follows
from the following formulas

( ̂i[ξF ,ξH ])⊢ ω = d̂⊣((îξF )⊢(d̂⊣(H))) and (îξF )⊢(d̂⊣(H)) = −{F,H},

which are left as an exercise to the reader.

6.6. Orthogonal dioperad geometry. We specialise to W = V−
n , a super vector

space of dimension (0|n) with basis θ1, . . . , θn. There are no even coordinates. We
define the symmetric two tensor

ρ :=

n∑

i=1

dθi dθi ∈ Ω2(Z ◦V−
n ).

This defines an orthogonal dioperad manifold (X, ρ). We now proceed as in the
symplectic case; the interested reader may fill in the details.

Definition 6.11. Let now define the Leibniz superalgebra of orthogonal vector
fields on (X, ρ). Let

Der(Y ◦V−
n , ρ) := {ξ ∈ Der(Y ◦V−

n ) | (L̂ξ)⊢ ρ = 0}.

We also denote this Leibniz superalgebra by the notation Der(on,Y).

Definition 6.12. We interpret the space Z ◦V−
n as functions on the orthogonal

dioperad manifold (X, ρ). We define the Poisson bracket

{ , } : Z ◦V−
n ⊗Z ◦V−

n → Z ◦V−
n

using the formula

{F,H} := (−1)|F |
n∑

i=1

∂F

∂θi

⊣ ∂H

∂θi
.

This defines a Leibniz superalgebra structure on Z ◦V−
n .

Proposition 8. There is a split short exact sequence of Leibniz superalgebras

0→ Z[0] →֒ Z ◦V−
n ։ Der(Y ◦V−

n , ρ)→ 0.

The second map sends H to ξH , where ξH(θi) =
∂H
∂θi

.

7. Graph homology

In this section, we give the definitions of the graph complexes that occur in
Conjecture 2.

Definition 7.1. A graph is a 1 dimensional CW complex. For a graph Γ, we
denote the set of vertices by V (Γ), the set of edges by E(Γ), the set of ends of an
edge e by V (e) and the set of edges incident at a vertex v by E(v).

Definition 7.2. For a set S, let K S be the vector space over K which has the
elements of S as a basis. For a vector space W of dimension n, we use the notation
detW = ΛnW .



36 SWAPNEEL MAHAJAN

7.1. The graph complex Ĉ(gl,Y). Let Y be a dioperad. A Y-graph is a directed
graph Γ such that for every vertex v, there is exactly one outgoing edge and a
Y-structure is specified on the set of incoming edges at v. We will use the letter Γ
to denote a Y-graph as well as its underlying graph.

Definition 7.3. Let Γ be a Y-graph and L be the set of linear orders on V (Γ). A
labelling l of Γ is an element of KL. We say that (Γ, l) is a labelled Y-graph.

p1

3

p3

1

p4

5

p2

4

p5

2

Figure 1. A labelled Y-graph.

Figure 1 shows a labelled Y-graph with 5 vertices and 5 edges. The edges are
drawn broken to emphasize that the graph is made of 5 dioperad elements with
p1, p2 ∈ Y[0], p3, p4 ∈ Y[2] and p5 ∈ Y[1]. The numbers written close to the vertices
show the linear order on V (Γ).

Definition 7.4. The kth chain group of the chain complex Ĉ(gl,Y), which we

denote Ĉk(gl,Y), is the vector space over K generated by all labelled connected
Y-graphs (Γ, l) with k vertices, upto automorphism, and vertex linearity and the
condition

(14) (Γ, k1l1 + k2l2) = k1(Γ, l1) + k2(Γ, l2), for k1, k2 ∈ K.

The boundary map ∂E : Ĉk(gl,Y)→ Ĉk−1(gl,Y) is defined using edge contractions.
We do not contract loops. More precisely, we have

(15) ∂E(Γ, l) =
∑

e∈E(Γ)

(Γ/e, l/e),

where Γ/e and l/e are defined as below.

q

j

p

i
e

= (−1)j q
⊢
←− p

i

p

i

q

j
e

= (−1)j+1
p

⊣
←− q

i

Let p and q be Y-structures and i and j be the labels of the vertices connecting
the edge e with i < j. Then Γ/e is the graph Γ with the edge e contracted, the
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Y-structure on the resulting vertex being p
⊣
−→ q if e points from i to j, and p

⊣
←− q

if e points from j to i. To get l/e, we label the resulting vertex i, decrease the labels
greater than j by one, and multiply this labelling by (−1)j if e points from i to j,
and by (−1)j+1 if it points from j to i.

The associativity property of dioperad substitution and the choice of sign imply
that ∂2

E = 0. This defines the chain complex Ĉ(gl,Y) = (Ĉ∗(gl,Y), ∂E).

7.2. The graph complexes Ĉ(sp,Y) and Ĉ(o,Y). Let Z be the mated species of
a reversible dioperad Y. A Z-graph is a graph Γ such that for every vertex v, a
Z-structure is specified on the set of edges incident at v.

Definition 7.5. We define two different notions of labelling for a Z-graph Γ.
A labelling l of Γ is an element of KL, where L is the set of linear orders on

V (Γ). We say that (Γ, l) is a labelled Z-graph.
An odd labelling l− of a Z-graph Γ is an element of KL ⊗

⊗
v∈V (Γ) detKE(v).

We say that (Γ, l−) is an odd labelled Z-graph. A way to represent an odd labelling
is to order the order the edges incident on every fixed vertex. An odd permutation
of the labels on the edges incident to a fixed vertex reverses the labelling.

Definition 7.6. The kth chain group of Ĉ(sp,P), which we denote Ĉk(sp,P), is the
vector space over K generated by all connected labelled Z-graphs (Γ, l) with k ver-
tices, upto automorphism, and vertex linearity and Equation (14). The boundary

map ∂E : Ĉk(sp,P) → Ĉk−1(sp,P) is defined using Equation (15), where l/e is as
before and Γ/e is the graph Γ with the edge e contracted, the Y-structure on the

resulting vertex being p
⊣

q. Note that the bar is on the side of the vertex
with the larger label.

Definition 7.7. The chain complex Ĉ(o,P) is defined similarly to Ĉ(sp,P), using
connected odd labelled Z-graphs. The induced labelling l−/e is obtained the fol-
lowing way: let v1 and v2 be the ends of the edge e. Choose a representative of
l where the edge e has label 1 for both v1 and v2; give the new vertex v arising
from the contraction of e the label i, decrease the labels greater than j by one,
renumber the labels on E(v) by preserving the relative order on the labels of E(v1)
and E(v2) and shifting up the labels on E(v2). Finally multiply this labelling by
the sign (−1)j+|v1| if the degree of v2 is even and by (−1)i+k+1+|v1| if the degree
of v2 is odd, where k is the number of vertices of odd degree with label between i
and j.
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[9] J.-L. Loday, A. Frabetti, F. Chapoton, and F. Goichot, Dialgebras and related operads,
Springer-Verlag, Berlin, 2001. 1, 5, 10, 12

[10] Jean-Louis Loday and Claudio Procesi, Homology of symplectic and orthogonal algebras,
Adv. in Math. 69 (1988), no. 1, 93–108. i, 1

[11] Jean-Louis Loday and Daniel Quillen, Homologie cyclique et homologie de l’algèbre de Lie
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